Spaces:
Running
on
Zero
Running
on
Zero
| from dataclasses import dataclass | |
| from breed_health_info import breed_health_info | |
| from breed_noise_info import breed_noise_info | |
| import traceback | |
| class UserPreferences: | |
| """使用者偏好設定的資料結構""" | |
| living_space: str # "apartment", "house_small", "house_large" | |
| yard_access: str # "no_yard", "shared_yard", "private_yard" | |
| exercise_time: int # minutes per day | |
| exercise_type: str # "light_walks", "moderate_activity", "active_training" | |
| grooming_commitment: str # "low", "medium", "high" | |
| experience_level: str # "beginner", "intermediate", "advanced" | |
| time_availability: str # "limited", "moderate", "flexible" | |
| has_children: bool | |
| children_age: str # "toddler", "school_age", "teenager" | |
| noise_tolerance: str # "low", "medium", "high" | |
| space_for_play: bool | |
| other_pets: bool | |
| climate: str # "cold", "moderate", "hot" | |
| health_sensitivity: str = "medium" | |
| barking_acceptance: str = None | |
| def __post_init__(self): | |
| """在初始化後運行,用於設置派生值""" | |
| if self.barking_acceptance is None: | |
| self.barking_acceptance = self.noise_tolerance | |
| # @staticmethod | |
| # def calculate_breed_bonus(breed_info: dict, user_prefs: 'UserPreferences') -> float: | |
| # """計算品種額外加分""" | |
| # bonus = 0.0 | |
| # temperament = breed_info.get('Temperament', '').lower() | |
| # # 1. 壽命加分(最高0.05) | |
| # try: | |
| # lifespan = breed_info.get('Lifespan', '10-12 years') | |
| # years = [int(x) for x in lifespan.split('-')[0].split()[0:1]] | |
| # longevity_bonus = min(0.05, (max(years) - 10) * 0.01) | |
| # bonus += longevity_bonus | |
| # except: | |
| # pass | |
| # # 2. 性格特徵加分(最高0.15) | |
| # positive_traits = { | |
| # 'friendly': 0.05, | |
| # 'gentle': 0.05, | |
| # 'patient': 0.05, | |
| # 'intelligent': 0.04, | |
| # 'adaptable': 0.04, | |
| # 'affectionate': 0.04, | |
| # 'easy-going': 0.03, | |
| # 'calm': 0.03 | |
| # } | |
| # negative_traits = { | |
| # 'aggressive': -0.08, | |
| # 'stubborn': -0.06, | |
| # 'dominant': -0.06, | |
| # 'aloof': -0.04, | |
| # 'nervous': -0.05, | |
| # 'protective': -0.04 | |
| # } | |
| # personality_score = sum(value for trait, value in positive_traits.items() if trait in temperament) | |
| # personality_score += sum(value for trait, value in negative_traits.items() if trait in temperament) | |
| # bonus += max(-0.15, min(0.15, personality_score)) | |
| # # 3. 適應性加分(最高0.1) | |
| # adaptability_bonus = 0.0 | |
| # if breed_info.get('Size') == "Small" and user_prefs.living_space == "apartment": | |
| # adaptability_bonus += 0.05 | |
| # if 'adaptable' in temperament or 'versatile' in temperament: | |
| # adaptability_bonus += 0.05 | |
| # bonus += min(0.1, adaptability_bonus) | |
| # # 4. 家庭相容性(最高0.1) | |
| # if user_prefs.has_children: | |
| # family_traits = { | |
| # 'good with children': 0.06, | |
| # 'patient': 0.05, | |
| # 'gentle': 0.05, | |
| # 'tolerant': 0.04, | |
| # 'playful': 0.03 | |
| # } | |
| # unfriendly_traits = { | |
| # 'aggressive': -0.08, | |
| # 'nervous': -0.07, | |
| # 'protective': -0.06, | |
| # 'territorial': -0.05 | |
| # } | |
| # # 年齡評估這樣能更細緻 | |
| # age_adjustments = { | |
| # 'toddler': {'bonus_mult': 0.7, 'penalty_mult': 1.3}, | |
| # 'school_age': {'bonus_mult': 1.0, 'penalty_mult': 1.0}, | |
| # 'teenager': {'bonus_mult': 1.2, 'penalty_mult': 0.8} | |
| # } | |
| # adj = age_adjustments.get(user_prefs.children_age, | |
| # {'bonus_mult': 1.0, 'penalty_mult': 1.0}) | |
| # family_bonus = sum(value for trait, value in family_traits.items() | |
| # if trait in temperament) * adj['bonus_mult'] | |
| # family_penalty = sum(value for trait, value in unfriendly_traits.items() | |
| # if trait in temperament) * adj['penalty_mult'] | |
| # bonus += min(0.15, max(-0.2, family_bonus + family_penalty)) | |
| # # 5. 專門技能加分(最高0.1) | |
| # skill_bonus = 0.0 | |
| # special_abilities = { | |
| # 'working': 0.03, | |
| # 'herding': 0.03, | |
| # 'hunting': 0.03, | |
| # 'tracking': 0.03, | |
| # 'agility': 0.02 | |
| # } | |
| # for ability, value in special_abilities.items(): | |
| # if ability in temperament.lower(): | |
| # skill_bonus += value | |
| # bonus += min(0.1, skill_bonus) | |
| # return min(0.5, max(-0.25, bonus)) | |
| def calculate_breed_bonus(breed_info: dict, user_prefs: UserPreferences) -> float: | |
| """ | |
| 計算品種的額外加分,評估品種的特殊特徵對使用者需求的適配性。 | |
| 這個函數考慮四個主要面向: | |
| 1. 壽命評估:考慮飼養的長期承諾 | |
| 2. 性格特徵評估:評估品種性格與使用者需求的匹配度 | |
| 3. 環境適應性:評估品種在特定生活環境中的表現 | |
| 4. 家庭相容性:特別關注品種與家庭成員的互動 | |
| """ | |
| bonus = 0.0 | |
| temperament = breed_info.get('Temperament', '').lower() | |
| # 壽命評估 - 重新設計以反映更實際的考量 | |
| try: | |
| lifespan = breed_info.get('Lifespan', '10-12 years') | |
| years = [int(x) for x in lifespan.split('-')[0].split()[0:1]] | |
| avg_years = float(years[0]) | |
| # 根據壽命長短給予不同程度的獎勵或懲罰 | |
| if avg_years < 8: | |
| bonus -= 0.08 # 短壽命可能帶來情感負擔 | |
| elif avg_years < 10: | |
| bonus -= 0.04 # 稍短壽命輕微降低評分 | |
| elif avg_years > 13: | |
| bonus += 0.06 # 長壽命適度加分 | |
| elif avg_years > 15: | |
| bonus += 0.08 # 特別長壽的品種獲得更多加分 | |
| except: | |
| pass | |
| # 性格特徵評估 - 擴充並細化評分標準 | |
| positive_traits = { | |
| 'friendly': 0.08, # 提高友善性的重要性 | |
| 'gentle': 0.08, # 溫和性格更受歡迎 | |
| 'patient': 0.07, # 耐心是重要特質 | |
| 'intelligent': 0.06, # 聰明但不過分重要 | |
| 'adaptable': 0.06, # 適應性佳的特質 | |
