Spaces:
Running
Running
update-leaderboard (#2)
Browse files- add toy results (caa5e2c7a15b22fffec51a9b2125523e08aba0b3)
- update column names (492f4350b7cca4b995eb44cf6af09ea22e5b8cd3)
- update about and env (d4cb50ad7a467c731f3363b755c3ab6264a03b75)
- add basic static leaderboard (bca96936ac7b6b6d1a21189155c05ca2340329da)
- app.py +30 -106
- results/BOOM_leaderboard.csv +15 -0
- src/about.py +15 -5
- src/display/utils.py +33 -23
- src/envs.py +8 -5
- src/populate.py +54 -10
app.py
CHANGED
|
@@ -22,7 +22,7 @@ from src.display.utils import (
|
|
| 22 |
ModelType,
|
| 23 |
fields,
|
| 24 |
WeightType,
|
| 25 |
-
Precision
|
| 26 |
)
|
| 27 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
| 28 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
|
@@ -32,24 +32,40 @@ from src.submission.submit import add_new_eval
|
|
| 32 |
def restart_space():
|
| 33 |
API.restart_space(repo_id=REPO_ID)
|
| 34 |
|
|
|
|
| 35 |
### Space initialisation
|
| 36 |
try:
|
| 37 |
print(EVAL_REQUESTS_PATH)
|
| 38 |
snapshot_download(
|
| 39 |
-
repo_id=QUEUE_REPO,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
)
|
| 41 |
except Exception:
|
| 42 |
restart_space()
|
| 43 |
try:
|
| 44 |
print(EVAL_RESULTS_PATH)
|
| 45 |
snapshot_download(
|
| 46 |
-
repo_id=RESULTS_REPO,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
)
|
| 48 |
except Exception:
|
| 49 |
restart_space()
|
| 50 |
|
| 51 |
|
| 52 |
-
LEADERBOARD_DF = get_leaderboard_df(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
(
|
| 55 |
finished_eval_queue_df,
|
|
@@ -57,7 +73,9 @@ LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS,
|
|
| 57 |
pending_eval_queue_df,
|
| 58 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
| 59 |
|
|
|
|
| 60 |
def init_leaderboard(dataframe):
|
|
|
|
| 61 |
if dataframe is None or dataframe.empty:
|
| 62 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
| 63 |
return Leaderboard(
|
|
@@ -68,21 +86,10 @@ def init_leaderboard(dataframe):
|
|
| 68 |
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
| 69 |
label="Select Columns to Display:",
|
| 70 |
),
|
| 71 |
-
search_columns=[AutoEvalColumn.model.name
|
| 72 |
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
| 73 |
filter_columns=[
|
| 74 |
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
| 75 |
-
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
| 76 |
-
ColumnFilter(
|
| 77 |
-
AutoEvalColumn.params.name,
|
| 78 |
-
type="slider",
|
| 79 |
-
min=0.01,
|
| 80 |
-
max=150,
|
| 81 |
-
label="Select the number of parameters (B)",
|
| 82 |
-
),
|
| 83 |
-
ColumnFilter(
|
| 84 |
-
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
|
| 85 |
-
),
|
| 86 |
],
|
| 87 |
bool_checkboxgroup_label="Hide models",
|
| 88 |
interactive=False,
|
|
@@ -95,98 +102,15 @@ with demo:
|
|
| 95 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 96 |
|
| 97 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 98 |
-
with gr.TabItem("🏅
|
| 99 |
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
| 100 |
|
| 101 |
-
|
| 102 |
-
|
|
|
|
| 103 |
|
| 104 |
-
with gr.TabItem("
|
| 105 |
-
|
| 106 |
-
with gr.Row():
|
| 107 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
| 108 |
-
|
| 109 |
-
with gr.Column():
|
| 110 |
-
with gr.Accordion(
|
| 111 |
-
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
| 112 |
-
open=False,
