Spaces:
Running
on
Zero
Running
on
Zero
Update scoring_calculation_system.py
Browse files- scoring_calculation_system.py +1202 -744
scoring_calculation_system.py
CHANGED
|
@@ -5,28 +5,67 @@ import traceback
|
|
| 5 |
import math
|
| 6 |
import random
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
@dataclass
|
| 9 |
class UserPreferences:
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
living_space: str
|
| 13 |
-
yard_access: str
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
has_children: bool
|
| 20 |
-
children_age: str
|
| 21 |
-
noise_tolerance: str # "low", "medium", "high"
|
| 22 |
-
space_for_play: bool
|
| 23 |
other_pets: bool
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
def __post_init__(self):
|
| 29 |
-
"""
|
| 30 |
if self.barking_acceptance is None:
|
| 31 |
self.barking_acceptance = self.noise_tolerance
|
| 32 |
|
|
@@ -157,242 +196,7 @@ def calculate_breed_bonus(breed_info: dict, user_prefs: 'UserPreferences') -> fl
|
|
| 157 |
bonus += min(0.15, adaptability_bonus)
|
| 158 |
|
| 159 |
return min(0.5, max(-0.25, bonus))
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
# @staticmethod
|
| 163 |
-
# def calculate_breed_bonus(breed_info: dict, user_prefs: UserPreferences) -> float:
|
| 164 |
-
# """
|
| 165 |
-
# 計算品種的額外加分,評估品種的特殊特徵對使用者需求的適配性。
|
| 166 |
-
|
| 167 |
-
# 這個函數考慮四個主要面向:
|
| 168 |
-
# 1. 壽命評估:考慮飼養的長期承諾
|
| 169 |
-
# 2. 性格特徵評估:評估品種性格與使用者需求的匹配度
|
| 170 |
-
# 3. 環境適應性:評估品種在特定生活環境中的表現
|
| 171 |
-
# 4. 家庭相容性:特別關注品種與家庭成員的互動
|
| 172 |
-
# """
|
| 173 |
-
# bonus = 0.0
|
| 174 |
-
# temperament = breed_info.get('Temperament', '').lower()
|
| 175 |
-
# description = breed_info.get('Description', '').lower()
|
| 176 |
-
|
| 177 |
-
# # 壽命評估 - 重新設計以反映更實際的考量
|
| 178 |
-
# try:
|
| 179 |
-
# lifespan = breed_info.get('Lifespan', '10-12 years')
|
| 180 |
-
# years = [int(x) for x in lifespan.split('-')[0].split()[0:1]]
|
| 181 |
-
# avg_years = float(years[0])
|
| 182 |
-
|
| 183 |
-
# # 根據壽命長短給予不同程度的獎勵或懲罰
|
| 184 |
-
# if avg_years < 8:
|
| 185 |
-
# bonus -= 0.08 # 短壽命可能帶來情感負擔
|
| 186 |
-
# elif avg_years < 10:
|
| 187 |
-
# bonus -= 0.04 # 稍短壽命輕微降低評分
|
| 188 |
-
# elif avg_years > 13:
|
| 189 |
-
# bonus += 0.06 # 長壽命適度加分
|
| 190 |
-
# elif avg_years > 15:
|
| 191 |
-
# bonus += 0.08 # 特別長壽的品種獲得更多加分
|
| 192 |
-
# except:
|
| 193 |
-
# pass
|
| 194 |
-
|
| 195 |
-
# # 性格特徵評估 - 擴充並細化評分標準
|
| 196 |
-
# positive_traits = {
|
| 197 |
-
# 'friendly': 0.08, # 提高友善性的重要性
|
| 198 |
-
# 'gentle': 0.08, # 溫和性格更受歡迎
|
| 199 |
-
# 'patient': 0.07, # 耐心是重要特質
|
| 200 |
-
# 'intelligent': 0.06, # 聰明但不過分重要
|
| 201 |
-
# 'adaptable': 0.06, # 適應性佳的特質
|
| 202 |
-
# 'affectionate': 0.06, # 親密性很重要
|
| 203 |
-
# 'easy-going': 0.05, # 容易相處的性格
|
| 204 |
-
# 'calm': 0.05 # 冷靜的特質
|
| 205 |
-
# }
|
| 206 |
-
|
| 207 |
-
# negative_traits = {
|
| 208 |
-
# 'aggressive': -0.15, # 嚴重懲罰攻擊性
|
| 209 |
-
# 'stubborn': -0.10, # 固執性格不易處理
|
| 210 |
-
# 'dominant': -0.10, # 支配性可能造成問題
|
| 211 |
-
# 'aloof': -0.08, # 冷漠性格影響互動
|
| 212 |
-
# 'nervous': -0.08, # 緊張性格需要更多關注
|
| 213 |
-
# 'protective': -0.06 # 過度保護可能有風險
|
| 214 |
-
# }
|
| 215 |
-
|
| 216 |
-
# # 性格評分計算 - 加入累積效應
|
| 217 |
-
# personality_score = 0
|
| 218 |
-
# positive_count = 0
|
| 219 |
-
# negative_count = 0
|
| 220 |
-
|
| 221 |
-
# for trait, value in positive_traits.items():
|
| 222 |
-
# if trait in temperament:
|
| 223 |
-
# personality_score += value
|
| 224 |
-
# positive_count += 1
|
| 225 |
-
|
| 226 |
-
# for trait, value in negative_traits.items():
|
| 227 |
-
# if trait in temperament:
|
| 228 |
-
# personality_score += value
|
| 229 |
-
# negative_count += 1
|
| 230 |
|
| 231 |
-
# # 多重特徵的累積效應
|
| 232 |
-
# if positive_count > 2:
|
| 233 |
-
# personality_score *= (1 + (positive_count - 2) * 0.1)
|
| 234 |
-
# if negative_count > 1:
|
| 235 |
-
# personality_score *= (1 - (negative_count - 1) * 0.15)
|
| 236 |
-
|
| 237 |
-
# bonus += max(-0.25, min(0.25, personality_score))
|
| 238 |
-
|
| 239 |
-
# # 適應性評估 - 根據具體環境給予更細緻的評分
|
| 240 |
-
# adaptability_bonus = 0.0
|
| 241 |
-
# if breed_info.get('Size') == "Small" and user_prefs.living_space == "apartment":
|
| 242 |
-
# adaptability_bonus += 0.08 # 小型犬更適合公寓
|
| 243 |
-
|
| 244 |
-
# # 環境適應性評估
|
| 245 |
-
# if 'adaptable' in temperament or 'versatile' in temperament:
|
| 246 |
-
# if user_prefs.living_space == "apartment":
|
| 247 |
-
# adaptability_bonus += 0.10 # 適應性在公寓環境更重要
|
| 248 |
-
# else:
|
| 249 |
-
# adaptability_bonus += 0.05 # 其他環境仍有加分
|
| 250 |
-
|
| 251 |
-
# # 氣候適應性
|
| 252 |
-
# description = breed_info.get('Description', '').lower()
|
| 253 |
-
# climate = user_prefs.climate
|
| 254 |
-
# if climate == 'hot':
|
| 255 |
-
# if 'heat tolerant' in description or 'warm climate' in description:
|
| 256 |
-
# adaptability_bonus += 0.08
|
| 257 |
-
# elif 'thick coat' in description or 'cold climate' in description:
|
| 258 |
-
# adaptability_bonus -= 0.10
|
| 259 |
-
# elif climate == 'cold':
|
| 260 |
-
# if 'thick coat' in description or 'cold climate' in description:
|
| 261 |
-
# adaptability_bonus += 0.08
|
| 262 |
-
# elif 'heat tolerant' in description or 'short coat' in description:
|
| 263 |
-
# adaptability_bonus -= 0.10
|
| 264 |
-
|
| 265 |
-
# bonus += min(0.15, adaptability_bonus)
|
| 266 |
-
|
| 267 |
-
# # 家庭相容性評估 - 特別關注有孩童的家庭
|
| 268 |
-
# if user_prefs.has_children:
|
| 269 |
-
# family_traits = {
|
| 270 |
-
# 'good with children': 0.12, # 提高與孩童相處的重要性
|
| 271 |
-
# 'patient': 0.10,
|
| 272 |
-
# 'gentle': 0.10,
|
| 273 |
-
# 'tolerant': 0.08,
|
| 274 |
-
# 'playful': 0.06
|
| 275 |
-
# }
|
| 276 |
-
|
| 277 |
-
# unfriendly_traits = {
|
| 278 |
-
# 'aggressive': -0.15, # 加重攻擊性的懲罰
|
| 279 |
-
# 'nervous': -0.12, # 緊張特質可能有風險
|
| 280 |
-
# 'protective': -0.10, # 過度保護性需要注意
|
| 281 |
-
# 'territorial': -0.08 # 地域性可能造成問題
|
| 282 |
-
# }
|
| 283 |
-
|
| 284 |
-
# # 根據孩童年齡調整評分權重
|
| 285 |
-
# age_adjustments = {
|
| 286 |
-
# 'toddler': {
|
| 287 |
-
# 'bonus_mult': 0.6, # 降低正面特質的獎勵
|
| 288 |
-
# 'penalty_mult': 1.5 # 加重負面特質的懲罰
|
| 289 |
-
# },
|
| 290 |
-
# 'school_age': {
|
| 291 |
-
# 'bonus_mult': 1.0,
|
| 292 |
-
# 'penalty_mult': 1.0
|
| 293 |
-
# },
|
| 294 |
-
# 'teenager': {
|
| 295 |
-
# 'bonus_mult': 1.2, # 提高正面特質的獎勵
|
| 296 |
-
# 'penalty_mult': 0.8 # 降低負面特質的懲罰
|
| 297 |
-
# }
|
| 298 |
-
# }
|
| 299 |
-
|
| 300 |
-
# adj = age_adjustments.get(user_prefs.children_age,
|
| 301 |
-
# {'bonus_mult': 1.0, 'penalty_mult': 1.0})
|
| 302 |
-
|
| 303 |
-
# # 計算家庭相容性分數
|
| 304 |
-
# family_score = 0
|
| 305 |
-
# for trait, value in family_traits.items():
|
| 306 |
-
# if trait in temperament:
|
| 307 |
-
# family_score += value * adj['bonus_mult']
|
| 308 |
-
|
| 309 |
-
# for trait, value in unfriendly_traits.items():
|
| 310 |
-
# if trait in temperament:
|
| 311 |
-
# family_score += value * adj['penalty_mult']
|
| 312 |
-
|
| 313 |
-
# bonus += min(0.20, max(-0.30, family_score))
|
| 314 |
-
|
| 315 |
-
# # 確保總體加分在合理範圍內,但允許更大的變化
|
| 316 |
-
# return min(0.5, max(-0.35, bonus))
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
# @staticmethod
|
| 320 |
-
# def calculate_additional_factors(breed_info: dict, user_prefs: 'UserPreferences') -> dict:
|
| 321 |
-
# """計算額外的評估因素"""
|
| 322 |
-
# factors = {
|
| 323 |
-
# 'versatility': 0.0, # 多功能性
|
| 324 |
-
# 'trainability': 0.0, # 可訓練度
|
| 325 |
-
# 'energy_level': 0.0, # 能量水平
|
| 326 |
-
# 'grooming_needs': 0.0, # 美容需求
|
| 327 |
-
# 'social_needs': 0.0, # 社交需求
|
| 328 |
-
# 'weather_adaptability': 0.0 # 氣候適應性
|
| 329 |
-
# }
|
| 330 |
-
|
| 331 |
-
# temperament = breed_info.get('Temperament', '').lower()
|
| 332 |
-
# size = breed_info.get('Size', 'Medium')
|
| 333 |
-
|
| 334 |
-
# # 1. 多功能性評估
|
| 335 |
-
# versatile_traits = ['intelligent', 'adaptable', 'trainable', 'athletic']
|
| 336 |
-
# working_roles = ['working', 'herding', 'hunting', 'sporting', 'companion']
|
| 337 |
-
|
| 338 |
-
# trait_score = sum(0.2 for trait in versatile_traits if trait in temperament)
|
| 339 |
-
# role_score = sum(0.2 for role in working_roles if role in breed_info.get('Description', '').lower())
|
| 340 |
-
|
| 341 |
-
# factors['versatility'] = min(1.0, trait_score + role_score)
|
| 342 |
-
|
| 343 |
-
# # 2. 可訓練度評估
|
| 344 |
-
# trainable_traits = {
|
| 345 |
-
# 'intelligent': 0.3,
|
| 346 |
-
# 'eager to please': 0.3,
|
| 347 |
-
# 'trainable': 0.2,
|
| 348 |
-
# 'quick learner': 0.2
|
| 349 |
-
# }
|
| 350 |
-
# factors['trainability'] = min(1.0, sum(value for trait, value in trainable_traits.items()
|
| 351 |
-
# if trait in temperament))
|
| 352 |
-
|
| 353 |
-
# # 3. 能量水平評估
|
| 354 |
-
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
| 355 |
-
# energy_levels = {
|
| 356 |
-
# 'VERY HIGH': 1.0,
|
| 357 |
-
# 'HIGH': 0.8,
|
| 358 |
-
# 'MODERATE': 0.6,
|
| 359 |
-
# 'LOW': 0.4,
|
| 360 |
-
# 'VARIES': 0.6
|
| 361 |
-
# }
|
| 362 |
-
# factors['energy_level'] = energy_levels.get(exercise_needs, 0.6)
|
| 363 |
-
|
| 364 |
-
# # 4. 美容需求評估
|
| 365 |
-
# grooming_needs = breed_info.get('Grooming Needs', 'MODERATE').upper()
|
| 366 |
-
# grooming_levels = {
|
| 367 |
-
# 'HIGH': 1.0,
|
| 368 |
-
# 'MODERATE': 0.6,
|
| 369 |
-
# 'LOW': 0.3
|
| 370 |
-
# }
|
| 371 |
-
# coat_penalty = 0.2 if any(term in breed_info.get('Description', '').lower()
|
| 372 |
-
# for term in ['long coat', 'double coat']) else 0
|
| 373 |
-
# factors['grooming_needs'] = min(1.0, grooming_levels.get(grooming_needs, 0.6) + coat_penalty)
|
| 374 |
-
|
| 375 |
-
# # 5. 社交需求評估
|
| 376 |
-
# social_traits = ['friendly', 'social', 'affectionate', 'people-oriented']
|
| 377 |
-
# antisocial_traits = ['independent', 'aloof', 'reserved']
|
| 378 |
-
|
| 379 |
-
# social_score = sum(0.25 for trait in social_traits if trait in temperament)
|
| 380 |
-
# antisocial_score = sum(-0.2 for trait in antisocial_traits if trait in temperament)
|
| 381 |
-
# factors['social_needs'] = min(1.0, max(0.0, social_score + antisocial_score))
|
| 382 |
-
|
| 383 |
-
# # 6. 氣候適應性評估
|
| 384 |
-
# climate_terms = {
|
| 385 |
-
# 'cold': ['thick coat', 'winter', 'cold climate'],
|
| 386 |
-
# 'hot': ['short coat', 'warm climate', 'heat tolerant'],
|
| 387 |
-
# 'moderate': ['adaptable', 'all climate']
|
| 388 |
-
# }
|
| 389 |
-
|
| 390 |
-
# climate_matches = sum(1 for term in climate_terms[user_prefs.climate]
|
| 391 |
-
# if term in breed_info.get('Description', '').lower())
|
| 392 |
-
# factors['weather_adaptability'] = min(1.0, climate_matches * 0.3 + 0.4) # 基礎分0.4
|
| 393 |
-
|
| 394 |
-
# return factors
|
| 395 |
-
|
| 396 |
|
| 397 |
@staticmethod
|
| 398 |
def calculate_additional_factors(breed_info: dict, user_prefs: 'UserPreferences') -> dict:
|
|
@@ -653,37 +457,43 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
| 653 |
|
| 654 |
|
| 655 |
# def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
|
| 656 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 657 |
# base_scores = {
|
| 658 |
# "Small": {
|
| 659 |
-
# "apartment":
|
| 660 |
-
# "house_small": 0.
|
| 661 |
-
# "house_large": 0.
|
| 662 |
# },
|
| 663 |
# "Medium": {
|
| 664 |
-
# "apartment": 0.45,
|
| 665 |
-
# "house_small": 0.
|
| 666 |
-
# "house_large":
|
| 667 |
# },
|
| 668 |
# "Large": {
|
| 669 |
-
# "apartment": 0.15,
|
| 670 |
-
# "house_small": 0.
|
| 671 |
-
# "house_large":
|
| 672 |
# },
|
| 673 |
# "Giant": {
|
| 674 |
-
# "apartment": 0.
|
| 675 |
-
# "house_small": 0.45,
|
| 676 |
-
# "house_large":
|
| 677 |
# }
|
| 678 |
# }
|
| 679 |
|
| 680 |
# # 取得基礎分數
|
| 681 |
# base_score = base_scores.get(size, base_scores["Medium"])[living_space]
|
| 682 |
|
| 683 |
-
# #
|
| 684 |
# exercise_adjustments = {
|
| 685 |
# "Very High": {
|
| 686 |
-
# "apartment": -0.25, #
|
| 687 |
# "house_small": -0.15,
|
| 688 |
# "house_large": -0.05
|
| 689 |
# },
|
|
@@ -698,250 +508,352 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
| 698 |
# "house_large": 0
|
| 699 |
# },
|
| 700 |
# "Low": {
|
| 701 |
-
# "apartment": 0.05,
|
| 702 |
# "house_small": 0,
|
| 703 |
-
# "house_large": 0
|
| 704 |
# }
|
| 705 |
# }
|
| 706 |
|
| 707 |
-
# #
|
| 708 |
# adjustment = exercise_adjustments.get(exercise_needs,
|
| 709 |
# exercise_adjustments["Moderate"])[living_space]
|
| 710 |
|
| 711 |
-
# #
|
| 712 |
-
# yard_bonus = 0
|
| 713 |
# if has_yard:
|
| 714 |
-
#
|
| 715 |
-
#
|
| 716 |
-
#
|
| 717 |
-
#
|
| 718 |
-
#
|
| 719 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 720 |
|
| 721 |
-
#
|
| 722 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 723 |
|
| 724 |
|
| 725 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 726 |
"""
|
| 727 |
-
|
| 728 |
|
| 729 |
-
|
| 730 |
-
1.
|
| 731 |
-
2.
|
| 732 |
-
3.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 733 |
"""
|
| 734 |
-
#
|
| 735 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 736 |
"Small": {
|
| 737 |
-
"apartment": 0.
|
| 738 |
-
"house_small": 0.
|
| 739 |
-
"house_large": 0.
|
| 740 |
},
|
| 741 |
"Medium": {
|
| 742 |
-
"apartment": 0.
|
| 743 |
-
"house_small": 0.
|
| 744 |
-
"house_large": 0.
|
| 745 |
},
|
| 746 |
"Large": {
|
| 747 |
-
"apartment": 0.
|
| 748 |
-
"house_small": 0.
|
| 749 |
-
"house_large": 0
|
| 750 |
},
|
| 751 |
"Giant": {
|
| 752 |
-
"apartment": 0.
|
| 753 |
-
"house_small": 0.
|
| 754 |
-
"house_large": 0
|
| 755 |
}
|
| 756 |
}
|
| 757 |
|
| 758 |
-
#
|
| 759 |
-
base_score =
|
| 760 |
-
|
| 761 |
-
#
|
| 762 |
-
|
| 763 |
-
|
| 764 |
-
|
| 765 |
-
|
| 766 |
-
"
|
| 767 |
-
|
| 768 |
-
|
| 769 |
-
|
| 770 |
-
|
| 771 |
-
|
| 772 |
-
|
| 773 |
-
|
| 774 |
-
|
| 775 |
-
|
| 776 |
-
|
| 777 |
-
|
| 778 |
-
"
|
| 779 |
-
"apartment": 0.05, # 低運動需求在小空間反而有優勢
|
| 780 |
-
"house_small": 0,
|
| 781 |
-
"house_large": -0.05 # 輕微降低評分,因為空間可能過大
|
| 782 |
-
}
|
| 783 |
}
|
| 784 |
|
| 785 |
-
#
|
| 786 |
-
|
| 787 |
-
|
| 788 |
-
|
| 789 |
-
|
| 790 |
-
|
| 791 |
-
|
| 792 |
-
"Giant": 0.20,
|
| 793 |
-
"Large": 0.15,
|
| 794 |
-
"Medium": 0.10,
|
| 795 |
-
"Small": 0.05
|
| 796 |
-
}.get(size, 0.10)
|
| 797 |
-
|
| 798 |
-
# 運動需求會影響院子的重要性
|
| 799 |
-
if exercise_needs in ["Very High", "High"]:
|
| 800 |
-
yard_bonus *= 1.2
|
| 801 |
-
elif exercise_needs == "Low":
|
| 802 |
-
yard_bonus *= 0.8
|
| 803 |
-
|
| 804 |
-
current_score = base_score + adjustment + yard_bonus
|
| 805 |
-
else:
|
| 806 |
-
current_score = base_score + adjustment
|
| 807 |
-
|
| 808 |
-
# 確保分數在合理範圍內,但避免極端值
|
| 809 |
-
return min(0.95, max(0.15, current_score))
|
| 810 |
|
| 811 |
-
|
| 812 |
-
# def calculate_exercise_score(breed_needs: str, exercise_time: int) -> float:
|
| 813 |
-
# """
|
| 814 |
-
# 優化的運動需求評分系統
|
| 815 |
|
| 816 |
-
|
| 817 |
-
|
| 818 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 819 |
|
| 820 |
-
|
| 821 |
-
|
| 822 |
-
|
| 823 |
-
|
| 824 |
-
|
| 825 |
-
|
| 826 |
-
|
| 827 |
-
|
| 828 |
-
|
| 829 |
-
|
| 830 |
-
|
| 831 |
-
|
| 832 |
-
|
|
|
|
| 833 |
|
| 834 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 835 |
|
| 836 |
-
|
| 837 |
-
|
| 838 |
-
# if exercise_time > breed_need['max']:
|
| 839 |
-
# # 運動時間過長,稍微降低分數
|
| 840 |
-
# time_score = 0.9
|
| 841 |
-
# else:
|
| 842 |
-
# time_score = 1.0
|
| 843 |
-
# elif exercise_time >= breed_need['min']:
|
| 844 |
-
# # 在最小需求和理想需求之間,線性計算分數
|
| 845 |
-
# time_score = 0.7 + (exercise_time - breed_need['min']) / (breed_need['ideal'] - breed_need['min']) * 0.3
|
| 846 |
-
# else:
|
| 847 |
-
# # 運動時間不足,但仍根據比例給予分數
|
| 848 |
-
# time_score = max(0.3, 0.7 * (exercise_time / breed_need['min']))
|
| 849 |
|
| 850 |
-
|
| 851 |
-
|
| 852 |
|
| 853 |
|
| 854 |
-
def calculate_exercise_score(breed_needs: str, exercise_time: int,
|
| 855 |
"""
|
| 856 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 857 |
|
| 858 |
Parameters:
|
|
|
|
| 859 |
breed_needs: 品種的運動需求等級
|
| 860 |
exercise_time: 使用者能提供的運動時間(分鐘)
|
| 861 |
-
|
| 862 |
|
| 863 |
Returns:
|
| 864 |
-
|
|
|
|
| 865 |
"""
|
| 866 |
-
#
|
| 867 |
exercise_levels = {
|
| 868 |
'VERY HIGH': {
|
| 869 |
'min': 120,
|
| 870 |
'ideal': 150,
|
| 871 |
'max': 180,
|
| 872 |
-
'
|
| 873 |
-
'
|
| 874 |
-
'
|
| 875 |
},
|
| 876 |
'HIGH': {
|
| 877 |
'min': 90,
|
| 878 |
'ideal': 120,
|
| 879 |
'max': 150,
|
| 880 |
-
'
|
| 881 |
-
'
|
| 882 |
-
'
|
| 883 |
},
|
| 884 |
-
'MODERATE
|
| 885 |
-
'min':
|
| 886 |
'ideal': 90,
|
| 887 |
'max': 120,
|
| 888 |
-
'
|
| 889 |
-
'
|
| 890 |
-
'
|
| 891 |
},
|
| 892 |
-
'
|
| 893 |
-
'min':
|
| 894 |
'ideal': 60,
|
| 895 |
'max': 90,
|
| 896 |
-
'
|
| 897 |
-
'
|
| 898 |
-
'
|
| 899 |
-
},
|
| 900 |
-
'MODERATE LOW': {
|
| 901 |
-
'min': 30,
|
| 902 |
-
'ideal': 45,
|
| 903 |
-
'max': 70,
|
| 904 |
-
'intensity': 'light_moderate',
|
| 905 |
-
'sessions': 'flexible',
|
| 906 |
-
'preferred_types': ['light_walks', 'moderate_activity']
|
| 907 |
-
},
|
| 908 |
-
'LOW': {
|
| 909 |
-
'min': 15,
|
| 910 |
-
'ideal': 30,
|
| 911 |
-
'max': 45,
|
| 912 |
-
'intensity': 'light',
|
| 913 |
-
'sessions': 'single',
|
| 914 |
-
'preferred_types': ['light_walks']
|
| 915 |
}
|
| 916 |
}
|
| 917 |
|
| 918 |
-
#
|
| 919 |
breed_level = exercise_levels.get(breed_needs.upper(), exercise_levels['MODERATE'])
|
| 920 |
|
| 921 |
-
#
|
| 922 |
-
|
| 923 |
-
if
|
| 924 |
-
#
|
| 925 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 926 |
else:
|
| 927 |
-
|
| 928 |
-
|
| 929 |
-
|
| 930 |
-
|
| 931 |
-
|
| 932 |
-
|
| 933 |
-
|
| 934 |
-
|
| 935 |
-
|
| 936 |
-
|
| 937 |
-
#
|
| 938 |
-
|
| 939 |
-
|
| 940 |
-
|
| 941 |
-
|
| 942 |
-
|
| 943 |
-
|
| 944 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 945 |
|
| 946 |
|
| 947 |
def calculate_grooming_score(breed_needs: str, user_commitment: str, breed_size: str) -> float:
|
|
@@ -1075,114 +987,275 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
| 1075 |
return max(0.1, min(1.0, final_score))
|
| 1076 |
|
| 1077 |
|
| 1078 |
-
def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1079 |
"""
|
| 1080 |
-
|
| 1081 |
|
| 1082 |
-
|
| 1083 |
-
1.
|
| 1084 |
-
2.
|
| 1085 |
-
3.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1086 |
"""
|
| 1087 |
-
|
| 1088 |
-
|
| 1089 |
-
|
| 1090 |
-
|
| 1091 |
-
|
| 1092 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1093 |
},
|
| 1094 |
-
"
|
| 1095 |
-
"beginner": 0.
|
| 1096 |
-
"intermediate": 0.
|
| 1097 |
-
"advanced":
|
| 1098 |
},
|
| 1099 |
-
"
|
| 1100 |
-
"beginner": 0.90, #
|
| 1101 |
-
"intermediate": 0.
|
| 1102 |
-
"advanced":
|
| 1103 |
}
|
| 1104 |
}
|
| 1105 |
|
| 1106 |
-
#
|
| 1107 |
-
|
|
|
|
| 1108 |
|
| 1109 |
-
|
| 1110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1111 |
|
| 1112 |
-
|
| 1113 |
-
|
| 1114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1115 |
difficult_traits = {
|
| 1116 |
-
'stubborn': -0.
|
| 1117 |
-
'independent': -0.
|
| 1118 |
-
'dominant': -0.