| 'affectionate': 0.06, # 親密性很重要 | |
| 'easy-going': 0.05, # 容易相處的性格 | |
| 'calm': 0.05 # 冷靜的特質 | |
| } | |
| negative_traits = { | |
| 'aggressive': -0.15, # 嚴重懲罰攻擊性 | |
| 'stubborn': -0.10, # 固執性格不易處理 | |
| 'dominant': -0.10, # 支配性可能造成問題 | |
| 'aloof': -0.08, # 冷漠性格影響互動 | |
| 'nervous': -0.08, # 緊張性格需要更多關注 | |
| 'protective': -0.06 # 過度保護可能有風險 | |
| } | |
| # 性格評分計算 - 加入累積效應 | |
| personality_score = 0 | |
| positive_count = 0 | |
| negative_count = 0 | |
| for trait, value in positive_traits.items(): | |
| if trait in temperament: | |
| personality_score += value | |
| positive_count += 1 | |
| for trait, value in negative_traits.items(): | |
| if trait in temperament: | |
| personality_score += value | |
| negative_count += 1 | |
| # 多重特徵的累積效應 | |
| if positive_count > 2: | |
| personality_score *= (1 + (positive_count - 2) * 0.1) | |
| if negative_count > 1: | |
| personality_score *= (1 - (negative_count - 1) * 0.15) | |
| bonus += max(-0.25, min(0.25, personality_score)) | |
| # 適應性評估 - 根據具體環境給予更細緻的評分 | |
| adaptability_bonus = 0.0 | |
| if breed_info.get('Size') == "Small" and user_prefs.living_space == "apartment": | |
| adaptability_bonus += 0.08 # 小型犬更適合公寓 | |
| # 環境適應性評估 | |
| if 'adaptable' in temperament or 'versatile' in temperament: | |
| if user_prefs.living_space == "apartment": | |
| adaptability_bonus += 0.10 # 適應性在公寓環境更重要 | |
| else: | |
| adaptability_bonus += 0.05 # 其他環境仍有加分 | |
| # 氣候適應性 | |
| description = breed_info.get('Description', '').lower() | |
| climate = user_prefs.climate | |
| if climate == 'hot': | |
| if 'heat tolerant' in description or 'warm climate' in description: | |
| adaptability_bonus += 0.08 | |
| elif 'thick coat' in description or 'cold climate' in description: | |
| adaptability_bonus -= 0.10 | |
| elif climate == 'cold': | |
| if 'thick coat' in description or 'cold climate' in description: | |
| adaptability_bonus += 0.08 | |
| elif 'heat tolerant' in description or 'short coat' in description: | |
| adaptability_bonus -= 0.10 | |
| bonus += min(0.15, adaptability_bonus) | |
| # 家庭相容性評估 - 特別關注有孩童的家庭 | |
| if user_prefs.has_children: | |
| family_traits = { | |
| 'good with children': 0.12, # 提高與孩童相處的重要性 | |
| 'patient': 0.10, | |
| 'gentle': 0.10, | |
| 'tolerant': 0.08, | |
| 'playful': 0.06 | |
| } | |
| unfriendly_traits = { | |
| 'aggressive': -0.15, # 加重攻擊性的懲罰 | |
| 'nervous': -0.12, # 緊張特質可能有風險 | |
| 'protective': -0.10, # 過度保護性需要注意 | |
| 'territorial': -0.08 # 地域性可能造成問題 | |
| } | |
| # 根據孩童年齡調整評分權重 | |
| age_adjustments = { | |
| 'toddler': { | |
| 'bonus_mult': 0.6, # 降低正面特質的獎勵 | |
| 'penalty_mult': 1.5 # 加重負面特質的懲罰 | |
| }, | |
| 'school_age': { | |
| 'bonus_mult': 1.0, | |
| 'penalty_mult': 1.0 | |
| }, | |
| 'teenager': { | |
| 'bonus_mult': 1.2, # 提高正面特質的獎勵 | |
| 'penalty_mult': 0.8 # 降低負面特質的懲罰 | |
| } | |
| } | |
| adj = age_adjustments.get(user_prefs.children_age, | |
| {'bonus_mult': 1.0, 'penalty_mult': 1.0}) | |
| # 計算家庭相容性分數 | |
| family_score = 0 | |
| for trait, value in family_traits.items(): | |
| if trait in temperament: | |
| family_score += value * adj['bonus_mult'] | |
| for trait, value in unfriendly_traits.items(): | |
| if trait in temperament: | |
| family_score += value * adj['penalty_mult'] | |
| bonus += min(0.20, max(-0.30, family_score)) | |
| # 確保總體加分在合理範圍內,但允許更大的變化 | |
| return min(0.5, max(-0.35, bonus)) | |
| def calculate_additional_factors(breed_info: dict, user_prefs: 'UserPreferences') -> dict: | |
| """計算額外的評估因素""" | |
| factors = { | |
| 'versatility': 0.0, # 多功能性 | |
| 'trainability': 0.0, # 可訓練度 | |
| 'energy_level': 0.0, # 能量水平 | |
| 'grooming_needs': 0.0, # 美容需求 | |
| 'social_needs': 0.0, # 社交需求 | |
| 'weather_adaptability': 0.0 # 氣候適應性 | |
| } | |
| temperament = breed_info.get('Temperament', '').lower() | |
| size = breed_info.get('Size', 'Medium') | |
| # 1. 多功能性評估 | |
| versatile_traits = ['intelligent', 'adaptable', 'trainable', 'athletic'] | |
| working_roles = ['working', 'herding', 'hunting', 'sporting', 'companion'] | |
| trait_score = sum(0.2 for trait in versatile_traits if trait in temperament) | |
| role_score = sum(0.2 for role in working_roles if role in breed_info.get('Description', '').lower()) | |
| factors['versatility'] = min(1.0, trait_score + role_score) | |
| # 2. 可訓練度評估 | |
| trainable_traits = { | |
| 'intelligent': 0.3, | |
| 'eager to please': 0.3, | |
| 'trainable': 0.2, | |
| 'quick learner': 0.2 | |
| } | |
| factors['trainability'] = min(1.0, sum(value for trait, value in trainable_traits.items() | |
| if trait in temperament)) | |
| # 3. 能量水平評估 | |
| exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper() | |
| energy_levels = { | |
| 'VERY HIGH': 1.0, | |
| 'HIGH': 0.8, | |
| 'MODERATE': 0.6, | |
| 'LOW': 0.4, | |
| 'VARIES': 0.6 | |
| } | |
| factors['energy_level'] = energy_levels.get(exercise_needs, 0.6) | |
| # 4. 美容需求評估 | |
| grooming_needs = breed_info.get('Grooming Needs', 'MODERATE').upper() | |
| grooming_levels = { | |
| 'HIGH': 1.0, | |
| 'MODERATE': 0.6, | |
| 'LOW': 0.3 | |
| } | |
| coat_penalty = 0.2 if any(term in breed_info.get('Description', '').lower() | |
| for term in ['long coat', 'double coat']) else 0 | |
| factors['grooming_needs'] = min(1.0, grooming_levels.get(grooming_needs, 0.6) + coat_penalty) | |
| # 5. 社交需求評估 | |
| social_traits = ['friendly', 'social', 'affectionate', 'people-oriented'] | |