|
| 113 |
-
):
|
| 114 |
-
with gr.Row():
|
| 115 |
-
finished_eval_table = gr.components.Dataframe(
|
| 116 |
-
value=finished_eval_queue_df,
|
| 117 |
-
headers=EVAL_COLS,
|
| 118 |
-
datatype=EVAL_TYPES,
|
| 119 |
-
row_count=5,
|
| 120 |
-
)
|
| 121 |
-
with gr.Accordion(
|
| 122 |
-
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
| 123 |
-
open=False,
|
| 124 |
-
):
|
| 125 |
-
with gr.Row():
|
| 126 |
-
running_eval_table = gr.components.Dataframe(
|
| 127 |
-
value=running_eval_queue_df,
|
| 128 |
-
headers=EVAL_COLS,
|
| 129 |
-
datatype=EVAL_TYPES,
|
| 130 |
-
row_count=5,
|
| 131 |
-
)
|
| 132 |
-
|
| 133 |
-
with gr.Accordion(
|
| 134 |
-
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
| 135 |
-
open=False,
|
| 136 |
-
):
|
| 137 |
-
with gr.Row():
|
| 138 |
-
pending_eval_table = gr.components.Dataframe(
|
| 139 |
-
value=pending_eval_queue_df,
|
| 140 |
-
headers=EVAL_COLS,
|
| 141 |
-
datatype=EVAL_TYPES,
|
| 142 |
-
row_count=5,
|
| 143 |
-
)
|
| 144 |
-
with gr.Row():
|
| 145 |
-
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
| 146 |
-
|
| 147 |
-
with gr.Row():
|
| 148 |
-
with gr.Column():
|
| 149 |
-
model_name_textbox = gr.Textbox(label="Model name")
|
| 150 |
-
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
| 151 |
-
model_type = gr.Dropdown(
|
| 152 |
-
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
| 153 |
-
label="Model type",
|
| 154 |
-
multiselect=False,
|
| 155 |
-
value=None,
|
| 156 |
-
interactive=True,
|
| 157 |
-
)
|
| 158 |
-
|
| 159 |
-
with gr.Column():
|
| 160 |
-
precision = gr.Dropdown(
|
| 161 |
-
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
| 162 |
-
label="Precision",
|
| 163 |
-
multiselect=False,
|
| 164 |
-
value="float16",
|
| 165 |
-
interactive=True,
|
| 166 |
-
)
|
| 167 |
-
weight_type = gr.Dropdown(
|
| 168 |
-
choices=[i.value.name for i in WeightType],
|
| 169 |
-
label="Weights type",
|
| 170 |
-
multiselect=False,
|
| 171 |
-
value="Original",
|
| 172 |
-
interactive=True,
|
| 173 |
-
)
|
| 174 |
-
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
| 175 |
-
|
| 176 |
-
submit_button = gr.Button("Submit Eval")
|
| 177 |
-
submission_result = gr.Markdown()
|
| 178 |
-
submit_button.click(
|
| 179 |
-
add_new_eval,
|
| 180 |
-
[
|
| 181 |
-
model_name_textbox,
|
| 182 |
-
base_model_name_textbox,
|
| 183 |
-
revision_name_textbox,
|
| 184 |
-
precision,
|
| 185 |
-
weight_type,
|
| 186 |
-
model_type,
|
| 187 |
-
],
|
| 188 |
-
submission_result,
|
| 189 |
-
)
|
| 190 |
|
| 191 |
with gr.Row():
|
| 192 |
with gr.Accordion("📙 Citation", open=False):
|
|
@@ -201,4 +125,4 @@ with demo:
|
|
| 201 |
scheduler = BackgroundScheduler()
|
| 202 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
| 203 |
scheduler.start()
|
| 204 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
|
| 22 |
ModelType,
|
| 23 |
fields,
|
| 24 |
WeightType,
|
| 25 |
+
Precision,
|
| 26 |
)
|
| 27 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
| 28 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
|
|
|
| 32 |
def restart_space():
|
| 33 |
API.restart_space(repo_id=REPO_ID)
|
| 34 |
|
| 35 |
+
|
| 36 |
### Space initialisation
|
| 37 |
try:
|
| 38 |
print(EVAL_REQUESTS_PATH)
|
| 39 |
snapshot_download(
|
| 40 |
+
repo_id=QUEUE_REPO,
|
| 41 |
+
local_dir=EVAL_REQUESTS_PATH,
|
| 42 |
+
