Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -185,63 +185,10 @@ async def predict_single_dog(image):
|
|
| 185 |
return probabilities[0], breeds[:3], relative_probs
|
| 186 |
|
| 187 |
|
| 188 |
-
|
| 189 |
-
# results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
| 190 |
-
# dogs = []
|
| 191 |
-
# boxes = []
|
| 192 |
-
# for box in results.boxes:
|
| 193 |
-
# if box.cls == 16: # COCO dataset class for dog is 16
|
| 194 |
-
# xyxy = box.xyxy[0].tolist()
|
| 195 |
-
# confidence = box.conf.item()
|
| 196 |
-
# boxes.append((xyxy, confidence))
|
| 197 |
-
|
| 198 |
-
# if not boxes:
|
| 199 |
-
# dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
| 200 |
-
# else:
|
| 201 |
-
# nms_boxes = non_max_suppression(boxes, iou_threshold)
|
| 202 |
-
|
| 203 |
-
# for box, confidence in nms_boxes:
|
| 204 |
-
# x1, y1, x2, y2 = box
|
| 205 |
-
# w, h = x2 - x1, y2 - y1
|
| 206 |
-
# x1 = max(0, x1 - w * 0.05)
|
| 207 |
-
# y1 = max(0, y1 - h * 0.05)
|
| 208 |
-
# x2 = min(image.width, x2 + w * 0.05)
|
| 209 |
-
# y2 = min(image.height, y2 + h * 0.05)
|
| 210 |
-
# cropped_image = image.crop((x1, y1, x2, y2))
|
| 211 |
-
# dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
|
| 212 |
-
|
| 213 |
-
# return dogs
|
| 214 |
-
|
| 215 |
-
# def non_max_suppression(boxes, iou_threshold):
|
| 216 |
-
# keep = []
|
| 217 |
-
# boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
|
| 218 |
-
# while boxes:
|
| 219 |
-
# current = boxes.pop(0)
|
| 220 |
-
# keep.append(current)
|
| 221 |
-
# boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
|
| 222 |
-
# return keep
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
# def calculate_iou(box1, box2):
|
| 226 |
-
# x1 = max(box1[0], box2[0])
|
| 227 |
-
# y1 = max(box1[1], box2[1])
|
| 228 |
-
# x2 = min(box1[2], box2[2])
|
| 229 |
-
# y2 = min(box1[3], box2[3])
|
| 230 |
-
|
| 231 |
-
# intersection = max(0, x2 - x1) * max(0, y2 - y1)
|
| 232 |
-
# area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
|
| 233 |
-
# area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
|
| 234 |
-
|
| 235 |
-
# iou = intersection / float(area1 + area2 - intersection)
|
| 236 |
-
# return iou
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
async def detect_multiple_dogs(image, conf_threshold=0.35, iou_threshold=0.55, sigma=0.5):
|
| 240 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
| 241 |
dogs = []
|
| 242 |
boxes = []
|
| 243 |
-
|
| 244 |
-
# 收集所有狗的檢測結果
|
| 245 |
for box in results.boxes:
|
| 246 |
if box.cls == 16: # COCO dataset class for dog is 16
|
| 247 |
xyxy = box.xyxy[0].tolist()
|
|
@@ -251,69 +198,31 @@ async def detect_multiple_dogs(image, conf_threshold=0.35, iou_threshold=0.55, s
|
|
| 251 |
if not boxes:
|
| 252 |
dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
| 253 |
else:
|
| 254 |
-
|
| 255 |
-
nms_boxes = soft_nms(boxes, iou_threshold, sigma)
|
| 256 |
|
| 257 |
-
# 處理保留的框
|
| 258 |
for box, confidence in nms_boxes:
|
| 259 |
x1, y1, x2, y2 = box
|
| 260 |
-
# 擴大框的範圍以包含更多上下文
|
| 261 |
w, h = x2 - x1, y2 - y1
|
| 262 |
-
x1 = max(0, x1 - w * 0.
|
| 263 |
-
y1 = max(0, y1 - h * 0.
|
| 264 |
-
x2 = min(image.width, x2 + w * 0.
|
| 265 |
-
y2 = min(image.height, y2 + h * 0.