| antisocial_traits = ['independent', 'aloof', 'reserved'] | |
| social_score = sum(0.25 for trait in social_traits if trait in temperament) | |
| antisocial_score = sum(-0.2 for trait in antisocial_traits if trait in temperament) | |
| factors['social_needs'] = min(1.0, max(0.0, social_score + antisocial_score)) | |
| # 6. 氣候適應性評估 | |
| climate_terms = { | |
| 'cold': ['thick coat', 'winter', 'cold climate'], | |
| 'hot': ['short coat', 'warm climate', 'heat tolerant'], | |
| 'moderate': ['adaptable', 'all climate'] | |
| } | |
| climate_matches = sum(1 for term in climate_terms[user_prefs.climate] | |
| if term in breed_info.get('Description', '').lower()) | |
| factors['weather_adaptability'] = min(1.0, climate_matches * 0.3 + 0.4) # 基礎分0.4 | |
| return factors | |
| def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences) -> dict: | |
| """計算品種與使用者條件的相容性分數的優化版本""" | |
| try: | |
| print(f"Processing breed: {breed_info.get('Breed', 'Unknown')}") | |
| print(f"Breed info keys: {breed_info.keys()}") | |
| if 'Size' not in breed_info: | |
| print("Missing Size information") | |
| raise KeyError("Size information missing") | |
| # def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float: | |
| # """空間分數計算""" | |
| # # 基礎空間需求矩陣 | |
| # base_scores = { | |
| # "Small": {"apartment": 0.95, "house_small": 1.0, "house_large": 0.90}, | |
| # "Medium": {"apartment": 0.60, "house_small": 0.90, "house_large": 1.0}, | |
| # "Large": {"apartment": 0.30, "house_small": 0.75, "house_large": 1.0}, | |
| # "Giant": {"apartment": 0.15, "house_small": 0.55, "house_large": 1.0} | |
| # } | |
| # # 取得基礎分數 | |
| # base_score = base_scores.get(size, base_scores["Medium"])[living_space] | |
| # # 運動需求調整 | |
| # exercise_adjustments = { | |
| # "Very High": -0.15 if living_space == "apartment" else 0, | |
| # "High": -0.10 if living_space == "apartment" else 0, | |
| # "Moderate": 0, | |
| # "Low": 0.05 if living_space == "apartment" else 0 | |
| # } | |
| # adjustments = exercise_adjustments.get(exercise_needs.strip(), 0) | |
| # # 院子獎勵 | |
| # if has_yard and size in ["Large", "Giant"]: | |
| # adjustments += 0.10 | |
| # elif has_yard: | |
| # adjustments += 0.05 | |
| # return min(1.0, max(0.1, base_score + adjustments)) | |
| def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float: | |
| # 重新設計基礎分數矩陣 | |
| base_scores = { | |
| "Small": { | |
| "apartment": 1.0, # 小型犬最適合公寓 | |
| "house_small": 0.95, # 在大房子反而稍微降分 | |
| "house_large": 0.85 # 可能浪費空間 | |
| }, | |
| "Medium": { | |
| "apartment": 0.45, # 中型犬在公寓明顯受限 | |
| "house_small": 0.85, | |
| "house_large": 1.0 | |
| }, | |
| "Large": { | |
| "apartment": 0.15, # 大型犬在公寓極不適合 | |
| "house_small": 0.60, # 在小房子仍然受限 | |
| "house_large": 1.0 | |
| }, | |
| "Giant": { | |
| "apartment": 0.1, # 更嚴格的限制 | |
| "house_small": 0.45, | |
| "house_large": 1.0 | |
| } | |
| } | |
| # 取得基礎分數 | |
| base_score = base_scores.get(size, base_scores["Medium"])[living_space] | |
| # 運動需求調整更明顯 | |
| exercise_adjustments = { | |
| "Very High": { | |
| "apartment": -0.25, # 在公寓更嚴重的懲罰 | |
| "house_small": -0.15, | |
| "house_large": -0.05 | |
| }, | |
| "High": { | |
| "apartment": -0.20, | |
| "house_small": -0.10, | |
| "house_large": 0 | |
| }, | |
| "Moderate": { | |
| "apartment": -0.10, | |
| "house_small": -0.05, | |
| "house_large": 0 | |
| }, | |
| "Low": { | |
| "apartment": 0.05, | |
| "house_small": 0, | |
| "house_large": 0 | |
| } | |
| } | |
| # 根據空間類型獲取對應的運動調整 | |
| adjustment = exercise_adjustments.get(exercise_needs, | |
| exercise_adjustments["Moderate"])[living_space] | |
| # 院子獎勵也要根據犬種大小調整 | |
| yard_bonus = 0 | |
| if has_yard: | |
| if size in ["Large", "Giant"]: | |
| yard_bonus = 0.20 if living_space != "apartment" else 0.10 | |
| elif size == "Medium": | |
| yard_bonus = 0.15 if living_space != "apartment" else 0.08 | |
| else: | |
| yard_bonus = 0.10 if living_space != "apartment" else 0.05 | |
| final_score = base_score + adjustment + yard_bonus | |
| return min(1.0, max(0.1, final_score)) | |
| def calculate_exercise_score(breed_needs: str, user_time: int) -> float: | |
| """運動需求計算""" | |
| exercise_needs = { | |
| 'VERY HIGH': {'min': 120, 'ideal': 150, 'max': 180}, | |
| 'HIGH': {'min': 90, 'ideal': 120, 'max': 150}, | |
| 'MODERATE': {'min': 45, 'ideal': 60, 'max': 90}, | |
| 'LOW': {'min': 20, 'ideal': 30, 'max': 45}, | |
| 'VARIES': {'min': 30, 'ideal': 60, 'max': 90} | |
| } | |
| breed_need = exercise_needs.get(breed_needs.strip().upper(), exercise_needs['MODERATE']) | |
| # 計算匹配度 | |
| if user_time >= breed_need['ideal']: | |
| if user_time > breed_need['max']: | |
| return 0.9 # 稍微降分,因為可能過度運動 | |
| return 1.0 | |
| elif user_time >= breed_need['min']: | |
| return 0.8 + (user_time - breed_need['min']) / (breed_need['ideal'] - breed_need['min']) * 0.2 | |
| else: | |
| return max(0.3, 0.8 * (user_time / breed_need['min'])) | |
| # def calculate_grooming_score(breed_needs: str, user_commitment: str, breed_size: str) -> float: | |
| # """美容需求計算""" | |
| # # 基礎分數矩陣 | |
| # base_scores = { | |
| # "High": {"low": 0.3, "medium": 0.7, "high": 1.0}, | |
| # "Moderate": {"low": 0.5, "medium": 0.9, "high": 1.0}, | |
| # "Low": {"low": 1.0, "medium": 0.95, "high": 0.8} | |
| # } | |
| # # 取得基礎分數 | |
| # base_score = base_scores.get(breed_needs, base_scores["Moderate"])[user_commitment] | |
| # # 體型影響調整 | |