repo_type="dataset",
|
| 43 |
+
tqdm_class=None,
|
| 44 |
+
etag_timeout=30,
|
| 45 |
+
token=TOKEN,
|
| 46 |
)
|
| 47 |
except Exception:
|
| 48 |
restart_space()
|
| 49 |
try:
|
| 50 |
print(EVAL_RESULTS_PATH)
|
| 51 |
snapshot_download(
|
| 52 |
+
repo_id=RESULTS_REPO,
|
| 53 |
+
local_dir=EVAL_RESULTS_PATH,
|
| 54 |
+
repo_type="dataset",
|
| 55 |
+
tqdm_class=None,
|
| 56 |
+
etag_timeout=30,
|
| 57 |
+
token=TOKEN,
|
| 58 |
)
|
| 59 |
except Exception:
|
| 60 |
restart_space()
|
| 61 |
|
| 62 |
|
| 63 |
+
LEADERBOARD_DF = get_leaderboard_df(
|
| 64 |
+
EVAL_RESULTS_PATH + "/" + "BOOM_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS
|
| 65 |
+
)
|
| 66 |
+
LEADERBOARD_DF_DOMAIN = get_leaderboard_df(
|
| 67 |
+
EVAL_RESULTS_PATH + "/" + "BOOM_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS
|
| 68 |
+
)
|
| 69 |
|
| 70 |
(
|
| 71 |
finished_eval_queue_df,
|
|
|
|
| 73 |
pending_eval_queue_df,
|
| 74 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
| 75 |
|
| 76 |
+
|
| 77 |
def init_leaderboard(dataframe):
|
| 78 |
+
# TODO: merge results df with model info df
|
| 79 |
if dataframe is None or dataframe.empty:
|
| 80 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
| 81 |
return Leaderboard(
|
|
|
|
| 86 |
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
| 87 |
label="Select Columns to Display:",
|
| 88 |
),
|
| 89 |
+
search_columns=[AutoEvalColumn.model.name],
|
| 90 |
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
| 91 |
filter_columns=[
|
| 92 |
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
],
|
| 94 |
bool_checkboxgroup_label="Hide models",
|
| 95 |
interactive=False,
|
|
|
|
| 102 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 103 |
|
| 104 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 105 |
+
with gr.TabItem("🏅 Overall", elem_id="boom-benchmark-tab-table", id=0):
|
| 106 |
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
| 107 |
|
| 108 |
+
# TODO - add other tabs if needed
|
| 109 |
+
with gr.TabItem("🏅 By Domain - TODO", elem_id="boom-benchmark-tab-table", id=1):
|
| 110 |
+
leaderboard = init_leaderboard(LEADERBOARD_DF_DOMAIN) # TODO - update table data
|
| 111 |
|
| 112 |
+
with gr.TabItem("📝 About - TODO", elem_id="boom-benchmark-tab-table", id=2):
|
| 113 |
+
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
with gr.Row():
|
| 116 |
with gr.Accordion("📙 Citation", open=False):
|
|
|
|
| 125 |
scheduler = BackgroundScheduler()
|
| 126 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
| 127 |
scheduler.start()
|
| 128 |
+
demo.queue(default_concurrency_limit=40).launch()
|
results/BOOM_leaderboard.csv
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model,model_type,MASE_6750_scaled,CRPS_6750_scaled,Rank_6750_scaled,MAE_663_unscaled,CRPS_663_unscaled,Rank_663_unscaled
|
| 2 |
+
Toto-Open-Base-1.0,pretrained,0.617,0.375,2.351,0.001,0.025,7.549
|
| 3 |
+
moirai_1.1_base,pretrained,0.710,0.428,4.278,0.000,0.003,5.644
|
| 4 |
+
moirai_1.1_large,pretrained,0.720,0.436,4.499,0.001,0.005,6.707
|
| 5 |
+
moirai_1.1_small,pretrained,0.738,0.447,4.796,0.001,0.009,7.404
|
| 6 |
+
timesfm_2_0_500m,pretrained,0.725,0.447,5.153,0.014,0.091,10.029
|
| 7 |
+
chronos_bolt_base,pretrained,0.726,0.451,5.446,0.003,0.019,7.682
|
| 8 |
+
chronos_bolt_small,pretrained,0.733,0.455,5.793,0.003,0.022,8.140
|
| 9 |
+