|
| 1119 |
-
'
|
| 1120 |
-
'protective': -0.20, # 保護性強需要適當訓練
|
| 1121 |
-
'aloof': -0.15, # 冷漠性格需要耐心培養
|
| 1122 |
-
'energetic': -0.15, # 活潑好動需要經驗引導
|
| 1123 |
-
'aggressive': -0.35 # 攻擊傾向極不適合新手
|
| 1124 |
}
|
| 1125 |
|
| 1126 |
-
#
|
| 1127 |
-
|
| 1128 |
-
'
|
| 1129 |
-
'
|
| 1130 |
-
'
|
| 1131 |
-
'patient': 0.05, # 耐心的特質有助於建立關係
|
| 1132 |
-
'adaptable': 0.05, # 適應性強較容易照顧
|
| 1133 |
-
'calm': 0.06 # 冷靜的性格較好掌握
|
| 1134 |
}
|
| 1135 |
|
| 1136 |
-
#
|
| 1137 |
-
for trait,
|
| 1138 |
-
if trait in
|
| 1139 |
-
|
| 1140 |
-
|
| 1141 |
-
for trait, bonus in easy_traits.items():
|
| 1142 |
-
if trait in temperament_lower:
|
| 1143 |
-
temperament_adjustments += bonus
|
| 1144 |
|
| 1145 |
-
|
| 1146 |
-
|
| 1147 |
-
|
| 1148 |
-
|
| 1149 |
-
|
| 1150 |
-
|
| 1151 |
-
|
| 1152 |
-
|
| 1153 |
-
|
| 1154 |
-
|
| 1155 |
-
|
| 1156 |
-
|
| 1157 |
-
|
| 1158 |
-
|
| 1159 |
-
|
| 1160 |
-
|
| 1161 |
-
|
|
|
|
|
|
|
|
|
|
| 1162 |
}
|
| 1163 |
|
| 1164 |
-
for
|
| 1165 |
-
if
|
| 1166 |
-
|
| 1167 |
|
| 1168 |
-
|
| 1169 |
-
|
| 1170 |
-
|
| 1171 |
-
'stubborn': 0.05, # 困難特徵反而成為優勢
|
| 1172 |
-
'independent': 0.05,
|
| 1173 |
-
'intelligent': 0.10,
|
| 1174 |
-
'protective': 0.05,
|
| 1175 |
-
'strong-willed': 0.05
|
| 1176 |
-
}
|
| 1177 |
|
| 1178 |
-
|
| 1179 |
-
if trait in temperament_lower:
|
| 1180 |
-
temperament_adjustments += bonus
|
| 1181 |
|
| 1182 |
-
|
| 1183 |
-
final_score = max(0.05, min(1.0, score + temperament_adjustments))
|
| 1184 |
|
| 1185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1186 |
|
| 1187 |
def calculate_health_score(breed_name: str, user_prefs: UserPreferences) -> float:
|
| 1188 |
"""
|
|
@@ -1292,128 +1365,311 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
| 1292 |
return max(0.1, min(1.0, health_score))
|
| 1293 |
|
| 1294 |
|
| 1295 |
-
def calculate_noise_score(breed_name: str, user_prefs: UserPreferences) -> float:
|
| 1296 |
-
|
| 1297 |
-
|
| 1298 |
-
|
| 1299 |
-
|
| 1300 |
-
|
| 1301 |
|
| 1302 |
-
|
| 1303 |
-
|
| 1304 |
-
|
| 1305 |
|
| 1306 |
-
|
| 1307 |
-
|
| 1308 |
-
|
| 1309 |
-
|
| 1310 |
-
|
| 1311 |
-
|
| 1312 |
-
|
| 1313 |
-
|
| 1314 |
-
|
| 1315 |
-
|
| 1316 |
-
|
| 1317 |
-
|
| 1318 |
-
|
| 1319 |
-
|
| 1320 |
-
|
| 1321 |
-
|
| 1322 |
-
|
| 1323 |
-
|
| 1324 |
-
|
| 1325 |
-
|
| 1326 |
-
|
| 1327 |
-
|
| 1328 |
-
|
| 1329 |
|
| 1330 |
-
|
| 1331 |
-
|
| 1332 |
|
| 1333 |
-
|
| 1334 |
-
|
| 1335 |
-
|
| 1336 |
-
|
| 1337 |
-
|
| 1338 |
-
|
| 1339 |
-
|
| 1340 |
-
|
| 1341 |
-
|
| 1342 |
-
|
| 1343 |
-
|
| 1344 |
-
|
| 1345 |
-
|
| 1346 |
-
|
| 1347 |
-
|
| 1348 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1349 |
},
|
| 1350 |
-
|
| 1351 |
-
|
| 1352 |
-
|
| 1353 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1354 |
},
|
| 1355 |
-
|
| 1356 |
-
|
| 1357 |
-
|
| 1358 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1359 |
}
|
| 1360 |
}
|
| 1361 |
-
|
| 1362 |
-
#
|
| 1363 |
-
|
| 1364 |
-
|
| 1365 |
-
|
| 1366 |
-
|
| 1367 |
-
|
| 1368 |
-
|
| 1369 |
-
|
| 1370 |
-
|
| 1371 |
-
|
| 1372 |
-
|
| 1373 |
-
|
| 1374 |
-
|
| 1375 |
-
'
|
| 1376 |
-
'
|
| 1377 |
-
'low': -0.05
|
| 1378 |
},
|
| 1379 |
-
'
|
| 1380 |
-
'
|
| 1381 |
-
'
|
| 1382 |
-
'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1383 |
},
|
| 1384 |
-
'
|
| 1385 |
-
'
|
| 1386 |
-
'
|
| 1387 |
-
'
|
| 1388 |
}
|
| 1389 |
}
|
| 1390 |
|
| 1391 |
-
|
| 1392 |
-
|
| 1393 |
-
|
| 1394 |
-
|
| 1395 |
-
|
| 1396 |
-
|
| 1397 |
-
|
| 1398 |
-
|
| 1399 |
-
|
| 1400 |
-
|
| 1401 |
-
|
| 1402 |
-
|
| 1403 |
-
|
| 1404 |
-
|
| 1405 |
-
|
| 1406 |
-
|
| 1407 |
-
|
| 1408 |
-
|
| 1409 |
-
|
| 1410 |
-
|
| 1411 |
-
|
| 1412 |
-
|
| 1413 |
-
|
| 1414 |
-
|
| 1415 |
-
|
| 1416 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1417 |
|
| 1418 |
|
| 1419 |
# 1. 計算基礎分數
|
|
@@ -1508,126 +1764,328 @@ def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -
|
|
| 1508 |
return min(0.2, adaptability_score)
|
| 1509 |
|
| 1510 |
|
| 1511 |
-
def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
| 1512 |
-
|
| 1513 |
-
|
| 1514 |
-
|
| 1515 |
-
|
| 1516 |
-
|
| 1517 |
-
|
| 1518 |
-
|
| 1519 |
-
|
| 1520 |
-
|
| 1521 |
-
|
| 1522 |
-
|
| 1523 |
-
|
| 1524 |
-
|
| 1525 |
-
|
| 1526 |
-
|
| 1527 |
|
| 1528 |
-
|
| 1529 |
-
|
| 1530 |
-
|
| 1531 |
-
|
| 1532 |
-
|
| 1533 |
-
|
| 1534 |
-
|
| 1535 |
-
|
| 1536 |
-
|
| 1537 |
-
|
| 1538 |
|
| 1539 |
-
|
| 1540 |
|
| 1541 |
-
|
| 1542 |
-
|
| 1543 |
-
|
| 1544 |
-
|
| 1545 |
|
| 1546 |
-
|
| 1547 |
-
|
| 1548 |
-
|
| 1549 |
-
|
| 1550 |
-
|
| 1551 |
-
|
| 1552 |
-
|
| 1553 |
-
|
| 1554 |
|
| 1555 |
-
|
| 1556 |
|
| 1557 |
-
|
| 1558 |
-
|
| 1559 |
-
|
| 1560 |
|
| 1561 |
-
|
| 1562 |
-
|
| 1563 |
-
|
| 1564 |
-
|
| 1565 |
-
|
| 1566 |
-
|
| 1567 |
-
|
| 1568 |
-
|
| 1569 |
-
|
| 1570 |
|
| 1571 |
-
|
| 1572 |
-
|
| 1573 |
-
|
| 1574 |
-
|
| 1575 |
-
|
| 1576 |
-
|
| 1577 |
-
|
| 1578 |
-
|
| 1579 |
-
|
| 1580 |
|
| 1581 |
-
|
| 1582 |
-
|
| 1583 |
-
|
| 1584 |
-
|
| 1585 |
|
| 1586 |
-
|
| 1587 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1588 |
|
| 1589 |
-
|
| 1590 |
-
|
| 1591 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1592 |
|
| 1593 |
-
# 計算最終分數
|
| 1594 |
-
final_score = sum(adjusted_scores[k] * normalized_weights[k] for k in scores.keys())
|
| 1595 |
|
| 1596 |
-
|
| 1597 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1598 |
|
| 1599 |
-
|
| 1600 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1601 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1602 |
|
| 1603 |
def amplify_score_extreme(score: float) -> float:
|
| 1604 |
"""
|
| 1605 |
-
|
| 1606 |
-
|
| 1607 |
-
|
| 1608 |
-
|
| 1609 |
-
|
| 1610 |
-
|
| 1611 |
-
|
| 1612 |
-
|
| 1613 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1614 |
"""
|
| 1615 |
-
|
| 1616 |
-
|
| 1617 |
-
|
| 1618 |
-
elif score < 0.5:
|
| 1619 |
-
# 較差匹配:緩慢增長
|
| 1620 |
-
position = (score - 0.3) / 0.2
|
| 1621 |
-
return 0.68 + position * 0.07
|
| 1622 |
-
elif score < 0.7:
|
| 1623 |
-
# 中等匹配:穩定線性增長
|
| 1624 |
-
position = (score - 0.5) / 0.2
|
| 1625 |
-
return 0.75 + position * 0.10
|
| 1626 |
-
elif score < 0.85:
|
| 1627 |
-
# 良好匹配:加速增長
|
| 1628 |
-
position = (score - 0.7) / 0.15
|
| 1629 |
-
return 0.85 + position * 0.07
|
| 1630 |
-
else:
|
| 1631 |
-
# 優秀匹配:最後衝刺
|
| 1632 |
position = (score - 0.85) / 0.15
|
| 1633 |
-
return 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import math
|
| 6 |
import random
|
| 7 |
|
| 8 |
+
# @dataclass
|
| 9 |
+
# class UserPreferences:
|
| 10 |
+
|
| 11 |
+
# """使用者偏好設定的資料結構"""
|
| 12 |
+
# living_space: str # "apartment", "house_small", "house_large"
|
| 13 |
+
# yard_access: str # "no_yard", "shared_yard", "private_yard"
|
| 14 |
+
# exercise_time: int # minutes per day
|
| 15 |
+
# exercise_type: str # "light_walks", "moderate_activity", "active_training"
|
| 16 |
+
# grooming_commitment: str # "low", "medium", "high"
|
| 17 |
+
# experience_level: str # "beginner", "intermediate", "advanced"
|
| 18 |
+
# time_availability: str # "limited", "moderate", "flexible"
|
| 19 |
+
# has_children: bool
|
| 20 |
+
# children_age: str # "toddler", "school_age", "teenager"
|
| 21 |
+
# noise_tolerance: str # "low", "medium", "high"
|
| 22 |
+
# space_for_play: bool
|
| 23 |
+
# other_pets: bool
|
| 24 |
+
# climate: str # "cold", "moderate", "hot"
|
| 25 |
+
# health_sensitivity: str = "medium"
|
| 26 |
+
# barking_acceptance: str = None
|
| 27 |
+
|
| 28 |
+
# def __post_init__(self):
|
| 29 |
+
# """在初始化後運行,用於設置派生值"""
|
| 30 |
+
# if self.barking_acceptance is None:
|
| 31 |
+
# self.barking_acceptance = self.noise_tolerance
|
| 32 |
+
|
| 33 |
@dataclass
|
| 34 |
class UserPreferences:
|
| 35 |
+
"""使用者偏好設定的資料結構,整合基本條件與進階評估參數"""
|
| 36 |
+
# 基礎居住條件
|
| 37 |
+
living_space: str # "apartment", "house_small", "house_large"
|
| 38 |
+
yard_access: str # "no_yard", "shared_yard", "private_yard"
|
| 39 |
+
living_floor: int = 1 # 居住樓層,對公寓住戶特別重要
|
| 40 |
+
|
| 41 |
+
# 運動相關參數
|
| 42 |
+
exercise_time: int # 每日運動時間(分鐘)
|
| 43 |
+
exercise_type: str # "light_walks", "moderate_activity", "active_training"
|
| 44 |
+
exercise_intensity: str = "moderate" # "low", "moderate", "high"
|
| 45 |
+
|
| 46 |
+
# 照護能力與時間
|
| 47 |
+
grooming_commitment: str # "low", "medium", "high"
|
| 48 |
+
experience_level: str # "beginner", "intermediate", "advanced"
|
| 49 |
+
time_availability: str # "limited", "moderate", "flexible"
|
| 50 |
+
home_alone_time: int = 4 # 每日獨處時間(小時)
|
| 51 |
+
|
| 52 |
+
# 家庭環境
|
| 53 |
has_children: bool
|
| 54 |
+
children_age: str # "toddler", "school_age", "teenager"
|
|
|
|
|
|
|
| 55 |
other_pets: bool
|
| 56 |
+
|
| 57 |
+
# 環境適應性
|
| 58 |
+
noise_tolerance: str # "low", "medium", "high"