| # size_adjustments = { | |
| # "Large": {"low": -0.2, "medium": -0.1, "high": 0}, | |
| # "Giant": {"low": -0.3, "medium": -0.15, "high": 0}, | |
| # } | |
| # if breed_size in size_adjustments: | |
| # adjustment = size_adjustments[breed_size].get(user_commitment, 0) | |
| # base_score = max(0.2, base_score + adjustment) | |
| # return base_score | |
| def calculate_grooming_score(breed_needs: str, user_commitment: str, breed_size: str) -> float: | |
| """ | |
| 計算美容需求分數,強化美容維護需求與使用者承諾度的匹配評估。 | |
| 這個函數特別注意品種大小對美容工作的影響,以及不同程度的美容需求對時間投入的要求。 | |
| """ | |
| # 重新設計基礎分數矩陣,讓美容需求的差異更加明顯 | |
| base_scores = { | |
| "High": { | |
| "low": 0.20, # 高需求對低承諾極不合適,顯著降低初始分數 | |
| "medium": 0.65, # 中等承諾仍有挑戰 | |
| "high": 1.0 # 高承諾最適合 | |
| }, | |
| "Moderate": { | |
| "low": 0.45, # 中等需求對低承諾有困難 | |
| "medium": 0.85, # 較好的匹配 | |
| "high": 0.95 # 高承諾會有餘力 | |
| }, | |
| "Low": { | |
| "low": 0.90, # 低需求對低承諾很合適 | |
| "medium": 0.85, # 略微降低以反映可能過度投入 | |
| "high": 0.80 # 可能造成資源浪費 | |
| } | |
| } | |
| # 取得基礎分數 | |
| base_score = base_scores.get(breed_needs, base_scores["Moderate"])[user_commitment] | |
| # 根據品種大小調整美容工作量 | |
| size_adjustments = { | |
| "Giant": { | |
| "low": -0.35, # 大型犬的美容工作量顯著增加 | |
| "medium": -0.20, | |
| "high": -0.10 | |
| }, | |
| "Large": { | |
| "low": -0.25, | |
| "medium": -0.15, | |
| "high": -0.05 | |
| }, | |
| "Medium": { | |
| "low": -0.15, | |
| "medium": -0.10, | |
| "high": 0 | |
| }, | |
| "Small": { | |
| "low": -0.10, | |
| "medium": -0.05, | |
| "high": 0 | |
| } | |
| } | |
| # 應用體型調整 | |
| size_adjustment = size_adjustments.get(breed_size, size_adjustments["Medium"])[user_commitment] | |
| current_score = base_score + size_adjustment | |
| # 特殊毛髮類型的額外調整 | |
| def get_coat_adjustment(breed_description: str, commitment: str) -> float: | |
| """ | |
| 評估特殊毛髮類型所需的額外維護工作 | |
| """ | |
| adjustments = 0 | |
| # 長毛品種需要更多維護 | |
| if 'long coat' in breed_description.lower(): | |
| coat_penalties = { | |
| 'low': -0.20, | |
| 'medium': -0.15, | |
| 'high': -0.05 | |
| } | |
| adjustments += coat_penalties[commitment] | |
| # 雙層毛的品種掉毛量更大 | |
| if 'double coat' in breed_description.lower(): | |
| double_coat_penalties = { | |
| 'low': -0.15, | |
| 'medium': -0.10, | |
| 'high': -0.05 | |
| } | |
| adjustments += double_coat_penalties[commitment] | |
| # 捲毛品種需要定期專業修剪 | |
| if 'curly' in breed_description.lower(): | |
| curly_penalties = { | |
| 'low': -0.15, | |
| 'medium': -0.10, | |
| 'high': -0.05 | |
| } | |
| adjustments += curly_penalties[commitment] | |
| return adjustments | |
| # 季節性考量 | |
| def get_seasonal_adjustment(breed_description: str, commitment: str) -> float: | |
| """ | |
| 評估季節性掉毛對美容需求的影響 | |
| """ | |
| if 'seasonal shedding' in breed_description.lower(): | |
| seasonal_penalties = { | |
| 'low': -0.15, | |
| 'medium': -0.10, | |
| 'high': -0.05 | |
| } | |
| return seasonal_penalties[commitment] | |
| return 0 | |
| # 專業美容需求評估 | |
| def get_professional_grooming_adjustment(breed_description: str, commitment: str) -> float: | |
| """ | |
| 評估需要專業美容服務的影響 | |
| """ | |
| if 'professional grooming' in breed_description.lower(): | |
| grooming_penalties = { | |
| 'low': -0.20, | |
| 'medium': -0.15, | |
| 'high': -0.05 | |
| } | |
| return grooming_penalties[commitment] | |
| return 0 | |
| # 應用所有額外調整 | |
| # 由於這些是示例調整,實際使用時需要根據品種描述信息進行調整 | |
| coat_adjustment = get_coat_adjustment("", user_commitment) | |
| seasonal_adjustment = get_seasonal_adjustment("", user_commitment) | |
| professional_adjustment = get_professional_grooming_adjustment("", user_commitment) | |
| final_score = current_score + coat_adjustment + seasonal_adjustment + professional_adjustment | |
| # 確保分數在有意義的範圍內,但允許更大的差異 | |
| return max(0.1, min(1.0, final_score)) | |
| # def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float: | |
| # """ | |
| # 計算使用者經驗與品種需求的匹配分數 | |
| # 參數說明: | |
| # care_level: 品種的照顧難度 ("High", "Moderate", "Low") | |
| # user_experience: 使用者經驗等級 ("beginner", "intermediate", "advanced") | |
| # temperament: 品種的性格特徵描述 | |
| # 返回: | |
| # float: 0.2-1.0 之間的匹配分數 | |
| # """ | |
| # # 基礎分數矩陣 - 更大的分數差異來反映經驗重要性 | |
| # base_scores = { | |
| # "High": { | |
| # "beginner": 0.12, # 降低起始分,反映高難度品種對新手的挑戰 | |
| # "intermediate": 0.65, # 中級玩家可以應付,但仍有改善空間 | |
| # "advanced": 1.0 # 資深者能完全勝任 | |
| # }, | |
| # "Moderate": { | |
| # "beginner": 0.35, # 適中難度對新手來說仍具挑戰 | |
| # "intermediate": 0.82, # 中級玩家有很好的勝任能力 | |
| # "advanced": 1.0 # 資深者完全勝任 | |
| # }, | |
| # "Low": { | |
| # "beginner": 0.72, # 低難度品種適合新手 | |
| # "intermediate": 0.92, # 中級玩家幾乎完全勝任 | |
| # "advanced": 1.0 # 資深者完全勝任 | |
| # } | |
| # } | |
| # # 取得基礎分數 | |
| # score = base_scores.get(care_level, base_scores["Moderate"])[user_experience] | |
| # # 性格特徵評估 - 根據經驗等級調整權重 | |
| # temperament_lower = temperament.lower() | |
| # temperament_adjustments = 0.0 | |
| # if user_experience == "beginner": | |
| # # 新手不適合的特徵 - 更嚴格的懲罰 | |
| # difficult_traits = { | |
| # 'stubborn': -0.15, # 加重固執的懲罰 | |
| # 'independent': -0.12, # 加重獨立性的懲罰 | |
| # 'dominant': -0.12, # 加重支配性的懲罰 | |
| # 'strong-willed': -0.10, # 加重強勢的懲罰 | |
| # 'protective': -0.08, # 加重保護性的懲罰 | |
| # 'aloof': -0.08, # 加重冷漠的懲罰 | |
| # 'energetic': -0.06 # 輕微懲罰高能量 | |
| # } | |
| # # 新手友善的特徵 - 提供更多獎勵 | |
| # easy_traits = { | |
| # 'gentle': 0.08, # 增加溫和的獎勵 | |
| # 'friendly': 0.08, # 增加友善的獎勵 | |
| # 'eager to please': 0.08, # 增加順從的獎勵 | |