autoarima,statistical,0.824,0.736,9.171,0.000,0.001,5.496
|
| 10 |
+
timer,pretrained,0.796,0.639,9.356,0.001,0.005,6.474
|
| 11 |
+
time-moe,pretrained,0.806,0.649,9.369,0.001,0.005,8.505
|
| 12 |
+
visionts,pretrained,0.991,0.675,10.336,0.001,0.009,8.538
|
| 13 |
+
autoets,statistical,0.842,1.975,10.956,0.000,0.030,6.992
|
| 14 |
+
autotheta,statistical,1.123,1.018,11.712,0.001,0.002,6.513
|
| 15 |
+
naive,statistical,1.000,1.000,11.783,0.000,0.006,9.326
|
src/about.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
from dataclasses import dataclass
|
| 2 |
from enum import Enum
|
| 3 |
|
|
|
|
| 4 |
@dataclass
|
| 5 |
class Task:
|
| 6 |
benchmark: str
|
|
@@ -11,24 +12,25 @@ class Task:
|
|
| 11 |
# Select your tasks here
|
| 12 |
# ---------------------------------------------------
|
| 13 |
class Tasks(Enum):
|
| 14 |
-
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
| 15 |
task0 = Task("anli_r1", "acc", "ANLI")
|
| 16 |
task1 = Task("logiqa", "acc_norm", "LogiQA")
|
| 17 |
|
| 18 |
-
NUM_FEWSHOT = 0 # Change with your few shot
|
| 19 |
-
# ---------------------------------------------------
|
| 20 |
|
|
|
|
|
|
|
| 21 |
|
| 22 |
|
| 23 |
# Your leaderboard name
|
| 24 |
-
TITLE = """<h1 align="center" id="space-title">
|
| 25 |
|
| 26 |
# What does your leaderboard evaluate?
|
| 27 |
INTRODUCTION_TEXT = """
|
| 28 |
-
|
| 29 |
"""
|
| 30 |
|
| 31 |
# Which evaluations are you running? how can people reproduce what you have?
|
|
|
|
| 32 |
LLM_BENCHMARKS_TEXT = f"""
|
| 33 |
## How it works
|
| 34 |
|
|
@@ -69,4 +71,12 @@ If everything is done, check you can launch the EleutherAIHarness on your model
|
|
| 69 |
|
| 70 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
| 71 |
CITATION_BUTTON_TEXT = r"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
"""
|
|
|
|
| 1 |
from dataclasses import dataclass
|
| 2 |
from enum import Enum
|
| 3 |
|
| 4 |
+
|
| 5 |
@dataclass
|
| 6 |
class Task:
|
| 7 |
benchmark: str
|
|
|
|
| 12 |
# Select your tasks here
|
| 13 |
# ---------------------------------------------------
|
| 14 |
class Tasks(Enum):
|
| 15 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
| 16 |
task0 = Task("anli_r1", "acc", "ANLI")
|
| 17 |
task1 = Task("logiqa", "acc_norm", "LogiQA")
|
| 18 |
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
NUM_FEWSHOT = 0 # Change with your few shot
|
| 21 |
+
# ---------------------------------------------------
|
| 22 |
|
| 23 |
|
| 24 |
# Your leaderboard name
|
| 25 |
+
TITLE = """<h1 align="center" id="space-title">BOOM 💥 Time Series Forecasting Leaderboard</h1>"""
|
| 26 |
|
| 27 |
# What does your leaderboard evaluate?
|
| 28 |
INTRODUCTION_TEXT = """
|
| 29 |
+
BOOM (Benchmark of Observability Metrics) is a large-scale, real-world time series dataset designed for evaluating models on forecasting tasks in complex observability environments. Composed of real-world metrics data collected from Datadog, a leading observability platform, the benchmark captures the irregularity, structural complexity, and heavy-tailed statistics typical of production observability data. For more information, please refer to the [BOOM Dataset Card](https://huggingface.co/datasets/Datadog/BOOM) and the [BOOM GitHub repository](https://github.com/DataDog/toto?tab=readme-ov-file#boom-benchmark-of-observability-metrics)
|
| 30 |
"""