|
| 59 |
+
space_for_play: bool
|
| 60 |
+
climate: str # "cold", "moderate", "hot"
|
| 61 |
+
|
| 62 |
+
# 特殊需求
|
| 63 |
+
health_sensitivity: str = "medium" # "low", "medium", "high"
|
| 64 |
+
barking_acceptance: str = None # 如果未指定,默認使用 noise_tolerance
|
| 65 |
+
lifestyle_activity: str = "moderate" # "sedentary", "moderate", "active"
|
| 66 |
|
| 67 |
def __post_init__(self):
|
| 68 |
+
"""初始化後執行,用於設置派生值和驗證"""
|
| 69 |
if self.barking_acceptance is None:
|
| 70 |
self.barking_acceptance = self.noise_tolerance
|
| 71 |
|
|
|
|
| 196 |
bonus += min(0.15, adaptability_bonus)
|
| 197 |
|
| 198 |
return min(0.5, max(-0.25, bonus))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
@staticmethod
|
| 202 |
def calculate_additional_factors(breed_info: dict, user_prefs: 'UserPreferences') -> dict:
|
|
|
|
| 457 |
|
| 458 |
|
| 459 |
# def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
|
| 460 |
+
# """
|
| 461 |
+
# 主要改進:
|
| 462 |
+
# 1. 更均衡的基礎分數分配
|
| 463 |
+
# 2. 更細緻的空間需求評估
|
| 464 |
+
# 3. 強化運動需求與空間的關聯性
|
| 465 |
+
# """
|
| 466 |
+
# # 重新設計基礎分數矩陣,降低普遍分數以增加區別度
|
| 467 |
# base_scores = {
|
| 468 |
# "Small": {
|
| 469 |
+
# "apartment": 0.85, # 降低滿分機會
|
| 470 |
+
# "house_small": 0.80, # 小型犬不應在大空間得到太高分數
|
| 471 |
+
# "house_large": 0.75 # 避免小型犬總是得到最高分
|
| 472 |
# },
|
| 473 |
# "Medium": {
|
| 474 |
+
# "apartment": 0.45, # 維持對公寓環境的限制
|
| 475 |
+
# "house_small": 0.75, # 適中的分數
|
| 476 |
+
# "house_large": 0.85 # 給予合理的獎勵
|
| 477 |
# },
|
| 478 |
# "Large": {
|
| 479 |
+
# "apartment": 0.15, # 加重對大型犬在公寓的限制
|
| 480 |
+
# "house_small": 0.65, # 中等適合度
|
| 481 |
+
# "house_large": 0.90 # 最適合的環境
|
| 482 |
# },
|
| 483 |
# "Giant": {
|
| 484 |
+
# "apartment": 0.10, # 更嚴格的限制
|
| 485 |
+
# "house_small": 0.45, # 顯著的空間限制
|
| 486 |
+
# "house_large": 0.95 # 最理想的配對
|
| 487 |
# }
|
| 488 |
# }
|
| 489 |
|
| 490 |
# # 取得基礎分數
|
| 491 |
# base_score = base_scores.get(size, base_scores["Medium"])[living_space]
|
| 492 |
|
| 493 |
+
# # 運動需求相關的調整更加動態
|
| 494 |
# exercise_adjustments = {
|
| 495 |
# "Very High": {
|
| 496 |
+
# "apartment": -0.25, # 加重在受限空間的懲罰
|
| 497 |
# "house_small": -0.15,
|
| 498 |
# "house_large": -0.05
|
| 499 |
# },
|
|
|
|
| 508 |
# "house_large": 0
|
| 509 |
# },
|
| 510 |
# "Low": {
|
| 511 |
+
# "apartment": 0.05, # 低運動需求在小空間反而有優勢
|
| 512 |
# "house_small": 0,
|
| 513 |
+
# "house_large": -0.05 # 輕微降低評分,因為空間可能過大
|
| 514 |
# }
|
| 515 |
# }
|
| 516 |
|
| 517 |
+
# # 根據空間類型獲取運動需求調整
|
| 518 |
# adjustment = exercise_adjustments.get(exercise_needs,
|
| 519 |
# exercise_adjustments["Moderate"])[living_space]
|
| 520 |
|
| 521 |
+
# # 院子效益根據品種大小和運動需求動態調整
|
|
|
|
| 522 |
# if has_yard:
|
| 523 |
+
# yard_bonus = {
|
| 524 |
+
# "Giant": 0.20,
|
| 525 |
+
# "Large": 0.15,
|
| 526 |
+
# "Medium": 0.10,
|
| 527 |
+
# "Small": 0.05
|
| 528 |
+
# }.get(size, 0.10)
|
| 529 |
+
|
| 530 |
+
# # 運動需求會影響院子的重要性
|
| 531 |
+
# if exercise_needs in ["Very High", "High"]:
|
| 532 |
+
# yard_bonus *= 1.2
|
| 533 |
+
# elif exercise_needs == "Low":
|
| 534 |
+
# yard_bonus *= 0.8
|
| 535 |
|
| 536 |
+
# current_score = base_score + adjustment + yard_bonus
|
| 537 |
+
# else:
|
| 538 |
+
# current_score = base_score + adjustment
|
| 539 |
+
|
| 540 |
+
# # 確保分數在合理範圍內,但避免極端值
|
| 541 |
+
# return min(0.95, max(0.15, current_score))
|
| 542 |
|
| 543 |
|
| 544 |
+
# def calculate_exercise_score(breed_needs: str, exercise_time: int, exercise_type: str) -> float:
|
| 545 |
+
# """
|
| 546 |
+
# 精確評估品種運動需求與使用者運動條件的匹配度
|
| 547 |
+
|
| 548 |
+
# Parameters:
|
| 549 |
+
# breed_needs: 品種的運動需求等級
|
| 550 |
+
# exercise_time: 使用者能提供的運動時間(分鐘)
|
| 551 |
+
# exercise_type: 使用者偏好的運動類型
|
| 552 |
+
|
| 553 |
+
# Returns:
|
| 554 |
+
# float: -0.2 到 0.2 之間的匹配分數
|
| 555 |
+
# """
|
| 556 |
+
# # 定義更細緻的運動需求等級
|
| 557 |
+
# exercise_levels = {
|
| 558 |
+
# 'VERY HIGH': {
|
| 559 |
+
# 'min': 120,
|
| 560 |
+
# 'ideal': 150,
|
| 561 |
+
# 'max': 180,
|
| 562 |
+
# 'intensity': 'high',
|
| 563 |
+
# 'sessions': 'multiple',
|
| 564 |
+
# 'preferred_types': ['active_training', 'intensive_exercise']
|
| 565 |
+
# },
|
| 566 |
+
# 'HIGH': {
|
| 567 |
+
# 'min': 90,
|
| 568 |
+
# 'ideal': 120,
|
| 569 |
+
# 'max': 150,
|
| 570 |
+
# 'intensity': 'moderate_high',
|
| 571 |
+
# 'sessions': 'multiple',
|
| 572 |
+
# 'preferred_types': ['active_training', 'moderate_activity']
|
| 573 |
+
# },
|
| 574 |
+
# 'MODERATE HIGH': {
|
| 575 |
+
# 'min': 70,
|
| 576 |
+
# 'ideal': 90,
|
| 577 |
+
# 'max': 120,
|
| 578 |
+
# 'intensity': 'moderate',
|
| 579 |
+
# 'sessions': 'flexible',
|
| 580 |
+
# 'preferred_types': ['moderate_activity', 'active_training']
|
| 581 |
+
# },
|
| 582 |
+
# 'MODERATE': {
|
| 583 |
+
# 'min': 45,
|
| 584 |
+
# 'ideal': 60,
|
| 585 |
+
# 'max': 90,
|
| 586 |
+
# 'intensity': 'moderate',
|
| 587 |
+
# 'sessions': 'flexible',
|
| 588 |
+
# 'preferred_types': ['moderate_activity', 'light_walks']
|
| 589 |
+
# },
|
| 590 |
+
# 'MODERATE LOW': {
|
| 591 |
+
# 'min': 30,
|
| 592 |
+
# 'ideal': 45,
|
| 593 |
+
# 'max': 70,
|
| 594 |
+
# 'intensity': 'light_moderate',
|
| 595 |
+
# 'sessions': 'flexible',
|
| 596 |
+
# 'preferred_types': ['light_walks', 'moderate_activity']
|
| 597 |
+
# },
|
| 598 |
+
# 'LOW': {
|
| 599 |
+
# 'min': 15,
|
| 600 |
+
# 'ideal': 30,
|
| 601 |
+
# 'max': 45,
|
| 602 |
+
# 'intensity': 'light',
|
| 603 |
+
# 'sessions': 'single',
|
| 604 |
+
# 'preferred_types': ['light_walks']
|
| 605 |
+
# }
|
| 606 |
+
# }
|
| 607 |
+
|
| 608 |
+
# # 獲取品種的運動需求配置
|
| 609 |
+
# breed_level = exercise_levels.get(breed_needs.upper(), exercise_levels['MODERATE'])
|
| 610 |
+
|
| 611 |
+
# # 計算時間匹配度(使用更平滑的評分曲線)
|
| 612 |
+
# if exercise_time >= breed_level['ideal']:
|
| 613 |
+
# if exercise_time > breed_level['max']:
|
| 614 |
+
# # 運動時間過長,適度降分
|
| 615 |
+
# time_score = 0.15 - (0.05 * (exercise_time - breed_level['max']) / 30)
|
| 616 |
+
# else:
|
| 617 |
+
# time_score = 0.15
|
| 618 |
+
# elif exercise_time >= breed_level['min']:
|
| 619 |
+
# # 在最小需求和理想需求之間,線性計算分數
|
| 620 |
+
# time_ratio = (exercise_time - breed_level['min']) / (breed_level['ideal'] - breed_level['min'])
|
| 621 |
+
# time_score = 0.05 + (time_ratio * 0.10)
|
| 622 |
+
# else:
|
| 623 |
+
# # 運動時間不足,根據差距程度扣分
|
| 624 |
+
# time_ratio = max(0, exercise_time / breed_level['min'])
|
| 625 |
+
# time_score = -0.15 * (1 - time_ratio)
|
| 626 |
+
|
| 627 |
+
# # 運動類型匹配度評估
|
| 628 |
+
# type_score = 0.0
|
| 629 |
+
# if exercise_type in breed_level['preferred_types']:
|
| 630 |
+
# type_score = 0.05
|
| 631 |
+
# if exercise_type == breed_level['preferred_types'][0]:
|
| 632 |
+
# type_score = 0.08 # 最佳匹配類型給予更高分數
|
| 633 |
+
|
| 634 |
+
# return max(-0.2, min(0.2, time_score + type_score))
|
| 635 |
+
|
| 636 |
+
|
| 637 |
+
def calculate_space_score(breed_info: dict, user_prefs: UserPreferences) -> float:
|
| 638 |
"""
|
| 639 |
+
計算品種與居住空間的匹配程度
|
| 640 |
|
| 641 |
+
這個函數實現了一個全面的空間評分系統,考慮:
|
| 642 |
+
1. 基本空間需求(住所類型與品種大小的匹配)
|
| 643 |
+
2. 樓層因素(特別是公寓住戶)
|
| 644 |
+
3. 戶外活動空間(院子類型及可用性)
|
| 645 |
+
4. 室內活動空間的實際可用性
|
| 646 |
+
5. 品種的特殊空間需求
|
| 647 |
+
|
| 648 |
+
Parameters:
|
| 649 |
+
-----------
|
| 650 |
+
breed_info: 包含品種特徵的字典,包括體型、活動需求等
|
| 651 |
+
user_prefs: 使用者偏好設定,包含居住條件相關信息
|
| 652 |
+
|
| 653 |
+
Returns:
|
| 654 |
+
--------
|
| 655 |
+
float: 0.0-1.0 之間的匹配分數
|
| 656 |
"""
|
| 657 |
+
# 取得品種基本信息
|
| 658 |
+
size = breed_info.get('Size', 'Medium')
|
| 659 |
+
temperament = breed_info.get('Temperament', '').lower()
|
| 660 |
+
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
| 661 |
+
|
| 662 |
+
# 基礎空間需求評分矩陣 - 考慮品種大小與居住空間的基本匹配度
|
| 663 |
+
base_space_scores = {
|
| 664 |
"Small": {
|
| 665 |
+
"apartment": 0.95, # 小型犬最適合��寓
|
| 666 |
+
"house_small": 0.90, # 小房子也很適合
|
| 667 |
+
"house_large": 0.85 # 大房子可能過大
|
| 668 |
},
|
| 669 |
"Medium": {
|
| 670 |
+
"apartment": 0.60, # 中型犬在公寓有一定限制
|
| 671 |
+
"house_small": 0.85, # 小房子較適合
|
| 672 |
+
"house_large": 0.95 # 大房子最理想
|
| 673 |
},
|
| 674 |
"Large": {
|
| 675 |
+
"apartment": 0.30, # 大型犬不適合公寓
|
| 676 |
+
"house_small": 0.70, # 小房子稍嫌擁擠
|
| 677 |
+
"house_large": 1.0 # 大房子最理想
|
| 678 |
},
|
| 679 |
"Giant": {
|
| 680 |
+
"apartment": 0.20, # 極大型犬極不適合公寓
|
| 681 |
+
"house_small": 0.50, # 小房子明顯不足
|
| 682 |
+
"house_large": 1.0 # 大房子必需
|
| 683 |
}
|
| 684 |
}
|
| 685 |
|
| 686 |
+
# 取得基礎空間分數
|
| 687 |
+
base_score = base_space_scores.get(size, base_space_scores["Medium"])[user_prefs.living_space]
|
| 688 |
+
|
| 689 |
+
# 公寓特殊考量
|
| 690 |
+
if user_prefs.living_space == "apartment":
|
| 691 |
+
# 樓層調整
|
| 692 |
+
floor_penalty = 0
|
| 693 |
+
if user_prefs.living_floor > 1:
|
| 694 |
+
if size in ["Large", "Giant"]:
|
| 695 |
+
floor_penalty = min(0.3, (user_prefs.living_floor - 1) * 0.05)