| # 'patient': 0.06, # 獎勵耐心 | |
| # 'adaptable': 0.06, # 獎勵適應性 | |
| # 'calm': 0.05 # 獎勵冷靜 | |
| # } | |
| # # 計算特徵調整 | |
| # for trait, penalty in difficult_traits.items(): | |
| # if trait in temperament_lower: | |
| # temperament_adjustments += penalty * 1.2 # 加重新手的懲罰 | |
| # for trait, bonus in easy_traits.items(): | |
| # if trait in temperament_lower: | |
| # temperament_adjustments += bonus | |
| # # 品種特殊調整 | |
| # if any(term in temperament_lower for term in ['terrier', 'working', 'guard']): | |
| # temperament_adjustments -= 0.12 # 加重對特定類型品種的懲罰 | |
| # elif user_experience == "intermediate": | |
| # # 中級玩家的調整更加平衡 | |
| # moderate_traits = { | |
| # 'intelligent': 0.05, # 獎勵聰明 | |
| # 'athletic': 0.04, # 獎勵運動能力 | |
| # 'versatile': 0.04, # 獎勵多功能性 | |
| # 'stubborn': -0.06, # 輕微懲罰固執 | |
| # 'independent': -0.05, # 輕微懲罰獨立性 | |
| # 'protective': -0.04 # 輕微懲罰保護性 | |
| # } | |
| # for trait, adjustment in moderate_traits.items(): | |
| # if trait in temperament_lower: | |
| # temperament_adjustments += adjustment | |
| # else: # advanced | |
| # # 資深玩家能夠應對挑戰性特徵 | |
| # advanced_traits = { | |
| # 'stubborn': 0.04, # 反轉為優勢 | |
| # 'independent': 0.04, # 反轉為優勢 | |
| # 'intelligent': 0.05, # 獎勵聰明 | |
| # 'protective': 0.04, # 獎勵保護性 | |
| # 'strong-willed': 0.03 # 獎勵強勢 | |
| # } | |
| # for trait, bonus in advanced_traits.items(): | |
| # if trait in temperament_lower: | |
| # temperament_adjustments += bonus | |
| # # 確保最終分數在合理範圍內 | |
| # final_score = max(0.2, min(1.0, score + temperament_adjustments)) | |
| # return final_score | |
| def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float: | |
| """ | |
| 計算使用者經驗與品種需求的匹配分數,加強經驗等級的影響力 | |
| 重要改進: | |
| 1. 擴大基礎分數差異 | |
| 2. 加重困難特徵的懲罰 | |
| 3. 更細緻的品種特性評估 | |
| """ | |
| # 基礎分數矩陣 - 大幅擴大不同經驗等級的分數差異 | |
| base_scores = { | |
| "High": { | |
| "beginner": 0.10, # 降低起始分,高難度品種對新手幾乎不推薦 | |
| "intermediate": 0.60, # 中級玩家仍需謹慎 | |
| "advanced": 1.0 # 資深者能完全勝任 | |
| }, | |
| "Moderate": { | |
| "beginner": 0.35, # 適中難度對新手仍具挑戰 | |
| "intermediate": 0.80, # 中級玩家較適合 | |
| "advanced": 1.0 # 資深者完全勝任 | |
| }, | |
| "Low": { | |
| "beginner": 0.90, # 新手友善品種 | |
| "intermediate": 0.95, # 中級玩家幾乎完全勝任 | |
| "advanced": 1.0 # 資深者完全勝任 | |
| } | |
| } | |
| # 取得基礎分數 | |
| score = base_scores.get(care_level, base_scores["Moderate"])[user_experience] | |
| temperament_lower = temperament.lower() | |
| temperament_adjustments = 0.0 | |
| # 根據經驗等級設定不同的特徵評估標準 | |
| if user_experience == "beginner": | |
| # 新手不適合的特徵 - 更嚴格的懲罰 | |
| difficult_traits = { | |
| 'stubborn': -0.30, # 固執性格嚴重影響新手 | |
| 'independent': -0.25, # 獨立性高的品種不適合新手 | |
| 'dominant': -0.25, # 支配性強的品種需要經驗處理 | |
| 'strong-willed': -0.20, # 強勢性格需要技巧管理 | |
| 'protective': -0.20, # 保護性強需要適當訓練 | |
| 'aloof': -0.15, # 冷漠性格需要耐心培養 | |
| 'energetic': -0.15, # 活潑好動需要經驗引導 | |
| 'aggressive': -0.35 # 攻擊傾向極不適合新手 | |
| } | |
| # 新手友善的特徵 - 適度的獎勵 | |
| easy_traits = { | |
| 'gentle': 0.05, # 溫和性格適合新手 | |
| 'friendly': 0.05, # 友善性格容易相處 | |
| 'eager to please': 0.08, # 願意服從較容易訓練 | |
| 'patient': 0.05, # 耐心的特質有助於建立關係 | |
| 'adaptable': 0.05, # 適應性強較容易照顧 | |
| 'calm': 0.06 # 冷靜的性格較好掌握 | |
| } | |
| # 計算特徵調整 | |
| for trait, penalty in difficult_traits.items(): | |
| if trait in temperament_lower: | |
| temperament_adjustments += penalty | |
| for trait, bonus in easy_traits.items(): | |
| if trait in temperament_lower: | |
| temperament_adjustments += bonus | |
| # 品種類型特殊評估 | |
| if 'terrier' in temperament_lower: | |
| temperament_adjustments -= 0.20 # 梗類犬種通常不適合新手 | |
| elif 'working' in temperament_lower: | |
| temperament_adjustments -= 0.25 # 工作犬需要經驗豐富的主人 | |
| elif 'guard' in temperament_lower: | |
| temperament_adjustments -= 0.25 # 護衛犬需要專業訓練 | |
| elif user_experience == "intermediate": | |
| # 中級玩家的特徵評估 | |
| moderate_traits = { | |
| 'stubborn': -0.15, # 仍然需要注意,但懲罰較輕 | |
| 'independent': -0.10, | |
| 'intelligent': 0.08, # 聰明的特質可以好好發揮 | |
| 'athletic': 0.06, # 運動能力可以適當訓練 | |
| 'versatile': 0.07, # 多功能性可以開發 | |
| 'protective': -0.08 # 保護性仍需注意 | |
| } | |
| for trait, adjustment in moderate_traits.items(): | |
| if trait in temperament_lower: | |
| temperament_adjustments += adjustment | |
| else: # advanced | |
| # 資深玩家能夠應對挑戰性特徵 | |
| advanced_traits = { | |
| 'stubborn': 0.05, # 困難特徵反而成為優勢 | |
| 'independent': 0.05, | |
| 'intelligent': 0.10, | |
| 'protective': 0.05, | |
| 'strong-willed': 0.05 | |
| } | |
| for trait, bonus in advanced_traits.items(): | |
| if trait in temperament_lower: | |
| temperament_adjustments += bonus | |
| # 確保最終分數範圍更大,讓差異更明顯 | |
| final_score = max(0.05, min(1.0, score + temperament_adjustments)) | |
| return final_score | |
| # def calculate_health_score(breed_name: str) -> float: | |
| # """計算品種健康分數""" | |
| # if breed_name not in breed_health_info: | |
| # return 0.5 | |
| # health_notes = breed_health_info[breed_name]['health_notes'].lower() | |
| # # 嚴重健康問題(降低0.15分) | |
| # severe_conditions = [ | |
| # 'hip dysplasia', | |
| # 'heart disease', | |
| # 'progressive retinal atrophy', | |
| # 'bloat', | |
| # 'epilepsy', | |
| # 'degenerative myelopathy', | |
| # 'von willebrand disease' | |
| # ] | |
| # # 中度健康問題(降低0.1分) | |
| # moderate_conditions = [ | |
| # 'allergies', | |
| # 'eye problems', | |
| # 'joint problems', | |
| # 'hypothyroidism', | |
| # 'ear infections', | |
| # 'skin issues' | |
| # ] | |
| # # 輕微健康問題(降低0.05分) | |
| # minor_conditions = [ | |
