Spaces:
Sleeping
Sleeping
| import numpy as np | |
| import pandas as pd | |
| # from sentence_transformers import SentenceTransformer | |
| class ModelFactory(): | |
| def __init__(self): | |
| pass | |
| def create_model(self, model_type): | |
| model = None | |
| if (model_type=='mock'): | |
| model = MockModel() | |
| # if (model_type=='all-MiniLM-L6-v2'): | |
| # model = MiniLM_L6_v2_Model() | |
| return model | |
| class BaseModel(): | |
| def __init__(self): | |
| pass | |
| def retrieve_embeddings(self, input_text): | |
| pass | |
| class MockModel(BaseModel): | |
| def __init__(self): | |
| pass | |
| def retrieve_embeddings(self, input_text): | |
| random_embeddings = np.random.randint(256, size=(370))/256 | |
| return pd.DataFrame(random_embeddings) | |
| # class MiniLM_L6_v2_Model(BaseModel): | |
| # def __init__(self): | |
| # self.model = SentenceTransformer('all-MiniLM-L6-v2') | |
| # def retrieve_embeddings(self, input_text): | |
| # embeddings = self.model.encode(input_text, batch_size=32) | |
| # embeddings *= 255 | |
| # embeddings = embeddings.astype(np.uint8).tolist() | |
| # return embeddings |