|
| 696 |
+
elif size == "Medium":
|
| 697 |
+
floor_penalty = min(0.2, (user_prefs.living_floor - 1) * 0.03)
|
| 698 |
+
else:
|
| 699 |
+
floor_penalty = min(0.1, (user_prefs.living_floor - 1) * 0.02)
|
| 700 |
+
base_score = max(0.2, base_score - floor_penalty)
|
| 701 |
+
|
| 702 |
+
# 戶外空間評估
|
| 703 |
+
yard_scores = {
|
| 704 |
+
"no_yard": 0,
|
| 705 |
+
"shared_yard": 0.1,
|
| 706 |
+
"private_yard": 0.2
|
|
|
|
|
|
|
|
|
|
|
|
|
| 707 |
}
|
| 708 |
|
| 709 |
+
# 根據品種大小調整院子加分
|
| 710 |
+
yard_size_multipliers = {
|
| 711 |
+
"Giant": 1.2,
|
| 712 |
+
"Large": 1.1,
|
| 713 |
+
"Medium": 1.0,
|
| 714 |
+
"Small": 0.8
|
| 715 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 716 |
|
| 717 |
+
yard_bonus = yard_scores[user_prefs.yard_access] * yard_size_multipliers.get(size, 1.0)
|
|
|
|
|
|
|
|
|
|
| 718 |
|
| 719 |
+
# 活動空間需求評估
|
| 720 |
+
activity_space_score = 0
|
| 721 |
+
if user_prefs.space_for_play:
|
| 722 |
+
if exercise_needs in ["VERY HIGH", "HIGH"]:
|
| 723 |
+
activity_space_score = 0.15
|
| 724 |
+
elif exercise_needs == "MODERATE":
|
| 725 |
+
activity_space_score = 0.10
|
| 726 |
+
else:
|
| 727 |
+
activity_space_score = 0.05
|
| 728 |
|
| 729 |
+
# 品種特性評估
|
| 730 |
+
temperament_adjustments = 0
|
| 731 |
+
if 'active' in temperament or 'energetic' in temperament:
|
| 732 |
+
if user_prefs.living_space == 'apartment':
|
| 733 |
+
temperament_adjustments -= 0.15
|
| 734 |
+
elif user_prefs.living_space == 'house_small':
|
| 735 |
+
temperament_adjustments -= 0.05
|
| 736 |
+
|
| 737 |
+
if 'calm' in temperament or 'lazy' in temperament:
|
| 738 |
+
if user_prefs.living_space == 'apartment':
|
| 739 |
+
temperament_adjustments += 0.10
|
| 740 |
+
|
| 741 |
+
if 'adaptable' in temperament:
|
| 742 |
+
temperament_adjustments += 0.05
|
| 743 |
|
| 744 |
+
# 家庭環境考量
|
| 745 |
+
if user_prefs.has_children:
|
| 746 |
+
if user_prefs.living_space == 'apartment':
|
| 747 |
+
# 公寓中有孩童需要更多活動空間
|
| 748 |
+
if size in ["Large", "Giant"]:
|
| 749 |
+
base_score *= 0.85
|
| 750 |
+
elif size == "Medium":
|
| 751 |
+
base_score *= 0.90
|
| 752 |
|
| 753 |
+
# 整合所有評分因素
|
| 754 |
+
final_score = base_score + yard_bonus + activity_space_score + temperament_adjustments
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 755 |
|
| 756 |
+
# 確保最終分數在合理範圍內
|
| 757 |
+
return max(0.15, min(1.0, final_score))
|
| 758 |
|
| 759 |
|
| 760 |
+
def calculate_exercise_score(breed_needs: str, exercise_time: int, user_prefs: 'UserPreferences') -> float:
|
| 761 |
"""
|
| 762 |
+
計算品種運動需求與使用者條件的匹配分數
|
| 763 |
+
|
| 764 |
+
這個函數實現了一個精細的運動評分系統,考慮:
|
| 765 |
+
1. 運動時間的匹配度(0-180分鐘)
|
| 766 |
+
2. 運動強度的適配性
|
| 767 |
+
3. 品種特性對運動的特殊需求
|
| 768 |
+
4. 生活方式的整體活躍度
|
| 769 |
|
| 770 |
Parameters:
|
| 771 |
+
-----------
|
| 772 |
breed_needs: 品種的運動需求等級
|
| 773 |
exercise_time: 使用者能提供的運動時間(分鐘)
|
| 774 |
+
user_prefs: 使用者偏好設定,包含運動類型和強度等信息
|
| 775 |
|
| 776 |
Returns:
|
| 777 |
+
--------
|
| 778 |
+
float: 0.0-1.0 之間的匹配分數
|
| 779 |
"""
|
| 780 |
+
# 定義更精確的運動需求標準
|
| 781 |
exercise_levels = {
|
| 782 |
'VERY HIGH': {
|
| 783 |
'min': 120,
|
| 784 |
'ideal': 150,
|
| 785 |
'max': 180,
|
| 786 |
+
'intensity_required': 'high',
|
| 787 |
+
'intensity_factors': {'high': 1.2, 'moderate': 0.8, 'low': 0.6},
|
| 788 |
+
'type_bonus': {'active_training': 0.15, 'moderate_activity': 0.05, 'light_walks': -0.1}
|
| 789 |
},
|
| 790 |
'HIGH': {
|
| 791 |
'min': 90,
|
| 792 |
'ideal': 120,
|
| 793 |
'max': 150,
|
| 794 |
+
'intensity_required': 'moderate',
|
| 795 |
+
'intensity_factors': {'high': 1.1, 'moderate': 1.0, 'low': 0.7},
|
| 796 |
+
'type_bonus': {'active_training': 0.1, 'moderate_activity': 0.1, 'light_walks': -0.05}
|
| 797 |
},
|
| 798 |
+
'MODERATE': {
|
| 799 |
+
'min': 60,
|
| 800 |
'ideal': 90,
|
| 801 |
'max': 120,
|
| 802 |
+
'intensity_required': 'moderate',
|
| 803 |
+
'intensity_factors': {'high': 1.0, 'moderate': 1.0, 'low': 0.8},
|
| 804 |
+
'type_bonus': {'active_training': 0.05, 'moderate_activity': 0.1, 'light_walks': 0.05}
|
| 805 |
},
|
| 806 |
+
'LOW': {
|
| 807 |
+
'min': 30,
|
| 808 |
'ideal': 60,
|
| 809 |
'max': 90,
|
| 810 |
+
'intensity_required': 'low',
|
| 811 |
+
'intensity_factors': {'high': 0.7, 'moderate': 0.9, 'low': 1.0},
|
| 812 |
+
'type_bonus': {'active_training': -0.05, 'moderate_activity': 0.05, 'light_walks': 0.1}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 813 |
}
|
| 814 |
}
|
| 815 |
|
| 816 |
+
# 獲取品種運動需求配置
|
| 817 |
breed_level = exercise_levels.get(breed_needs.upper(), exercise_levels['MODERATE'])
|
| 818 |
|
| 819 |
+
# 計算基礎運動時間分數
|
| 820 |
+
def calculate_time_score(time: int, level: dict) -> float:
|
| 821 |
+
if time < level['min']:
|
| 822 |
+
# 運動時間不足,指數下降
|
| 823 |
+
return max(0.3, (time / level['min']) ** 1.5)
|
| 824 |
+
elif time < level['ideal']:
|
| 825 |
+
# 運動時間接近理想,線性增長
|
| 826 |
+
return 0.7 + 0.3 * ((time - level['min']) / (level['ideal'] - level['min']))
|
| 827 |
+
elif time <= level['max']:
|
| 828 |
+
# 理想運動時間範圍,高分保持
|
| 829 |
+
return 1.0
|
| 830 |
else:
|
| 831 |
+
# 運動時間過多,緩慢扣分
|
| 832 |
+
excess = (time - level['max']) / 30 # 每超過30分鐘扣分
|
| 833 |
+
return max(0.7, 1.0 - (excess * 0.1))
|
| 834 |
+
|
| 835 |
+
# 計算運動時間基礎分數
|
| 836 |
+
time_score = calculate_time_score(exercise_time, breed_level)
|
| 837 |
+
|
| 838 |
+
# 計算運動強度匹配度
|
| 839 |
+
intensity_factor = breed_level['intensity_factors'].get(user_prefs.exercise_intensity, 1.0)
|
| 840 |
+
|
| 841 |
+
# 運動類型加成
|
| 842 |
+
type_bonus = breed_level['type_bonus'].get(user_prefs.exercise_type, 0)
|
| 843 |
+
|
| 844 |
+
# 生活方式調整
|
| 845 |
+
lifestyle_adjustments = {
|
| 846 |
+
'sedentary': -0.1,
|
| 847 |
+
'moderate': 0,
|
| 848 |
+
'active': 0.1
|
| 849 |
+
}
|
| 850 |
+
lifestyle_factor = lifestyle_adjustments.get(user_prefs.lifestyle_activity, 0)
|
| 851 |
+
|
| 852 |
+
# 整合所有因素
|
| 853 |
+
final_score = time_score * intensity_factor + type_bonus + lifestyle_factor
|
| 854 |
+
|
| 855 |
+
# 確保分數在合理範圍內
|
| 856 |
+
return max(0.1, min(1.0, final_score))
|
| 857 |
|
| 858 |
|
| 859 |
def calculate_grooming_score(breed_needs: str, user_commitment: str, breed_size: str) -> float:
|
|
|
|
| 987 |
return max(0.1, min(1.0, final_score))
|
| 988 |
|
| 989 |
|
| 990 |
+
# def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
|
| 991 |
+
# """
|
| 992 |
+
# 計算使用者經驗與品種需求的匹配分數,加強經驗等級的影響力
|
| 993 |
+
|
| 994 |
+
# 重要改進:
|
| 995 |
+
# 1. 擴大基礎分數差異
|
| 996 |
+
# 2. 加重困難特徵的懲罰
|
| 997 |
+
# 3. 更細緻的品種特性評估
|
| 998 |
+
# """
|
| 999 |
+
# # 基礎分數矩陣 - 大幅擴大不同經驗等級的分數差異
|
| 1000 |
+
# base_scores = {
|
| 1001 |
+
# "High": {
|
| 1002 |
+
# "beginner": 0.10, # 降低起始分,高難度品種對新手幾乎不推薦
|
| 1003 |
+
# "intermediate": 0.60, # 中級玩家仍需謹慎
|
| 1004 |
+
# "advanced": 1.0 # 資深者能完全勝任
|
| 1005 |
+
# },
|
| 1006 |
+
# "Moderate": {
|
| 1007 |
+
# "beginner": 0.35, # 適中難度對新手仍具挑戰
|
| 1008 |
+
# "intermediate": 0.80, # 中級玩家較適合
|
| 1009 |
+
# "advanced": 1.0 # 資深者完全勝任
|
| 1010 |
+
# },
|
| 1011 |
+
# "Low": {
|
| 1012 |
+
# "beginner": 0.90, # 新手友善品種
|
| 1013 |
+
# "intermediate": 0.95, # 中級玩家幾乎完全勝任
|
| 1014 |
+
# "advanced": 1.0 # 資深者完全勝任
|
| 1015 |
+
# }
|
| 1016 |
+
# }
|
| 1017 |
+
|
| 1018 |
+
# # 取得基礎分數
|
| 1019 |
+
# score = base_scores.get(care_level, base_scores["Moderate"])[user_experience]
|
| 1020 |
+
|
| 1021 |
+
# temperament_lower = temperament.lower()
|
| 1022 |
+
# temperament_adjustments = 0.0
|
| 1023 |
+
|
| 1024 |
+
# # 根據經驗等級設定不同的特徵評估標準
|
| 1025 |
+
# if user_experience == "beginner":
|
| 1026 |
+
# # 新手不適合的特徵 - 更嚴格的懲罰
|
| 1027 |
+
# difficult_traits = {
|
| 1028 |
+
# 'stubborn': -0.30, # 固執性格嚴重影響新手
|
| 1029 |
+
# 'independent': -0.25, # 獨立性高的品種不適合新手
|
| 1030 |
+
# 'dominant': -0.25, # 支配性強的品種需要經驗處理
|
| 1031 |
+
# 'strong-willed': -0.20, # 強勢性格需要技巧管理
|
| 1032 |
+
# 'protective': -0.20, # 保護性強需要適當訓練
|
| 1033 |
+
# 'aloof': -0.15, # 冷漠性格需要耐心培養
|
| 1034 |
+
# 'energetic': -0.15, # 活潑好動需要經驗引導
|
| 1035 |
+
# 'aggressive': -0.35 # 攻擊傾向極不適合新手
|
| 1036 |
+
# }
|
| 1037 |
+
|
| 1038 |
+
# # 新手友善的特徵 - 適度的獎勵
|
| 1039 |
+
# easy_traits = {
|
| 1040 |
+
# 'gentle': 0.05, # 溫和性格適合新手
|
| 1041 |
+
# 'friendly': 0.05, # 友善性格容易相處
|
| 1042 |
+
# 'eager to please': 0.08, # 願意服從較容易訓練
|
| 1043 |
+
# 'patient': 0.05, # 耐心的特質有助於建立關係
|
| 1044 |
+
# 'adaptable': 0.05, # 適應性強較容易照顧
|
| 1045 |
+
# 'calm': 0.06 # 冷靜的性格較好掌握
|
| 1046 |
+
# }
|
| 1047 |
+
|
| 1048 |
+
# # 計算特徵調整
|
| 1049 |
+
# for trait, penalty in difficult_traits.items():
|
| 1050 |
+
# if trait in temperament_lower:
|
| 1051 |
+
# temperament_adjustments += penalty
|
| 1052 |
+
|
| 1053 |
+
# for trait, bonus in easy_traits.items():
|
| 1054 |
+
# if trait in temperament_lower:
|
| 1055 |
+
# temperament_adjustments += bonus
|
| 1056 |
+
|
| 1057 |
+