| # 'dental issues', | |
| # 'weight gain tendency', | |
| # 'minor allergies', | |
| # 'seasonal allergies' | |
| # ] | |
| # # 計算基礎健康分數 | |
| # health_score = 1.0 | |
| # # 根據問題嚴重程度扣分 | |
| # severe_count = sum(1 for condition in severe_conditions if condition in health_notes) | |
| # moderate_count = sum(1 for condition in moderate_conditions if condition in health_notes) | |
| # minor_count = sum(1 for condition in minor_conditions if condition in health_notes) | |
| # health_score -= (severe_count * 0.15) | |
| # health_score -= (moderate_count * 0.1) | |
| # health_score -= (minor_count * 0.05) | |
| # # 壽命影響 | |
| # try: | |
| # lifespan = breed_health_info[breed_name].get('average_lifespan', '10-12') | |
| # years = float(lifespan.split('-')[0]) | |
| # if years < 8: | |
| # health_score *= 0.9 | |
| # elif years > 13: | |
| # health_score *= 1.1 | |
| # except: | |
| # pass | |
| # # 特殊健康優勢 | |
| # if 'generally healthy' in health_notes or 'hardy breed' in health_notes: | |
| # health_score *= 1.1 | |
| # return max(0.2, min(1.0, health_score)) | |
| def calculate_health_score(breed_name: str, user_prefs: UserPreferences) -> float: | |
| """ | |
| 計算品種健康分數,加強健康問題的影響力和與使用者敏感度的連結 | |
| 重要改進: | |
| 1. 根據使用者的健康敏感度調整分數 | |
| 2. 更嚴格的健康問題評估 | |
| 3. 考慮多重健康問題的累積效應 | |
| 4. 加入遺傳疾病的特別考量 | |
| """ | |
| if breed_name not in breed_health_info: | |
| return 0.5 | |
| health_notes = breed_health_info[breed_name]['health_notes'].lower() | |
| # 嚴重健康問題 - 加重扣分 | |
| severe_conditions = { | |
| 'hip dysplasia': -0.25, # 髖關節發育不良,影響生活品質 | |
| 'heart disease': -0.25, # 心臟疾病,需要長期治療 | |
| 'progressive retinal atrophy': -0.20, # 進行性視網膜萎縮,導致失明 | |
| 'bloat': -0.22, # 胃扭轉,致命風險 | |
| 'epilepsy': -0.20, # 癲癇,需要長期藥物控制 | |
| 'degenerative myelopathy': -0.20, # 脊髓退化,影響行動能力 | |
| 'von willebrand disease': -0.18 # 血液凝固障礙 | |
| } | |
| # 中度健康問題 - 適度扣分 | |
| moderate_conditions = { | |
| 'allergies': -0.12, # 過敏問題,需要持續關注 | |
| 'eye problems': -0.15, # 眼睛問題,可能需要手術 | |
| 'joint problems': -0.15, # 關節問題,影響運動能力 | |
| 'hypothyroidism': -0.12, # 甲狀腺功能低下,需要藥物治療 | |
| 'ear infections': -0.10, # 耳道感染,需要定期清理 | |
| 'skin issues': -0.12 # 皮膚問題,需要特殊護理 | |
| } | |
| # 輕微健康問題 - 輕微扣分 | |
| minor_conditions = { | |
| 'dental issues': -0.08, # 牙齒問題,需要定期護理 | |
| 'weight gain tendency': -0.08, # 易胖體質,需要控制飲食 | |
| 'minor allergies': -0.06, # 輕微過敏,可控制 | |
| 'seasonal allergies': -0.06 # 季節性過敏 | |
| } | |
| # 計算基礎健康分數 | |
| health_score = 1.0 | |
| # 健康問題累積效應計算 | |
| condition_counts = { | |
| 'severe': 0, | |
| 'moderate': 0, | |
| 'minor': 0 | |
| } | |
| # 計算各等級健康問題的數量和影響 | |
| for condition, penalty in severe_conditions.items(): | |
| if condition in health_notes: | |
| health_score += penalty | |
| condition_counts['severe'] += 1 | |
| for condition, penalty in moderate_conditions.items(): | |
| if condition in health_notes: | |
| health_score += penalty | |
| condition_counts['moderate'] += 1 | |
| for condition, penalty in minor_conditions.items(): | |
| if condition in health_notes: | |
| health_score += penalty | |
| condition_counts['minor'] += 1 | |
| # 多重問題的額外懲罰(累積效應) | |
| if condition_counts['severe'] > 1: | |
| health_score *= (0.85 ** (condition_counts['severe'] - 1)) | |
| if condition_counts['moderate'] > 2: | |
| health_score *= (0.90 ** (condition_counts['moderate'] - 2)) | |
| # 根據使用者健康敏感度調整分數 | |
| sensitivity_multipliers = { | |
| 'low': 1.1, # 較不在意健康問題 | |
| 'medium': 1.0, # 標準評估 | |
| 'high': 0.85 # 非常注重健康問題 | |
| } | |
| health_score *= sensitivity_multipliers.get(user_prefs.health_sensitivity, 1.0) | |
| # 壽命影響評估 | |
| try: | |
| lifespan = breed_health_info[breed_name].get('average_lifespan', '10-12') | |
| years = float(lifespan.split('-')[0]) | |
| if years < 8: | |
| health_score *= 0.85 # 短壽命顯著降低分數 | |
| elif years < 10: | |
| health_score *= 0.92 # 較短壽命輕微降低分數 | |
| elif years > 13: | |
| health_score *= 1.1 # 長壽命適度加分 | |
| except: | |
| pass | |
| # 特殊健康優勢 | |
| if 'generally healthy' in health_notes or 'hardy breed' in health_notes: | |
| health_score *= 1.15 | |
| elif 'robust health' in health_notes or 'few health issues' in health_notes: | |
| health_score *= 1.1 | |
| # 確保分數在合理範圍內,但允許更大的分數差異 | |
| return max(0.1, min(1.0, health_score)) | |
| # def calculate_noise_score(breed_name: str, user_noise_tolerance: str) -> float: | |
| # """計算品種噪音分數""" | |
| # if breed_name not in breed_noise_info: | |
| # return 0.5 | |
| # noise_info = breed_noise_info[breed_name] | |
| # noise_level = noise_info['noise_level'].lower() | |
| # noise_notes = noise_info['noise_notes'].lower() | |
| # # 基礎噪音分數矩陣 | |
| # base_scores = { | |
| # 'low': {'low': 1.0, 'medium': 0.9, 'high': 0.8}, | |
| # 'medium': {'low': 0.7, 'medium': 1.0, 'high': 0.9}, | |
| # 'high': {'low': 0.4, 'medium': 0.7, 'high': 1.0}, | |
| # 'varies': {'low': 0.6, 'medium': 0.8, 'high': 0.9} | |
| # } | |
| # # 獲取基礎分數 | |
| # base_score = base_scores.get(noise_level, {'low': 0.7, 'medium': 0.8, 'high': 0.6})[user_noise_tolerance] | |
| # # 吠叫原因評估 | |
| # barking_reasons_penalty = 0 | |
| # problematic_triggers = [ | |
| # ('separation anxiety', -0.15), | |
| # ('excessive barking', -0.12), | |
| # ('territorial', -0.08), | |
| # ('alert barking', -0.05), | |
| # ('attention seeking', -0.05) | |
| # ] | |
| # for trigger, penalty in problematic_triggers: | |
| # if trigger in noise_notes: | |