|
| 266 |
cropped_image = image.crop((x1, y1, x2, y2))
|
| 267 |
dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
|
| 268 |
|
| 269 |
return dogs
|
| 270 |
|
| 271 |
-
def
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
scores = np.array([box[1] for box in boxes])
|
| 281 |
-
|
| 282 |
-
# 按照confidence排序
|
| 283 |
-
indices = np.argsort(scores)[::-1]
|
| 284 |
-
box_coords = box_coords[indices]
|
| 285 |
-
scores = scores[indices]
|
| 286 |
-
|
| 287 |
-
keep_boxes = []
|
| 288 |
-
keep_scores = []
|
| 289 |
-
|
| 290 |
-
while len(scores) > 0:
|
| 291 |
-
# 保留最高分數的框
|
| 292 |
-
keep_boxes.append(box_coords[0].tolist())
|
| 293 |
-
keep_scores.append(scores[0])
|
| 294 |
-
|
| 295 |
-
if len(scores) == 1:
|
| 296 |
-
break
|
| 297 |
-
|
| 298 |
-
# 計算當前最高分框與其他所有框的IoU
|
| 299 |
-
ious = np.array([calculate_iou(box_coords[0], box) for box in box_coords[1:]])
|
| 300 |
-
|
| 301 |
-
# 使用高斯衰減更新分數
|
| 302 |
-
scores[1:] = scores[1:] * np.exp(-(ious * ious) / sigma)
|
| 303 |
-
|
| 304 |
-
# 移除最高分的框並過濾低於閾值的框
|
| 305 |
-
box_coords = box_coords[1:]
|
| 306 |
-
scores = scores[1:]
|
| 307 |
-
mask = scores > score_threshold
|
| 308 |
-
box_coords = box_coords[mask]
|
| 309 |
-
scores = scores[mask]
|
| 310 |
-
|
| 311 |
-
return list(zip(keep_boxes, keep_scores))
|
| 312 |
|
| 313 |
def calculate_iou(box1, box2):
|
| 314 |
-
"""
|
| 315 |
-
IoU 計算
|
| 316 |
-
"""
|
| 317 |
x1 = max(box1[0], box2[0])
|
| 318 |
y1 = max(box1[1], box2[1])
|
| 319 |
x2 = min(box1[2], box2[2])
|
|
@@ -327,7 +236,6 @@ def calculate_iou(box1, box2):
|
|
| 327 |
return iou
|
| 328 |
|
| 329 |
|
| 330 |
-
|
| 331 |
def create_breed_comparison(breed1: str, breed2: str) -> dict:
|
| 332 |
breed1_info = get_dog_description(breed1)
|
| 333 |
breed2_info = get_dog_description(breed2)
|
|
|
|
| 185 |
return probabilities[0], breeds[:3], relative_probs
|
| 186 |
|
| 187 |
|
| 188 |
+
async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
| 190 |
dogs = []
|
| 191 |
boxes = []
|
|
|
|
|
|
|
| 192 |
for box in results.boxes:
|
| 193 |
if box.cls == 16: # COCO dataset class for dog is 16
|
| 194 |
xyxy = box.xyxy[0].tolist()
|
|
|
|
| 198 |
if not boxes:
|
| 199 |
dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
| 200 |
else:
|
| 201 |
+
nms_boxes = non_max_suppression(boxes, iou_threshold)
|
|
|
|
| 202 |
|
|
|
|
| 203 |
for box, confidence in nms_boxes:
|
| 204 |
x1, y1, x2, y2 = box
|
|
|
|
| 205 |
w, h = x2 - x1, y2 - y1
|
| 206 |
+
x1 = max(0, x1 - w * 0.05)
|
| 207 |
+
y1 = max(0, y1 - h * 0.05)
|
| 208 |
+
x2 = min(image.width, x2 + w * 0.05)
|
| 209 |
+
y2 = min(image.height, y2 + h * 0.05)
|
| 210 |
cropped_image = image.crop((x1, y1, x2, y2))
|
| 211 |
dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
|
| 212 |
|
| 213 |
return dogs
|
| 214 |
|
| 215 |
+
def non_max_suppression(boxes, iou_threshold):
|
| 216 |
+
keep = []
|
| 217 |
+
boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
|
| 218 |
+
while boxes:
|
| 219 |
+
current = boxes.pop(0)
|
| 220 |
+
keep.append(current)
|
| 221 |
+
boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
|
| 222 |
+
return keep
|
| 223 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
|
| 225 |
def calculate_iou(box1, box2):
|
|
|
|
|
|
|
|
|
|
| 226 |
x1 = max(box1[0], box2[0])
|
| 227 |
y1 = max(box1[1], box2[1])
|
| 228 |
x2 = min(box1[2], box2[2])
|
|
|
|
| 236 |
return iou
|
| 237 |
|
| 238 |
|
|
|
|
| 239 |
def create_breed_comparison(breed1: str, breed2: str) -> dict:
|
| 240 |
breed1_info = get_dog_description(breed1)
|
| 241 |
breed2_info = get_dog_description(breed2)
|