# # 品種類型特殊評估
|
| 1058 |
+
# if 'terrier' in temperament_lower:
|
| 1059 |
+
# temperament_adjustments -= 0.20 # 梗類犬種通常不適合新手
|
| 1060 |
+
# elif 'working' in temperament_lower:
|
| 1061 |
+
# temperament_adjustments -= 0.25 # 工作犬需要經驗豐富的主人
|
| 1062 |
+
# elif 'guard' in temperament_lower:
|
| 1063 |
+
# temperament_adjustments -= 0.25 # 護衛犬需要專業訓練
|
| 1064 |
+
|
| 1065 |
+
# elif user_experience == "intermediate":
|
| 1066 |
+
# # 中級玩家的特徵評估
|
| 1067 |
+
# moderate_traits = {
|
| 1068 |
+
# 'stubborn': -0.15, # 仍然需要注意,但懲罰較輕
|
| 1069 |
+
# 'independent': -0.10,
|
| 1070 |
+
# 'intelligent': 0.08, # 聰明的特質可以好好發揮
|
| 1071 |
+
# 'athletic': 0.06, # 運動能力可以適當訓練
|
| 1072 |
+
# 'versatile': 0.07, # 多功能性可以開發
|
| 1073 |
+
# 'protective': -0.08 # 保護性仍需注意
|
| 1074 |
+
# }
|
| 1075 |
+
|
| 1076 |
+
# for trait, adjustment in moderate_traits.items():
|
| 1077 |
+
# if trait in temperament_lower:
|
| 1078 |
+
# temperament_adjustments += adjustment
|
| 1079 |
+
|
| 1080 |
+
# else: # advanced
|
| 1081 |
+
# # 資深玩家能夠應對挑戰性特徵
|
| 1082 |
+
# advanced_traits = {
|
| 1083 |
+
# 'stubborn': 0.05, # 困難特徵反而成為優勢
|
| 1084 |
+
# 'independent': 0.05,
|
| 1085 |
+
# 'intelligent': 0.10,
|
| 1086 |
+
# 'protective': 0.05,
|
| 1087 |
+
# 'strong-willed': 0.05
|
| 1088 |
+
# }
|
| 1089 |
+
|
| 1090 |
+
# for trait, bonus in advanced_traits.items():
|
| 1091 |
+
# if trait in temperament_lower:
|
| 1092 |
+
# temperament_adjustments += bonus
|
| 1093 |
+
|
| 1094 |
+
# # 確保最終分數範圍更大,讓差異更明顯
|
| 1095 |
+
# final_score = max(0.05, min(1.0, score + temperament_adjustments))
|
| 1096 |
+
|
| 1097 |
+
# return final_score
|
| 1098 |
+
|
| 1099 |
+
|
| 1100 |
+
def calculate_experience_score(breed_info: dict, user_prefs: UserPreferences) -> float:
|
| 1101 |
"""
|
| 1102 |
+
計算飼主經驗與品種需求的匹配分數
|
| 1103 |
|
| 1104 |
+
這個函數實現了一個全面的經驗評分系統,考慮:
|
| 1105 |
+
1. 品種的基本照護難度
|
| 1106 |
+
2. 飼主的經驗水平
|
| 1107 |
+
3. 特殊照護需求(如健康問題、行為訓練)
|
| 1108 |
+
4. 時間投入與生活方式的匹配
|
| 1109 |
+
5. 家庭環境對照護的影響
|
| 1110 |
+
|
| 1111 |
+
特別注意:
|
| 1112 |
+
- 新手飼主面對高難度品種時的顯著降分
|
| 1113 |
+
- 資深飼主照顧簡單品種的微幅降分
|
| 1114 |
+
- 特殊需求品種的額外評估
|
| 1115 |
+
|
| 1116 |
+
Parameters:
|
| 1117 |
+
-----------
|
| 1118 |
+
breed_info: 包含品種特徵的字典
|
| 1119 |
+
user_prefs: 使用者偏好設定
|
| 1120 |
+
|
| 1121 |
+
Returns:
|
| 1122 |
+
--------
|
| 1123 |
+
float: 0.0-1.0 之間的匹配分數
|
| 1124 |
"""
|
| 1125 |
+
care_level = breed_info.get('Care Level', 'MODERATE').upper()
|
| 1126 |
+
temperament = breed_info.get('Temperament', '').lower()
|
| 1127 |
+
health_issues = breed_info.get('Health Issues', '').lower()
|
| 1128 |
+
|
| 1129 |
+
# 基礎照護難度評分矩陣
|
| 1130 |
+
base_experience_scores = {
|
| 1131 |
+
"HIGH": {
|
| 1132 |
+
"beginner": 0.30, # 高難度品種對新手極具挑戰
|
| 1133 |
+
"intermediate": 0.70, # 中級飼主需要額外努力
|
| 1134 |
+
"advanced": 0.95 # 資深飼主最適合
|
| 1135 |
},
|
| 1136 |
+
"MODERATE": {
|
| 1137 |
+
"beginner": 0.60, # 中等難度對新手有一定挑戰
|
| 1138 |
+
"intermediate": 0.85, # 中級飼主較適合
|
| 1139 |
+
"advanced": 0.90 # 資深飼主可能稍嫌簡單
|
| 1140 |
},
|
| 1141 |
+
"LOW": {
|
| 1142 |
+
"beginner": 0.90, # 低難度適合新手
|
| 1143 |
+
"intermediate": 0.85, # 中級飼主可能感覺無趣
|
| 1144 |
+
"advanced": 0.80 # 資深飼主可能缺乏挑戰
|
| 1145 |
}
|
| 1146 |
}
|
| 1147 |
|
| 1148 |
+
# 取得基礎經驗分數
|
| 1149 |
+
base_score = base_experience_scores.get(care_level,
|
| 1150 |
+
base_experience_scores["MODERATE"])[user_prefs.experience_level]
|
| 1151 |
|
| 1152 |
+
# 時間可用性評估
|
| 1153 |
+
time_adjustments = {
|
| 1154 |
+
"limited": {
|
| 1155 |
+
"HIGH": -0.20,
|
| 1156 |
+
"MODERATE": -0.15,
|
| 1157 |
+
"LOW": -0.10
|
| 1158 |
+
},
|
| 1159 |
+
"moderate": {
|
| 1160 |
+
"HIGH": -0.10,
|
| 1161 |
+
"MODERATE": -0.05,
|
| 1162 |
+
"LOW": 0
|
| 1163 |
+
},
|
| 1164 |
+
"flexible": {
|
| 1165 |
+
"HIGH": 0,
|
| 1166 |
+
"MODERATE": 0.05,
|
| 1167 |
+
"LOW": 0.10
|
| 1168 |
+
}
|
| 1169 |
+
}
|
| 1170 |
|
| 1171 |
+
time_adjustment = time_adjustments[user_prefs.time_availability][care_level]
|
| 1172 |
+
|
| 1173 |
+
# 行為特徵評估
|
| 1174 |
+
def evaluate_temperament(temp: str, exp_level: str) -> float:
|
| 1175 |
+
"""評估品種性格特徵與飼主經驗的匹配度"""
|
| 1176 |
+
score = 0
|
| 1177 |
+
|
| 1178 |
+
# 困難特徵評估
|
| 1179 |
difficult_traits = {
|
| 1180 |
+
'stubborn': {'beginner': -0.20, 'intermediate': -0.10, 'advanced': 0},
|
| 1181 |
+
'independent': {'beginner': -0.15, 'intermediate': -0.08, 'advanced': 0},
|
| 1182 |
+
'dominant': {'beginner': -0.20, 'intermediate': -0.10, 'advanced': -0.05},
|
| 1183 |
+
'aggressive': {'beginner': -0.25, 'intermediate': -0.15, 'advanced': -0.10}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1184 |
}
|
| 1185 |
|
| 1186 |
+
# 友善特徵評估
|
| 1187 |
+
friendly_traits = {
|
| 1188 |
+
'friendly': {'beginner': 0.10, 'intermediate': 0.05, 'advanced': 0},
|
| 1189 |
+
'gentle': {'beginner': 0.10, 'intermediate': 0.05, 'advanced': 0},
|
| 1190 |
+
'easy to train': {'beginner': 0.15, 'intermediate': 0.10, 'advanced': 0.05}
|
|
|
|
|
|
|
|
|
|
| 1191 |
}
|
| 1192 |
|
| 1193 |
+
# 計算特徵分數
|
| 1194 |
+
for trait, penalties in difficult_traits.items():
|
| 1195 |
+
if trait in temp:
|
| 1196 |
+
score += penalties[exp_level]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1197 |
|
| 1198 |
+
for trait, bonuses in friendly_traits.items():
|
| 1199 |
+
if trait in temp:
|
| 1200 |
+
score += bonuses[exp_level]
|
| 1201 |
+
|
| 1202 |
+
return score
|
| 1203 |
+
|
| 1204 |
+
temperament_adjustment = evaluate_temperament(temperament, user_prefs.experience_level)
|
| 1205 |
+
|
| 1206 |
+
# 健康問題評估
|
| 1207 |
+
def evaluate_health_needs(health: str, exp_level: str) -> float:
|
| 1208 |
+
"""評估健康問題的照護難度"""
|
| 1209 |
+
score = 0
|
| 1210 |
+
serious_conditions = ['hip dysplasia', 'heart disease', 'cancer']
|
| 1211 |
+
moderate_conditions = ['allergies', 'skin problems', 'ear infections']
|
| 1212 |
+
|
| 1213 |
+
# 根據經驗等級調整健康問題的影響
|
| 1214 |
+
health_impact = {
|
| 1215 |
+
'beginner': {'serious': -0.20, 'moderate': -0.10},
|
| 1216 |
+
'intermediate': {'serious': -0.15, 'moderate': -0.05},
|
| 1217 |
+
'advanced': {'serious': -0.10, 'moderate': -0.03}
|
| 1218 |
}
|
| 1219 |
|
| 1220 |
+
for condition in serious_conditions:
|
| 1221 |
+
if condition in health:
|
| 1222 |
+
score += health_impact[exp_level]['serious']
|
| 1223 |
|
| 1224 |
+
for condition in moderate_conditions:
|
| 1225 |
+
if condition in health:
|
| 1226 |
+
score += health_impact[exp_level]['moderate']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1227 |
|
| 1228 |
+
return score
|
|
|
|
|
|
|
| 1229 |
|
| 1230 |
+
health_adjustment = evaluate_health_needs(health_issues, user_prefs.experience_level)
|
|
|
|
| 1231 |
|
| 1232 |
+
# 家庭環境考量
|
| 1233 |
+
family_adjustment = 0
|
| 1234 |
+
if user_prefs.has_children:
|
| 1235 |
+
if user_prefs.children_age == 'toddler':
|
| 1236 |
+
if user_prefs.experience_level == 'beginner':
|
| 1237 |
+
family_adjustment -= 0.15
|
| 1238 |
+
elif user_prefs.experience_level == 'intermediate':
|
| 1239 |
+
family_adjustment -= 0.10
|
| 1240 |
+
elif user_prefs.children_age == 'school_age':
|
| 1241 |
+
if user_prefs.experience_level == 'beginner':
|
| 1242 |
+
family_adjustment -= 0.10
|
| 1243 |
+
|
| 1244 |
+
# 生活方式匹配度
|
| 1245 |
+
lifestyle_adjustments = {
|
| 1246 |
+
'sedentary': -0.10 if care_level == 'HIGH' else 0,
|
| 1247 |
+
'moderate': 0,
|
| 1248 |
+
'active': 0.10 if care_level in ['HIGH', 'MODERATE'] else 0
|
| 1249 |
+
}
|
| 1250 |
+
lifestyle_adjustment = lifestyle_adjustments[user_prefs.lifestyle_activity]
|
| 1251 |
+
|
| 1252 |
+
# 整合所有評分因素
|
| 1253 |
+
final_score = base_score + time_adjustment + temperament_adjustment + \
|
| 1254 |
+
health_adjustment + family_adjustment + lifestyle_adjustment
|
| 1255 |
+
|
| 1256 |
+
# 確保最終分數在合理範圍內
|
| 1257 |
+
return max(0.15, min(1.0, final_score))
|
| 1258 |
+
|
| 1259 |
|
| 1260 |
def calculate_health_score(breed_name: str, user_prefs: UserPreferences) -> float:
|
| 1261 |
"""
|
|
|
|
| 1365 |
return max(0.1, min(1.0, health_score))
|
| 1366 |
|
| 1367 |
|
| 1368 |
+
# def calculate_noise_score(breed_name: str, user_prefs: UserPreferences) -> float:
|
| 1369 |
+
# """
|
| 1370 |
+
# 計算品種噪音分數,特別加強噪音程度與生活環境的關聯性評估
|
| 1371 |
+
# """
|
| 1372 |
+
# if breed_name not in breed_noise_info:
|
| 1373 |
+
# return 0.5
|
| 1374 |
|
| 1375 |
+
# noise_info = breed_noise_info[breed_name]
|
| 1376 |
+
# noise_level = noise_info['noise_level'].lower()
|
| 1377 |
+
# noise_notes = noise_info['noise_notes'].lower()
|
| 1378 |
|
| 1379 |
+
# # 重新設計基礎噪音分數矩陣,考慮不同情境下的接受度
|
| 1380 |
+
# base_scores = {
|
| 1381 |
+
# 'low': {
|
| 1382 |
+
# 'low': 1.0, # 安靜的狗對低容忍完美匹配
|
| 1383 |
+
# 'medium': 0.95, # 安靜的狗對一般容忍很好
|
| 1384 |
+
# 'high': 0.90 # 安靜的狗對高容忍當然可以
|
| 1385 |
+
# },
|
| 1386 |
+
# 'medium': {
|
| 1387 |
+