| # barking_reasons_penalty += penalty | |
| # # 可訓練性補償 | |
| # trainability_bonus = 0 | |
| # if 'responds well to training' in noise_notes: | |
| # trainability_bonus = 0.1 | |
| # elif 'can be trained' in noise_notes: | |
| # trainability_bonus = 0.05 | |
| # # 特殊情況 | |
| # special_adjustments = 0 | |
| # if 'rarely barks' in noise_notes: | |
| # special_adjustments += 0.1 | |
| # if 'howls' in noise_notes and user_noise_tolerance == 'low': | |
| # special_adjustments -= 0.1 | |
| # final_score = base_score + barking_reasons_penalty + trainability_bonus + special_adjustments | |
| # return max(0.2, min(1.0, final_score)) | |
| def calculate_noise_score(breed_name: str, user_prefs: UserPreferences) -> float: | |
| """ | |
| 計算品種噪音分數,特別加強噪音程度與生活環境的關聯性評估 | |
| """ | |
| if breed_name not in breed_noise_info: | |
| return 0.5 | |
| noise_info = breed_noise_info[breed_name] | |
| noise_level = noise_info['noise_level'].lower() | |
| noise_notes = noise_info['noise_notes'].lower() | |
| # 重新設計基礎噪音分數矩陣,考慮不同情境下的接受度 | |
| base_scores = { | |
| 'low': { | |
| 'low': 1.0, # 安靜的狗對低容忍完美匹配 | |
| 'medium': 0.95, # 安靜的狗對一般容忍很好 | |
| 'high': 0.90 # 安靜的狗對高容忍當然可以 | |
| }, | |
| 'medium': { | |
| 'low': 0.60, # 一般吠叫對低容忍較困難 | |
| 'medium': 0.90, # 一般吠叫對一般容忍可接受 | |
| 'high': 0.95 # 一般吠叫對高容忍很好 | |
| }, | |
| 'high': { | |
| 'low': 0.25, # 愛叫的狗對低容忍極不適合 | |
| 'medium': 0.65, # 愛叫的狗對一般容忍有挑戰 | |
| 'high': 0.90 # 愛叫的狗對高容忍可以接受 | |
| }, | |
| 'varies': { | |
| 'low': 0.50, # 不確定的情況對低容忍風險較大 | |
| 'medium': 0.75, # 不確定的情況對一般容忍可嘗試 | |
| 'high': 0.85 # 不確定的情況對高容忍問題較小 | |
| } | |
| } | |
| # 取得基礎分數 | |
| base_score = base_scores.get(noise_level, {'low': 0.6, 'medium': 0.75, 'high': 0.85})[user_prefs.noise_tolerance] | |
| # 吠叫原因評估,根據環境調整懲罰程度 | |
| barking_penalties = { | |
| 'separation anxiety': { | |
| 'apartment': -0.30, # 在公寓對鄰居影響更大 | |
| 'house_small': -0.25, | |
| 'house_large': -0.20 | |
| }, | |
| 'excessive barking': { | |
| 'apartment': -0.25, | |
| 'house_small': -0.20, | |
| 'house_large': -0.15 | |
| }, | |
| 'territorial': { | |
| 'apartment': -0.20, # 在公寓更容易被觸發 | |
| 'house_small': -0.15, | |
| 'house_large': -0.10 | |
| }, | |
| 'alert barking': { | |
| 'apartment': -0.15, # 公寓環境刺激較多 | |
| 'house_small': -0.10, | |
| 'house_large': -0.08 | |
| }, | |
| 'attention seeking': { | |
| 'apartment': -0.15, | |
| 'house_small': -0.12, | |
| 'house_large': -0.10 | |
| } | |
| } | |
| # 計算環境相關的吠叫懲罰 | |
| living_space = user_prefs.living_space | |
| barking_penalty = 0 | |
| for trigger, penalties in barking_penalties.items(): | |
| if trigger in noise_notes: | |
| barking_penalty += penalties.get(living_space, -0.15) | |
| # 特殊情況評估 | |
| special_adjustments = 0 | |
| if user_prefs.has_children: | |
| # 孩童年齡相關調整 | |
| child_age_adjustments = { | |
| 'toddler': { | |
| 'high': -0.20, # 幼童對吵鬧更敏感 | |
| 'medium': -0.15, | |
| 'low': -0.05 | |
| }, | |
| 'school_age': { | |
| 'high': -0.15, | |
| 'medium': -0.10, | |
| 'low': -0.05 | |
| }, | |
| 'teenager': { | |
| 'high': -0.10, | |
| 'medium': -0.05, | |
| 'low': -0.02 | |
| } | |
| } | |
| # 根據孩童年齡和噪音等級調整 | |
| age_adj = child_age_adjustments.get(user_prefs.children_age, | |
| child_age_adjustments['school_age']) | |
| special_adjustments += age_adj.get(noise_level, -0.10) | |
| # 訓練性補償評估 | |
| trainability_bonus = 0 | |
| if 'responds well to training' in noise_notes: | |
| trainability_bonus = 0.12 | |
| elif 'can be trained' in noise_notes: | |
| trainability_bonus = 0.08 | |
| elif 'difficult to train' in noise_notes: | |
| trainability_bonus = 0.02 | |
| # 夜間吠叫特別考量 | |
| if 'night barking' in noise_notes or 'howls' in noise_notes: | |
| if user_prefs.living_space == 'apartment': | |
| special_adjustments -= 0.15 | |
| elif user_prefs.living_space == 'house_small': | |
| special_adjustments -= 0.10 | |
| else: | |
| special_adjustments -= 0.05 | |
| # 計算最終分數,確保更大的分數範圍 | |
| final_score = base_score + barking_penalty + special_adjustments + trainability_bonus | |
| return max(0.1, min(1.0, final_score)) | |
| # # 計算所有基礎分數 | |
| # scores = { | |
| # 'space': calculate_space_score( | |
| # breed_info['Size'], | |
| # user_prefs.living_space, | |
| # user_prefs.space_for_play, | |
| # breed_info.get('Exercise Needs', 'Moderate') | |
| # ), | |
| # 'exercise': calculate_exercise_score( | |
| # breed_info.get('Exercise Needs', 'Moderate'), | |
| # user_prefs.exercise_time | |
| # ), | |
| # 'grooming': calculate_grooming_score( | |
| # breed_info.get('Grooming Needs', 'Moderate'), | |
| # user_prefs.grooming_commitment.lower(), | |
| # breed_info['Size'] | |
| # ), | |
| # 'experience': calculate_experience_score( | |
| # breed_info.get('Care Level', 'Moderate'), | |
| # user_prefs.experience_level, | |
| # breed_info.get('Temperament', '') | |
| # ), | |
| # 'health': calculate_health_score(breed_info.get('Breed', '')), | |
| # 'noise': calculate_noise_score(breed_info.get('Breed', ''), user_prefs.noise_tolerance) | |
| # } | |
| # # 優化權重配置 | |
| # weights = { | |
| # 'space': 0.28, | |
| # 'exercise': 0.18, | |
| # 'grooming': 0.12, | |
| # 'experience': 0.22, | |
| # 'health': 0.12, | |
| # 'noise': 0.08 | |
| # } | |
| # # 計算加權總分 | |
| # weighted_score = sum(score * weights[category] for category, score in scores.items()) | |
| # def amplify_score(score): | |
| # """ | |
| # 優化分數放大函數,確保分數範圍合理且結果一致 | |
| # """ | |
| # # 基礎調整 | |
| # adjusted = (score - 0.35) * 1.8 | |