|
| 31 |
|
| 32 |
# Which evaluations are you running? how can people reproduce what you have?
|
| 33 |
+
# TODO
|
| 34 |
LLM_BENCHMARKS_TEXT = f"""
|
| 35 |
## How it works
|
| 36 |
|
|
|
|
| 71 |
|
| 72 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
| 73 |
CITATION_BUTTON_TEXT = r"""
|
| 74 |
+
@misc{toto2025,
|
| 75 |
+
title={This Time is Different: An Observability Perspective on Time Series Foundation Models},
|
| 76 |
+
author={TODO},
|
| 77 |
+
year={2025},
|
| 78 |
+
eprint={arXiv:TODO},
|
| 79 |
+
archivePrefix={arXiv},
|
| 80 |
+
primaryClass={cs.LG}
|
| 81 |
+
}
|
| 82 |
"""
|
src/display/utils.py
CHANGED
|
@@ -5,6 +5,7 @@ import pandas as pd
|
|
| 5 |
|
| 6 |
from src.about import Tasks
|
| 7 |
|
|
|
|
| 8 |
def fields(raw_class):
|
| 9 |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
| 10 |
|
|
@@ -20,29 +21,34 @@ class ColumnContent:
|
|
| 20 |
hidden: bool = False
|
| 21 |
never_hidden: bool = False
|
| 22 |
|
|
|
|
| 23 |
## Leaderboard columns
|
| 24 |
auto_eval_column_dict = []
|
| 25 |
# Init
|
| 26 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
| 27 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
| 28 |
-
#Scores
|
| 29 |
-
auto_eval_column_dict.append(["
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
| 32 |
# Model information
|
| 33 |
-
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
| 34 |
-
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
| 35 |
-
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
| 36 |
-
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
| 37 |
-
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
| 38 |
-
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
| 39 |
-
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
| 40 |
-
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
| 41 |
-
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
| 42 |
|
| 43 |
# We use make dataclass to dynamically fill the scores from Tasks
|
| 44 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
| 45 |
|
|
|
|
| 46 |
## For the queue columns in the submission tab
|
| 47 |
@dataclass(frozen=True)
|
| 48 |
class EvalQueueColumn: # Queue column
|
|
@@ -53,19 +59,21 @@ class EvalQueueColumn: # Queue column
|
|
| 53 |
weight_type = ColumnContent("weight_type", "str", "Original")
|
| 54 |
status = ColumnContent("status", "str", True)
|
| 55 |
|
|
|
|
| 56 |
## All the model information that we might need
|
| 57 |
@dataclass
|
| 58 |
class ModelDetails:
|
| 59 |
name: str
|
| 60 |
display_name: str = ""
|
| 61 |
-
symbol: str = ""
|
| 62 |
|
| 63 |
|
| 64 |
class ModelType(Enum):
|
| 65 |
-
PT = ModelDetails(name="pretrained", symbol="🟢")
|
| 66 |
-
FT = ModelDetails(name="fine-tuned", symbol="🔶")
|
| 67 |
-
|
| 68 |
-
|
|
|
|
| 69 |
Unknown = ModelDetails(name="", symbol="?")
|
| 70 |
|
| 71 |
def to_str(self, separator=" "):
|
|
@@ -77,17 +85,19 @@ class ModelType(Enum):
|
|
| 77 |
return ModelType.FT
|
| 78 |
if "pretrained" in type or "🟢" in type:
|
| 79 |
return ModelType.PT
|
| 80 |
-
if "
|
| 81 |
-
return ModelType.
|
| 82 |
-
if "
|
| 83 |
-
return ModelType.