# 'low': 0.60, # 一般吠叫對低容忍較困難
|
| 1388 |
+
# 'medium': 0.90, # 一般吠叫對一般容忍可接受
|
| 1389 |
+
# 'high': 0.95 # 一般吠叫對高容忍很好
|
| 1390 |
+
# },
|
| 1391 |
+
# 'high': {
|
| 1392 |
+
# 'low': 0.25, # 愛叫的狗對低容忍極不適合
|
| 1393 |
+
# 'medium': 0.65, # 愛叫的狗對一般容忍有挑戰
|
| 1394 |
+
# 'high': 0.90 # 愛叫的狗對高容忍可以接受
|
| 1395 |
+
# },
|
| 1396 |
+
# 'varies': {
|
| 1397 |
+
# 'low': 0.50, # 不確定的情況對低容忍風險較大
|
| 1398 |
+
# 'medium': 0.75, # 不確定的情況對一般容忍可嘗試
|
| 1399 |
+
# 'high': 0.85 # 不確定的情況對高容忍問題較小
|
| 1400 |
+
# }
|
| 1401 |
+
# }
|
| 1402 |
|
| 1403 |
+
# # 取得基礎分數
|
| 1404 |
+
# base_score = base_scores.get(noise_level, {'low': 0.6, 'medium': 0.75, 'high': 0.85})[user_prefs.noise_tolerance]
|
| 1405 |
|
| 1406 |
+
# # 吠叫原因評估,根據環境調整懲罰程度
|
| 1407 |
+
# barking_penalties = {
|
| 1408 |
+
# 'separation anxiety': {
|
| 1409 |
+
# 'apartment': -0.30, # 在公寓對鄰居影響更大
|
| 1410 |
+
# 'house_small': -0.25,
|
| 1411 |
+
# 'house_large': -0.20
|
| 1412 |
+
# },
|
| 1413 |
+
# 'excessive barking': {
|
| 1414 |
+
# 'apartment': -0.25,
|
| 1415 |
+
# 'house_small': -0.20,
|
| 1416 |
+
# 'house_large': -0.15
|
| 1417 |
+
# },
|
| 1418 |
+
# 'territorial': {
|
| 1419 |
+
# 'apartment': -0.20, # 在公寓更容易被觸發
|
| 1420 |
+
# 'house_small': -0.15,
|
| 1421 |
+
# 'house_large': -0.10
|
| 1422 |
+
# },
|
| 1423 |
+
# 'alert barking': {
|
| 1424 |
+
# 'apartment': -0.15, # 公寓環境刺激較多
|
| 1425 |
+
# 'house_small': -0.10,
|
| 1426 |
+
# 'house_large': -0.08
|
| 1427 |
+
# },
|
| 1428 |
+
# 'attention seeking': {
|
| 1429 |
+
# 'apartment': -0.15,
|
| 1430 |
+
# 'house_small': -0.12,
|
| 1431 |
+
# 'house_large': -0.10
|
| 1432 |
+
# }
|
| 1433 |
+
# }
|
| 1434 |
+
|
| 1435 |
+
# # 計算環境相關的吠叫懲罰
|
| 1436 |
+
# living_space = user_prefs.living_space
|
| 1437 |
+
# barking_penalty = 0
|
| 1438 |
+
# for trigger, penalties in barking_penalties.items():
|
| 1439 |
+
# if trigger in noise_notes:
|
| 1440 |
+
# barking_penalty += penalties.get(living_space, -0.15)
|
| 1441 |
+
|
| 1442 |
+
# # 特殊情況評估
|
| 1443 |
+
# special_adjustments = 0
|
| 1444 |
+
# if user_prefs.has_children:
|
| 1445 |
+
# # 孩童年齡相關調整
|
| 1446 |
+
# child_age_adjustments = {
|
| 1447 |
+
# 'toddler': {
|
| 1448 |
+
# 'high': -0.20, # 幼童對吵鬧更敏感
|
| 1449 |
+
# 'medium': -0.15,
|
| 1450 |
+
# 'low': -0.05
|
| 1451 |
+
# },
|
| 1452 |
+
# 'school_age': {
|
| 1453 |
+
# 'high': -0.15,
|
| 1454 |
+
# 'medium': -0.10,
|
| 1455 |
+
# 'low': -0.05
|
| 1456 |
+
# },
|
| 1457 |
+
# 'teenager': {
|
| 1458 |
+
# 'high': -0.10,
|
| 1459 |
+
# 'medium': -0.05,
|
| 1460 |
+
# 'low': -0.02
|
| 1461 |
+
# }
|
| 1462 |
+
# }
|
| 1463 |
+
|
| 1464 |
+
# # 根據孩童年齡和噪音等級調整
|
| 1465 |
+
# age_adj = child_age_adjustments.get(user_prefs.children_age,
|
| 1466 |
+
# child_age_adjustments['school_age'])
|
| 1467 |
+
# special_adjustments += age_adj.get(noise_level, -0.10)
|
| 1468 |
+
|
| 1469 |
+
# # 訓練性補償評估
|
| 1470 |
+
# trainability_bonus = 0
|
| 1471 |
+
# if 'responds well to training' in noise_notes:
|
| 1472 |
+
# trainability_bonus = 0.12
|
| 1473 |
+
# elif 'can be trained' in noise_notes:
|
| 1474 |
+
# trainability_bonus = 0.08
|
| 1475 |
+
# elif 'difficult to train' in noise_notes:
|
| 1476 |
+
# trainability_bonus = 0.02
|
| 1477 |
+
|
| 1478 |
+
# # 夜間吠叫特別考量
|
| 1479 |
+
# if 'night barking' in noise_notes or 'howls' in noise_notes:
|
| 1480 |
+
# if user_prefs.living_space == 'apartment':
|
| 1481 |
+
# special_adjustments -= 0.15
|
| 1482 |
+
# elif user_prefs.living_space == 'house_small':
|
| 1483 |
+
# special_adjustments -= 0.10
|
| 1484 |
+
# else:
|
| 1485 |
+
# special_adjustments -= 0.05
|
| 1486 |
+
|
| 1487 |
+
# # 計算最終分數,確保更大的分數範圍
|
| 1488 |
+
# final_score = base_score + barking_penalty + special_adjustments + trainability_bonus
|
| 1489 |
+
# return max(0.1, min(1.0, final_score))
|
| 1490 |
+
|
| 1491 |
+
|
| 1492 |
+
def calculate_noise_score(breed_info: dict, user_prefs: UserPreferences) -> float:
|
| 1493 |
+
"""
|
| 1494 |
+
計算品種噪音特性與使用者需求的匹配分數
|
| 1495 |
+
|
| 1496 |
+
這個函數建立了一個細緻的噪音評估系統,考慮多個關鍵因素:
|
| 1497 |
+
1. 品種的基本吠叫傾向
|
| 1498 |
+
2. 居住環境對噪音的敏感度
|
| 1499 |
+
3. 吠叫的情境和原因
|
| 1500 |
+
4. 鄰居影響的考量
|
| 1501 |
+
5. 家庭成員的噪音承受度
|
| 1502 |
+
6. 訓練可能性的評估
|
| 1503 |
+
|
| 1504 |
+
特別注意:
|
| 1505 |
+
- 公寓環境的嚴格標準
|
| 1506 |
+
- 有幼童時的特殊考量
|
| 1507 |
+
- 獨處時間的影響
|
| 1508 |
+
- 品種的可訓練性
|
| 1509 |
+
|
| 1510 |
+
Parameters:
|
| 1511 |
+
-----------
|
| 1512 |
+
breed_info: 包含品種特性的字典,包括吠叫傾向和訓練難度
|
| 1513 |
+
user_prefs: 使用者偏好設定,包含噪音容忍度和環境因素
|
| 1514 |
+
|
| 1515 |
+
Returns:
|
| 1516 |
+
--------
|
| 1517 |
+
float: 0.0-1.0 之間的匹配分數,分數越高表示噪音特性越符合需求
|
| 1518 |
+
"""
|
| 1519 |
+
|
| 1520 |
+
# 提取基本資訊
|
| 1521 |
+
noise_level = breed_info.get('Noise Level', 'MODERATE').upper()
|
| 1522 |
+
barking_tendency = breed_info.get('Barking Tendency', 'MODERATE').upper()
|
| 1523 |
+
trainability = breed_info.get('Trainability', 'MODERATE').upper()
|
| 1524 |
+
temperament = breed_info.get('Temperament', '').lower()
|
| 1525 |
+
|
| 1526 |
+
# 基礎噪音評分矩陣 - 考慮環境和噪音容忍度
|
| 1527 |
+
base_noise_scores = {
|
| 1528 |
+
"LOW": {
|
| 1529 |
+
"apartment": {
|
| 1530 |
+
"low": 1.0, # 安靜的狗在公寓最理想
|
| 1531 |
+
"medium": 0.95,
|
| 1532 |
+
"high": 0.90
|
| 1533 |
+
},
|
| 1534 |
+
"house_small": {
|
| 1535 |
+
"low": 0.95,
|
| 1536 |
+
"medium": 0.90,
|
| 1537 |
+
"high": 0.85
|
| 1538 |
+
},
|
| 1539 |
+
"house_large": {
|
| 1540 |
+
"low": 0.90,
|
| 1541 |
+
"medium": 0.85,
|
| 1542 |
+
"high": 0.80 # 太安靜可能不夠警戒
|
| 1543 |
+
}
|
| 1544 |
},
|
| 1545 |
+
"MODERATE": {
|
| 1546 |
+
"apartment": {
|
| 1547 |
+
"low": 0.60,
|
| 1548 |
+
"medium": 0.80,
|
| 1549 |
+
"high": 0.85
|
| 1550 |
+
},
|
| 1551 |
+
"house_small": {
|
| 1552 |
+
"low": 0.70,
|
| 1553 |
+
"medium": 0.85,
|
| 1554 |
+
"high": 0.90
|
| 1555 |
+
},
|
| 1556 |
+
"house_large": {
|
| 1557 |
+
"low": 0.75,
|
| 1558 |
+
"medium": 0.90,
|
| 1559 |
+
"high": 0.95
|
| 1560 |
+
}
|
| 1561 |
},
|
| 1562 |
+
"HIGH": {
|
| 1563 |
+
"apartment": {
|
| 1564 |
+
"low": 0.20, # 吵鬧的狗在公寓極不適合
|
| 1565 |
+
"medium": 0.40,
|
| 1566 |
+
"high": 0.60
|
| 1567 |
+
},
|
| 1568 |
+
"house_small": {
|
| 1569 |
+
"low": 0.30,
|
| 1570 |
+
"medium": 0.50,
|
| 1571 |
+
"high": 0.70
|
| 1572 |
+
},
|
| 1573 |
+
"house_large": {
|
| 1574 |
+
"low": 0.40,
|
| 1575 |
+
"medium": 0.60,
|
| 1576 |
+
"high": 0.80
|
| 1577 |
+
}
|
| 1578 |
}
|
| 1579 |
}
|
| 1580 |
+
|
| 1581 |
+
# 取得基礎噪音分數
|
| 1582 |
+
base_score = base_noise_scores.get(noise_level, base_noise_scores["MODERATE"])\
|
| 1583 |
+
[user_prefs.living_space][user_prefs.noise_tolerance]
|
| 1584 |
+
|
| 1585 |
+
# 吠叫情境評估
|
| 1586 |
+
def evaluate_barking_context(temp: str, living_space: str) -> float:
|
| 1587 |
+
"""評估不同情境下的吠叫問題嚴重度"""
|
| 1588 |
+
context_score = 0
|
| 1589 |
+
|
| 1590 |
+
# 不同吠叫原因的權重
|
| 1591 |
+
barking_contexts = {
|
| 1592 |
+
'separation anxiety': {
|
| 1593 |
+
'apartment': -0.25,
|
| 1594 |
+
'house_small': -0.20,
|
| 1595 |
+
'house_large': -0.15
|
|
|
|
| 1596 |
},
|
| 1597 |
+
'territorial': {
|
| 1598 |
+
'apartment': -0.20,
|
| 1599 |
+
'house_small': -0.15,
|
| 1600 |
+
'house_large': -0.10
|
| 1601 |
+
},
|
| 1602 |
+
'alert barking': {
|
| 1603 |
+
'apartment': -0.15,
|
| 1604 |
+
'house_small': -0.10,
|
| 1605 |
+
'house_large': -0.05
|
| 1606 |
},
|
| 1607 |
+
'attention seeking': {
|
| 1608 |
+
'apartment': -0.15,
|
| 1609 |
+
'house_small': -0.10,
|
| 1610 |
+
'house_large': -0.08
|
| 1611 |
}
|
| 1612 |
}
|
| 1613 |
|
| 1614 |
+
for context, penalties in barking_contexts.items():
|
| 1615 |
+
if context in temp:
|
| 1616 |
+
context_score += penalties[living_space]
|
| 1617 |
+
|
| 1618 |
+
return context_score
|
| 1619 |
+
|
| 1620 |
+
# 計算吠叫情境的影響
|
| 1621 |
+
barking_context_adjustment = evaluate_barking_context(temperament, user_prefs.living_space)
|
| 1622 |
+
|
| 1623 |
+
# 訓練可能性評估
|
| 1624 |
+
trainability_adjustments = {
|
| 1625 |
+
"HIGH": 0.10, # 容易訓練可以改善吠叫問題
|
| 1626 |
+
"MODERATE": 0.05,
|
| 1627 |
+
"LOW": -0.05 # 難以訓練則較難改善
|
| 1628 |
+
}
|
| 1629 |
+
trainability_adjustment = trainability_adjustments.get(trainability, 0)
|
| 1630 |
+
|
| 1631 |
+
# 家庭環境考量
|
| 1632 |
+
family_adjustment = 0
|
| 1633 |
+
if user_prefs.has_children:
|
| 1634 |
+
child_age_factors = {
|
| 1635 |
+
'toddler': -0.20, # 幼童需要安靜環境
|
| 1636 |
+
'school_age': -0.15,
|
| 1637 |
+
'teenager': -0.10
|
| 1638 |
+
}
|
| 1639 |
+
family_adjustment = child_age_factors.get(user_prefs.children_age, -0.15)
|
| 1640 |
+
|
| 1641 |
+
# 根據噪音等級調整影響程度
|
| 1642 |
+
if noise_level == "HIGH":
|
| 1643 |
+
family_adjustment *= 1.5
|
| 1644 |
+
elif noise_level == "LOW":
|
| 1645 |
+
family_adjustment *= 0.5
|
| 1646 |
+
|
| 1647 |
+
# 獨處時間的影響
|
| 1648 |
+
alone_time_adjustment = 0
|
| 1649 |
+
if user_prefs.home_alone_time > 6:
