TextEmbeddings / utils_model.py
DanielIglesias97's picture
First upload to the repository.
9fa6c15
raw
history blame
1.12 kB
import numpy as np
import pandas as pd
# from sentence_transformers import SentenceTransformer
class ModelFactory():
def __init__(self):
pass
def create_model(self, model_type):
model = None
if (model_type=='mock'):
model = MockModel()
# if (model_type=='all-MiniLM-L6-v2'):
# model = MiniLM_L6_v2_Model()
return model
class BaseModel():
def __init__(self):
pass
def retrieve_embeddings(self, input_text):
pass
class MockModel(BaseModel):
def __init__(self):
pass
def retrieve_embeddings(self, input_text):
random_embeddings = np.random.randint(256, size=(370))/256
return pd.DataFrame(random_embeddings)
# class MiniLM_L6_v2_Model(BaseModel):
# def __init__(self):
# self.model = SentenceTransformer('all-MiniLM-L6-v2')
# def retrieve_embeddings(self, input_text):
# embeddings = self.model.encode(input_text, batch_size=32)
# embeddings *= 255
# embeddings = embeddings.astype(np.uint8).tolist()
# return embeddings