|
| 84 |
return ModelType.Unknown
|
| 85 |
|
|
|
|
| 86 |
class WeightType(Enum):
|
| 87 |
Adapter = ModelDetails("Adapter")
|
| 88 |
Original = ModelDetails("Original")
|
| 89 |
Delta = ModelDetails("Delta")
|
| 90 |
|
|
|
|
| 91 |
class Precision(Enum):
|
| 92 |
float16 = ModelDetails("float16")
|
| 93 |
bfloat16 = ModelDetails("bfloat16")
|
|
@@ -100,6 +110,7 @@ class Precision(Enum):
|
|
| 100 |
return Precision.bfloat16
|
| 101 |
return Precision.Unknown
|
| 102 |
|
|
|
|
| 103 |
# Column selection
|
| 104 |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
| 105 |
|
|
@@ -107,4 +118,3 @@ EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
|
| 107 |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
| 108 |
|
| 109 |
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
|
| 110 |
-
|
|
|
|
| 5 |
|
| 6 |
from src.about import Tasks
|
| 7 |
|
| 8 |
+
|
| 9 |
def fields(raw_class):
|
| 10 |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
| 11 |
|
|
|
|
| 21 |
hidden: bool = False
|
| 22 |
never_hidden: bool = False
|
| 23 |
|
| 24 |
+
|
| 25 |
## Leaderboard columns
|
| 26 |
auto_eval_column_dict = []
|
| 27 |
# Init
|
| 28 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
| 29 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
| 30 |
+
# Scores
|
| 31 |
+
auto_eval_column_dict.append(["MASE_6750_scaled", ColumnContent, ColumnContent("MASE_scaled", "number", True)])
|
| 32 |
+
auto_eval_column_dict.append(["CRPS_6750_scaled", ColumnContent, ColumnContent("CRPS_scaled", "number", True)])
|
| 33 |
+
auto_eval_column_dict.append(["Rank_6750_scaled", ColumnContent, ColumnContent("Rank_scaled", "number", True)])
|
| 34 |
+
auto_eval_column_dict.append(["MAE_663_unscaled", ColumnContent, ColumnContent("MAE[0.5]_unscaled", "number", True)])
|
| 35 |
+
auto_eval_column_dict.append(["CRPS_663_unscaled", ColumnContent, ColumnContent("CRPS_unscaled", "number", True)])
|
| 36 |
+
auto_eval_column_dict.append(["Rank_663_unscaled", ColumnContent, ColumnContent("Rank_unscaled", "number", True)])
|
| 37 |
# Model information
|
| 38 |
+
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False, hidden=True)])
|
| 39 |
+
# auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
| 40 |
+
# auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
| 41 |
+
# auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
| 42 |
+
# auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
| 43 |
+
# auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
| 44 |
+
# auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
| 45 |
+
# auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
| 46 |
+
# auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
| 47 |
|
| 48 |
# We use make dataclass to dynamically fill the scores from Tasks
|
| 49 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
| 50 |
|
| 51 |
+
|
| 52 |
## For the queue columns in the submission tab
|
| 53 |
@dataclass(frozen=True)
|
| 54 |
class EvalQueueColumn: # Queue column
|
|
|
|
| 59 |
weight_type = ColumnContent("weight_type", "str", "Original")
|
| 60 |
status = ColumnContent("status", "str", True)
|
| 61 |
|
| 62 |
+
|
| 63 |
## All the model information that we might need
|
| 64 |
@dataclass
|
| 65 |
class ModelDetails:
|
| 66 |
name: str
|
| 67 |
display_name: str = ""
|
| 68 |
+
symbol: str = "" # emoji
|
| 69 |
|
| 70 |
|
| 71 |
class ModelType(Enum):
|
| 72 |
+
PT = ModelDetails(name="🟢 pretrained", symbol="🟢")
|
| 73 |
+
FT = ModelDetails(name="🔶 fine-tuned", symbol="🔶")
|
| 74 |
+
DL = ModelDetails(name="🔷 deep-learning", symbol="🔷")
|
| 75 |
+
ST = ModelDetails(name="🟣 statistical", symbol="🟣")
|
| 76 |
+
|
| 77 |
Unknown = ModelDetails(name="", symbol="?")