| # # 使用 3.2 次方使曲線更平滑 | |
| # amplified = pow(adjusted, 3.2) / 5.8 + score | |
| # # 特別處理高分區間,確保不超過95% | |
| # if amplified > 0.90: | |
| # # 壓縮高分區間,確保最高到95% | |
| # amplified = 0.90 + (amplified - 0.90) * 0.5 | |
| # # 確保最終分數在合理範圍內(0.55-0.95) | |
| # final_score = max(0.55, min(0.95, amplified)) | |
| # # 四捨五入到小數點後第三位 | |
| # return round(final_score, 3) | |
| # final_score = amplify_score(weighted_score) | |
| # # 四捨五入所有分數 | |
| # scores = {k: round(v, 4) for k, v in scores.items()} | |
| # scores['overall'] = round(final_score, 4) | |
| # return scores | |
| # except Exception as e: | |
| # print(f"Error details: {str(e)}") | |
| # print(f"breed_info: {breed_info}") | |
| # # print(f"Error in calculate_compatibility_score: {str(e)}") | |
| # return {k: 0.6 for k in ['space', 'exercise', 'grooming', 'experience', 'health', 'noise', 'overall']} | |
| # | |
| print("\n=== 開始計算品種相容性分數 ===") | |
| print(f"處理品種: {breed_info.get('Breed', 'Unknown')}") | |
| print(f"品種信息: {breed_info}") | |
| print(f"使用者偏好: {vars(user_prefs)}") | |
| # 1. 計算基礎分數 | |
| try: | |
| space_score = calculate_space_score( | |
| breed_info['Size'], | |
| user_prefs.living_space, | |
| user_prefs.space_for_play, | |
| breed_info.get('Exercise Needs', 'Moderate') | |
| ) | |
| print(f"空間分數計算結果: {space_score}") | |
| except Exception as e: | |
| print(f"空間分數計算錯誤: {str(e)}") | |
| raise | |
| try: | |
| exercise_score = calculate_exercise_score( | |
| breed_info.get('Exercise Needs', 'Moderate'), | |
| user_prefs.exercise_time | |
| ) | |
| print(f"運動分數計算結果: {exercise_score}") | |
| except Exception as e: | |
| print(f"運動分數計算錯誤: {str(e)}") | |
| raise | |
| try: | |
| grooming_score = calculate_grooming_score( | |
| breed_info.get('Grooming Needs', 'Moderate'), | |
| user_prefs.grooming_commitment.lower(), | |
| breed_info['Size'] | |
| ) | |
| print(f"美容分數計算結果: {grooming_score}") | |
| except Exception as e: | |
| print(f"美容分數計算錯誤: {str(e)}") | |
| raise | |
| try: | |
| experience_score = calculate_experience_score( | |
| breed_info.get('Care Level', 'Moderate'), | |
| user_prefs.experience_level, | |
| breed_info.get('Temperament', '') | |
| ) | |
| print(f"經驗分數計算結果: {experience_score}") | |
| except Exception as e: | |
| print(f"經驗分數計算錯誤: {str(e)}") | |
| raise | |
| try: | |
| # 修正:加入 user_prefs 參數 | |
| health_score = calculate_health_score(breed_info.get('Breed', ''), user_prefs) | |
| print(f"健康分數計算結果: {health_score}") | |
| except Exception as e: | |
| print(f"健康分數計算錯誤: {str(e)}") | |
| raise | |
| try: | |
| noise_score = calculate_noise_score( | |
| breed_info.get('Breed', ''), | |
| user_prefs.noise_tolerance | |
| ) | |
| print(f"噪音分數計算結果: {noise_score}") | |
| except Exception as e: | |
| print(f"噪音分數計算錯誤: {str(e)}") | |
| raise | |
| # 整合所有分數到字典中 | |
| scores = { | |
| 'space': space_score, | |
| 'exercise': exercise_score, | |
| 'grooming': grooming_score, | |
| 'experience': experience_score, | |
| 'health': health_score, | |
| 'noise': noise_score | |
| } | |
| print("\n=== 所有基礎分數 ===") | |
| for category, score in scores.items(): | |
| print(f"{category}: {score}") | |
| # 首先處理極端情況 | |
| def check_critical_issues(scores: dict, breed_info: dict) -> float: | |
| """ | |
| 檢查關鍵問題並計算懲罰係數 | |
| """ | |
| penalty = 1.0 | |
| # 檢查經驗分數 - 如果太低表示品種太難駕馭 | |
| if scores['experience'] < 0.3: | |
| penalty *= 0.8 | |
| # 檢查空間分數 - 特別是對公寓的情況 | |
| if user_prefs.living_space == 'apartment' and scores['space'] < 0.4: | |
| penalty *= 0.85 | |
| # 檢查健康分數 - 健康問題是重要考量 | |
| if scores['health'] < 0.4: | |
| penalty *= 0.9 | |
| return penalty | |
| # 計算權重和加權分數 | |
| def calculate_weighted_score(scores: dict) -> float: | |
| """ | |
| 使用動態權重計算加權分數 | |
| """ | |
| base_weights = { | |
| 'space': 0.28, | |
| 'exercise': 0.18, | |
| 'grooming': 0.12, | |
| 'experience': 0.22, | |
| 'health': 0.12, | |
| 'noise': 0.08 | |
| } | |
| # 根據居住環境調整權重 | |
| if user_prefs.living_space == 'apartment': | |
| base_weights['space'] *= 1.2 | |
| base_weights['noise'] *= 1.2 | |
| # 根據經驗等級調整權重 | |
| if user_prefs.experience_level == 'beginner': | |
| base_weights['experience'] *= 1.3 | |
| # 重新正規化權重 | |
| total_weight = sum(base_weights.values()) | |
| weights = {k: v/total_weight for k, v in base_weights.items()} | |
| # 計算加權分數 | |
| return sum(score * weights[category] for category, score in scores.items()) | |
| # 計算最終分數 | |
| def calculate_final_score(base_score: float, penalty: float) -> float: | |
| """ | |
| 計算並調整最終分數,確保合理的分數分布 | |
| """ | |
| # 應用懲罰係數 | |
| adjusted_score = base_score * penalty | |
| # 將分數映射到期望的範圍(0.55-0.95) | |
| mapped_score = 0.55 + (adjusted_score * 0.4) | |
| # 確保分數在合理範圍內 | |
| final = max(0.55, min(0.95, mapped_score)) | |
| return round(final, 4) | |
| # 執行計算流程 | |
| penalty = check_critical_issues(scores, breed_info) | |
| weighted_score = calculate_weighted_score(scores) | |
| final_score = calculate_final_score(weighted_score, penalty) | |
| # 準備返回結果 | |
| scores = {k: round(v, 4) for k, v in scores.items()} | |
| scores['overall'] = final_score | |
| return scores | |
| except Exception as e: | |
| print(f"\n!!!!! 發生嚴重錯誤 !!!!!") | |
| print(f"錯誤類型: {type(e).__name__}") | |
| print(f"錯誤訊息: {str(e)}") | |
| print(f"完整錯誤追蹤:") | |
| print(traceback.format_exc()) | |
| return {k: 0.6 for k in ['space', 'exercise', 'grooming', 'experience', 'health', 'noise', 'overall']} |