DanielIglesias97 commited on
Commit
04178ea
·
1 Parent(s): a3866ca

We have included the real LLM model that will extract the

Browse files
Files changed (3) hide show
  1. main_service.py +1 -1
  2. requirements.txt +2 -1
  3. utils_model.py +11 -11
main_service.py CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
2
  from utils_model import ModelFactory
3
 
4
  def retrieve_embeddings(input_text_query):
5
- model_type = 'mock'
6
  model_factory_obj = ModelFactory()
7
  model = model_factory_obj.create_model(model_type)
8
 
 
2
  from utils_model import ModelFactory
3
 
4
  def retrieve_embeddings(input_text_query):
5
+ model_type = 'all-MiniLM-L6-v2'
6
  model_factory_obj = ModelFactory()
7
  model = model_factory_obj.create_model(model_type)
8
 
requirements.txt CHANGED
@@ -1,3 +1,4 @@
 
1
  gradio==5.37.0
2
  numpy==2.3.1
3
- pandas==2.3.1
 
1
+ git+https://github.com/UKPLab/sentence-transformers.git@e2a0098b0fbe10bf9a140a9b1d4c2a3451f1571f
2
  gradio==5.37.0
3
  numpy==2.3.1
4
+ pandas==2.3.1
utils_model.py CHANGED
@@ -1,6 +1,6 @@
1
  import numpy as np
2
  import pandas as pd
3
- # from sentence_transformers import SentenceTransformer
4
 
5
  class ModelFactory():
6
 
@@ -13,8 +13,8 @@ class ModelFactory():
13
  if (model_type=='mock'):
14
  model = MockModel()
15
 
16
- # if (model_type=='all-MiniLM-L6-v2'):
17
- # model = MiniLM_L6_v2_Model()
18
 
19
  return model
20
 
@@ -36,14 +36,14 @@ class MockModel(BaseModel):
36
 
37
  return pd.DataFrame(random_embeddings)
38
 
39
- # class MiniLM_L6_v2_Model(BaseModel):
40
 
41
- # def __init__(self):
42
- # self.model = SentenceTransformer('all-MiniLM-L6-v2')
43
 
44
- # def retrieve_embeddings(self, input_text):
45
- # embeddings = self.model.encode(input_text, batch_size=32)
46
- # embeddings *= 255
47
- # embeddings = embeddings.astype(np.uint8).tolist()
48
 
49
- # return embeddings
 
1
  import numpy as np
2
  import pandas as pd
3
+ from sentence_transformers import SentenceTransformer
4
 
5
  class ModelFactory():
6
 
 
13
  if (model_type=='mock'):
14
  model = MockModel()
15
 
16
+ if (model_type=='all-MiniLM-L6-v2'):
17
+ model = MiniLM_L6_v2_Model()
18
 
19
  return model
20
 
 
36
 
37
  return pd.DataFrame(random_embeddings)
38
 
39
+ class MiniLM_L6_v2_Model(BaseModel):
40
 
41
+ def __init__(self):
42
+ self.model = SentenceTransformer('all-MiniLM-L6-v2')
43
 
44
+ def retrieve_embeddings(self, input_text):
45
+ embeddings = self.model.encode(input_text, batch_size=32)
46
+ embeddings *= 255
47
+ embeddings = embeddings.astype(np.uint8).tolist()
48
 
49
+ return embeddings