|
| 78 |
|
| 79 |
def to_str(self, separator=" "):
|
|
|
|
| 85 |
return ModelType.FT
|
| 86 |
if "pretrained" in type or "🟢" in type:
|
| 87 |
return ModelType.PT
|
| 88 |
+
if "deep-learning" in type or "🟦" in type:
|
| 89 |
+
return ModelType.DL
|
| 90 |
+
if "statistical" in type or "🟣" in type:
|
| 91 |
+
return ModelType.ST
|
| 92 |
return ModelType.Unknown
|
| 93 |
|
| 94 |
+
|
| 95 |
class WeightType(Enum):
|
| 96 |
Adapter = ModelDetails("Adapter")
|
| 97 |
Original = ModelDetails("Original")
|
| 98 |
Delta = ModelDetails("Delta")
|
| 99 |
|
| 100 |
+
|
| 101 |
class Precision(Enum):
|
| 102 |
float16 = ModelDetails("float16")
|
| 103 |
bfloat16 = ModelDetails("bfloat16")
|
|
|
|
| 110 |
return Precision.bfloat16
|
| 111 |
return Precision.Unknown
|
| 112 |
|
| 113 |
+
|
| 114 |
# Column selection
|
| 115 |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
| 116 |
|
|
|
|
| 118 |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
| 119 |
|
| 120 |
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
|
|
|
src/envs.py
CHANGED
|
@@ -4,21 +4,24 @@ from huggingface_hub import HfApi
|
|
| 4 |
|
| 5 |
# Info to change for your repository
|
| 6 |
# ----------------------------------
|
| 7 |
-
TOKEN = os.environ.get("HF_TOKEN")
|
| 8 |
|
| 9 |
-
OWNER =
|
|
|
|
|
|
|
| 10 |
# ----------------------------------
|
| 11 |
|
| 12 |
-
REPO_ID = f"{OWNER}/
|
| 13 |
QUEUE_REPO = f"{OWNER}/requests"
|
| 14 |
RESULTS_REPO = f"{OWNER}/results"
|
| 15 |
|
| 16 |
# If you setup a cache later, just change HF_HOME
|
| 17 |
-
CACHE_PATH=os.getenv("HF_HOME", ".")
|
| 18 |
|
| 19 |
# Local caches
|
| 20 |
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
| 21 |
-
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
|
|
|
|
| 22 |
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
|
| 23 |
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
|
| 24 |
|
|
|
|
| 4 |
|
| 5 |
# Info to change for your repository
|
| 6 |
# ----------------------------------
|
| 7 |
+
TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
|
| 8 |
|
| 9 |
+
OWNER = (
|
| 10 |
+
"Datadog" # Change to your org - don't forget to create a results and request dataset, with the correct format!
|
| 11 |
+
)
|
| 12 |
# ----------------------------------
|
| 13 |
|
| 14 |
+
REPO_ID = f"{OWNER}/BOOM-Leaderboard" # The repo id of your space
|
| 15 |
QUEUE_REPO = f"{OWNER}/requests"
|
| 16 |
RESULTS_REPO = f"{OWNER}/results"
|
| 17 |
|
| 18 |
# If you setup a cache later, just change HF_HOME
|
| 19 |
+
CACHE_PATH = os.getenv("HF_HOME", ".")
|
| 20 |
|
| 21 |
# Local caches
|
| 22 |
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
| 23 |
+
# EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
|
| 24 |
+
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "results")
|
| 25 |
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
|
| 26 |
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
|
| 27 |
|
src/populate.py
CHANGED
|
@@ -2,23 +2,65 @@ import json
|
|
| 2 |
import os
|
| 3 |
|
| 4 |
import pandas as pd
|
| 5 |
-
|
| 6 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
| 7 |
from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
| 8 |
from src.leaderboard.read_evals import get_raw_eval_results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
|
| 11 |
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
| 12 |
-
"""
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
df = df[has_no_nan_values(df, benchmark_cols)]
|
| 22 |
return df
|
| 23 |
|
| 24 |
|
|
@@ -39,7 +81,9 @@ def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
|
| 39 |
all_evals.append(data)
|
| 40 |
elif ".md" not in entry:
|
| 41 |
# this is a folder
|
| 42 |
-
sub_entries = [
|
|
|
|
|
|
|
| 43 |
for sub_entry in sub_entries:
|
| 44 |
file_path = os.path.join(save_path, entry, sub_entry)
|
| 45 |
with open(file_path) as fp:
|
|
|
|
| 2 |
import os
|
| 3 |
|
| 4 |
import pandas as pd
|
| 5 |
+
from dataclasses import fields
|
| 6 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
| 7 |
from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
| 8 |
from src.leaderboard.read_evals import get_raw_eval_results
|
| 9 |
+
from src.display.utils import ModelType
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
# def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
| 13 |
+
# """Creates a dataframe from all the individual experiment results"""
|
| 14 |
+
# raw_data = get_raw_eval_results(results_path, requests_path)
|
| 15 |
+
# all_data_json = [v.to_dict() for v in raw_data]
|
| 16 |
+
|
| 17 |
+
# df = pd.DataFrame.from_records(all_data_json)
|
| 18 |
+
# df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
| 19 |
+
# df = df[cols].round(decimals=2)
|
| 20 |
+
|
| 21 |
+
# # filter out if any of the benchmarks have not been produced
|
| 22 |
+
# df = df[has_no_nan_values(df, benchmark_cols)]
|
| 23 |
+
# return df
|
| 24 |
|
| 25 |
|
| 26 |
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
| 27 |
+
"""
|
| 28 |
+
Processes a STATIC results CSV file to generate a leaderboard DataFrame with formatted columns and sorted values.
|
| 29 |
+
Args:
|
| 30 |
+
results_path (str): The file path to the results CSV file.
|
| 31 |
+
Returns:
|
| 32 |
+
pd.DataFrame: A processed DataFrame with renamed columns, additional formatting, and sorted values.
|
| 33 |
+
Notes:
|
| 34 |
+
- The function reads a CSV file from the given `results_path`.
|
| 35 |
+
- Internal column names are mapped to display names using `AutoEvalColumn`.
|
| 36 |
+
- A new column for model type symbols is created by parsing the `model_type` column.
|
| 37 |
+
- The `model_type` column is updated to prepend the model type symbol.
|
| 38 |
+
- The DataFrame is sorted by the `Rank_6750_scaled` column in ascending order.
|
| 39 |
+
"""
|
| 40 |
+
|
| 41 |
+
df = pd.read_csv(results_path)
|
| 42 |
+
# Create the mapping from internal column name to display name
|
| 43 |
+
|
| 44 |
+
column_mapping = {field.name: getattr(AutoEvalColumn, field.name).name for field in fields(AutoEvalColumn)}
|
| 45 |
+
# Assuming `df` is your DataFrame:
|
| 46 |
+
df.rename(columns=column_mapping, inplace=True)
|
| 47 |
+
|
| 48 |
+
# Create a new column for model type symbol by parsing the model_type column
|
| 49 |
+
df[AutoEvalColumn.model_type_symbol.name] = df[AutoEvalColumn.model_type.name].apply(
|
| 50 |
+
lambda x: ModelType.from_str(x).value.symbol
|
| 51 |
+
)
|
| 52 |
+
# Prepend the value of model_type_symbol to the value of model_type
|
| 53 |
+
df[AutoEvalColumn.model_type.name] = (
|
| 54 |
+
df[AutoEvalColumn.model_type_symbol.name] + " " + df[AutoEvalColumn.model_type.name]
|
| 55 |
+
)
|
| 56 |
|
| 57 |
+
# Move the model_type_symbol column to the beginning
|
| 58 |
+
cols = [AutoEvalColumn.model_type_symbol.name] + [
|
| 59 |
+
col for col in df.columns if col != AutoEvalColumn.model_type_symbol.name
|
| 60 |
+
]
|
| 61 |
+
df = df[cols]
|
| 62 |
|
| 63 |
+
df = df.sort_values(by=[AutoEvalColumn.Rank_6750_scaled.name], ascending=True)
|
|
|
|
| 64 |
return df
|
| 65 |
|
| 66 |
|
|
|
|
| 81 |
all_evals.append(data)
|
| 82 |
elif ".md" not in entry:
|
| 83 |
# this is a folder
|
| 84 |
+
sub_entries = [
|
| 85 |
+
e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")
|
| 86 |
+
]
|
| 87 |
for sub_entry in sub_entries:
|
| 88 |
file_path = os.path.join(save_path, entry, sub_entry)
|
| 89 |
with open(file_path) as fp:
|