|
| 1650 |
+
if 'separation anxiety' in temperament or noise_level == "HIGH":
|
| 1651 |
+
alone_time_adjustment = -0.15
|
| 1652 |
+
elif noise_level == "MODERATE":
|
| 1653 |
+
alone_time_adjustment = -0.10
|
| 1654 |
+
|
| 1655 |
+
# 鄰居影響評估(特別是公寓環境)
|
| 1656 |
+
neighbor_adjustment = 0
|
| 1657 |
+
if user_prefs.living_space == "apartment":
|
| 1658 |
+
if noise_level == "HIGH":
|
| 1659 |
+
neighbor_adjustment = -0.15
|
| 1660 |
+
elif noise_level == "MODERATE":
|
| 1661 |
+
neighbor_adjustment = -0.10
|
| 1662 |
+
|
| 1663 |
+
# 樓層因素
|
| 1664 |
+
if user_prefs.living_floor > 1:
|
| 1665 |
+
neighbor_adjustment -= min(0.10, (user_prefs.living_floor - 1) * 0.02)
|
| 1666 |
+
|
| 1667 |
+
# 整合所有評分因素
|
| 1668 |
+
final_score = base_score + barking_context_adjustment + trainability_adjustment + \
|
| 1669 |
+
family_adjustment + alone_time_adjustment + neighbor_adjustment
|
| 1670 |
+
|
| 1671 |
+
# 確保最終分數在合理範圍內
|
| 1672 |
+
return max(0.15, min(1.0, final_score))
|
| 1673 |
|
| 1674 |
|
| 1675 |
# 1. 計算基礎分數
|
|
|
|
| 1764 |
return min(0.2, adaptability_score)
|
| 1765 |
|
| 1766 |
|
| 1767 |
+
# def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
| 1768 |
+
# """
|
| 1769 |
+
# 改進的品種相容性評分系統
|
| 1770 |
+
# 通過更細緻的特徵評估和動態權重調整,自然產生分數差異
|
| 1771 |
+
# """
|
| 1772 |
+
# # 評估關鍵特徵的匹配度,使用更極端的調整係數
|
| 1773 |
+
# def evaluate_key_features():
|
| 1774 |
+
# # 空間適配性評估
|
| 1775 |
+
# space_multiplier = 1.0
|
| 1776 |
+
# if user_prefs.living_space == 'apartment':
|
| 1777 |
+
# if breed_info['Size'] == 'Giant':
|
| 1778 |
+
# space_multiplier = 0.3 # 嚴重不適合
|
| 1779 |
+
# elif breed_info['Size'] == 'Large':
|
| 1780 |
+
# space_multiplier = 0.4 # 明顯不適合
|
| 1781 |
+
# elif breed_info['Size'] == 'Small':
|
| 1782 |
+
# space_multiplier = 1.4 # 明顯優勢
|
| 1783 |
|
| 1784 |
+
# # 運動需求評估
|
| 1785 |
+
# exercise_multiplier = 1.0
|
| 1786 |
+
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
| 1787 |
+
# if exercise_needs == 'VERY HIGH':
|
| 1788 |
+
# if user_prefs.exercise_time < 60:
|
| 1789 |
+
# exercise_multiplier = 0.3 # 嚴重不足
|
| 1790 |
+
# elif user_prefs.exercise_time > 150:
|
| 1791 |
+
# exercise_multiplier = 1.5 # 完美匹配
|
| 1792 |
+
# elif exercise_needs == 'LOW' and user_prefs.exercise_time > 150:
|
| 1793 |
+
# exercise_multiplier = 0.5 # 運動過度
|
| 1794 |
|
| 1795 |
+
# return space_multiplier, exercise_multiplier
|
| 1796 |
|
| 1797 |
+
# # 計算經驗匹配度
|
| 1798 |
+
# def evaluate_experience():
|
| 1799 |
+
# exp_multiplier = 1.0
|
| 1800 |
+
# care_level = breed_info.get('Care Level', 'MODERATE')
|
| 1801 |
|
| 1802 |
+
# if care_level == 'High':
|
| 1803 |
+
# if user_prefs.experience_level == 'beginner':
|
| 1804 |
+
# exp_multiplier = 0.4
|
| 1805 |
+
# elif user_prefs.experience_level == 'advanced':
|
| 1806 |
+
# exp_multiplier = 1.3
|
| 1807 |
+
# elif care_level == 'Low':
|
| 1808 |
+
# if user_prefs.experience_level == 'advanced':
|
| 1809 |
+
# exp_multiplier = 0.9 # 略微降低評分,因為可能不夠有挑戰性
|
| 1810 |
|
| 1811 |
+
# return exp_multiplier
|
| 1812 |
|
| 1813 |
+
# # 取得特徵調整係數
|
| 1814 |
+
# space_mult, exercise_mult = evaluate_key_features()
|
| 1815 |
+
# exp_mult = evaluate_experience()
|
| 1816 |
|
| 1817 |
+
# # 調整基礎分數
|
| 1818 |
+
# adjusted_scores = {
|
| 1819 |
+
# 'space': scores['space'] * space_mult,
|
| 1820 |
+
# 'exercise': scores['exercise'] * exercise_mult,
|
| 1821 |
+
# 'experience': scores['experience'] * exp_mult,
|
| 1822 |
+
# 'grooming': scores['grooming'],
|
| 1823 |
+
# 'health': scores['health'],
|
| 1824 |
+
# 'noise': scores['noise']
|
| 1825 |
+
# }
|
| 1826 |
|
| 1827 |
+
# # 計算加權平均,關鍵特徵佔更大權重
|
| 1828 |
+
# weights = {
|
| 1829 |
+
# 'space': 0.35,
|
| 1830 |
+
# 'exercise': 0.30,
|
| 1831 |
+
# 'experience': 0.20,
|
| 1832 |
+
# 'grooming': 0.15,
|
| 1833 |
+
# 'health': 0.10,
|
| 1834 |
+
# 'noise': 0.10
|
| 1835 |
+
# }
|
| 1836 |
|
| 1837 |
+
# # 動態調整權重
|
| 1838 |
+
# if user_prefs.living_space == 'apartment':
|
| 1839 |
+
# weights['space'] *= 1.5
|
| 1840 |
+
# weights['noise'] *= 1.3
|
| 1841 |
|
| 1842 |
+
# if abs(user_prefs.exercise_time - 120) > 60: # 運動時間極端情況
|
| 1843 |
+
# weights['exercise'] *= 1.4
|
| 1844 |
+
|
| 1845 |
+
# # 正規化權重
|
| 1846 |
+
# total_weight = sum(weights.values())
|
| 1847 |
+
# normalized_weights = {k: v/total_weight for k, v in weights.items()}
|
| 1848 |
|
| 1849 |
+
# # 計算最終分數
|
| 1850 |
+
# final_score = sum(adjusted_scores[k] * normalized_weights[k] for k in scores.keys())
|
| 1851 |
+
|
| 1852 |
+
# # 品種特性加成
|
| 1853 |
+
# breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
|
| 1854 |
+
|
| 1855 |
+
# # 整合最終分數,保持在0-1範圍內
|
| 1856 |
+
# return min(1.0, max(0.0, (final_score * 0.85) + (breed_bonus * 0.15)))
|
| 1857 |
|
|
|
|
|
|
|
| 1858 |
|
| 1859 |
+
def calculate_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
| 1860 |
+
"""
|
| 1861 |
+
計算品種與使用者的整體相容性分數
|
| 1862 |
+
|
| 1863 |
+
這是推薦系統的核心評分函數,負責:
|
| 1864 |
+
1. 智能整合各面向評分
|
| 1865 |
+
2. 動態調整評分權重
|
| 1866 |
+
3. 處理關鍵條件的優先級
|
| 1867 |
+
4. 產生最終的匹配分數
|
| 1868 |
+
|
| 1869 |
+
評分策略:
|
| 1870 |
+
- 基礎分數:由各項指標的加權平均獲得
|
| 1871 |
+
- 動態權重:根據用戶情況動態調整各項權重
|
| 1872 |
+
- 關鍵條件:某些條件不滿足會顯著降低總分
|
| 1873 |
+
- 加成系統:特殊匹配會提供額外加分
|
| 1874 |
+
|
| 1875 |
+
Parameters:
|
| 1876 |
+
-----------
|
| 1877 |
+
scores: 包含各項評分的字典
|
| 1878 |
+
user_prefs: 使用者偏好設定
|
| 1879 |
+
breed_info: 品種特性信息
|
| 1880 |
+
|
| 1881 |
+
Returns:
|
| 1882 |
+
--------
|
| 1883 |
+
float: 60.0-95.0 之間的最終匹配分數
|
| 1884 |
+
"""
|
| 1885 |
+
def calculate_dynamic_weights() -> dict:
|
| 1886 |
+
"""計算動態權重分配"""
|
| 1887 |
+
# 基礎權重設定
|
| 1888 |
+
weights = {
|
| 1889 |
+
'space': 0.20,
|
| 1890 |
+
'exercise': 0.20,
|
| 1891 |
+
'experience': 0.15,
|
| 1892 |
+
'grooming': 0.15,
|
| 1893 |
+
'health': 0.15,
|
| 1894 |
+
'noise': 0.15
|
| 1895 |
+
}
|
| 1896 |
+
|
| 1897 |
+
# 公寓住戶權重調整
|
| 1898 |
+
if user_prefs.living_space == "apartment":
|
| 1899 |
+
weights['space'] *= 1.3
|
| 1900 |
+
weights['noise'] *= 1.3
|
| 1901 |
+
weights['exercise'] *= 0.8
|
| 1902 |
+
|
| 1903 |
+
# 有幼童時的權重調整
|
| 1904 |
+
if user_prefs.has_children and user_prefs.children_age == 'toddler':
|
| 1905 |
+
weights['experience'] *= 1.3
|
| 1906 |
+
weights['noise'] *= 1.2
|
| 1907 |
+
weights['health'] *= 1.2
|
| 1908 |
+
|
| 1909 |
+
# 新手飼主的權重調整
|
| 1910 |
+
if user_prefs.experience_level == 'beginner':
|
| 1911 |
+
weights['experience'] *= 1.4
|
| 1912 |
+
weights['health'] *= 1.2
|
| 1913 |
+
weights['grooming'] *= 1.2
|
| 1914 |
+
|
| 1915 |
+
# 健康敏感度的權重調整
|
| 1916 |
+
if user_prefs.health_sensitivity == 'high':
|
| 1917 |
+
weights['health'] *= 1.3
|
| 1918 |
+
|
| 1919 |
+
# 運動時間極端情況的權重調整
|
| 1920 |
+
if abs(user_prefs.exercise_time - 120) > 60:
|
| 1921 |
+
weights['exercise'] *= 1.3
|
| 1922 |
+
|
| 1923 |
+
# 正規化權重
|
| 1924 |
+
total = sum(weights.values())
|
| 1925 |
+
return {k: v/total for k, v in weights.items()}
|
| 1926 |
|
| 1927 |
+
def calculate_critical_factors() -> float:
|
| 1928 |
+
"""評估關鍵因素的影響"""
|
| 1929 |
+
critical_score = 1.0
|
| 1930 |
+
|
| 1931 |
+
# 空間關鍵條件
|
| 1932 |
+
if user_prefs.living_space == "apartment":
|
| 1933 |
+
if breed_info['Size'] == 'Giant':
|
| 1934 |
+
critical_score *= 0.7
|
| 1935 |
+
elif breed_info['Size'] == 'Large':
|
| 1936 |
+
critical_score *= 0.8
|
| 1937 |
+
|
| 1938 |
+
# 運動需求關鍵條件
|
| 1939 |
+
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
| 1940 |
+
if exercise_needs == 'VERY HIGH' and user_prefs.exercise_time < 60:
|
| 1941 |
+
critical_score *= 0.75
|
| 1942 |
+
elif exercise_needs == 'HIGH' and user_prefs.exercise_time < 45:
|
| 1943 |
+
critical_score *= 0.8
|
| 1944 |
+
|
| 1945 |
+
# 新手飼主關鍵條件
|
| 1946 |
+
if user_prefs.experience_level == 'beginner':
|
| 1947 |
+
if 'aggressive' in breed_info.get('Temperament', '').lower():
|
| 1948 |
+
critical_score *= 0.7
|
| 1949 |
+
elif 'dominant' in breed_info.get('Temperament', '').lower():
|
| 1950 |
+
critical_score *= 0.8
|
| 1951 |
+
|
| 1952 |
+
# 噪音關鍵條件
|
| 1953 |
+
if user_prefs.living_space == "apartment" and \
|
| 1954 |
+
breed_info.get('Noise Level', 'MODERATE').upper() == 'HIGH' and \
|
| 1955 |
+
user_prefs.noise_tolerance == 'low':
|
| 1956 |
+
critical_score *= 0.7
|
| 1957 |
+
|
| 1958 |
+
return critical_score
|
| 1959 |
|
| 1960 |
+
def calculate_bonus_factors() -> float:
|
| 1961 |
+
"""計算額外加分因素"""
|
| 1962 |
+
bonus = 1.0
|
| 1963 |
+
temperament = breed_info.get('Temperament', '').lower()
|
| 1964 |
+
|
| 1965 |
+
# 完美匹配加分
|
| 1966 |
+
perfect_matches = 0
|
| 1967 |
+
for score in scores.values():
|
| 1968 |
+
if score > 0.9:
|
| 1969 |
+
perfect_matches += 1
|
| 1970 |
+
|
| 1971 |
+
if perfect_matches >= 3:
|
| 1972 |
+
bonus += 0.05
|
| 1973 |
+
|
| 1974 |
+
# 特殊匹配加分
|
| 1975 |
+
if user_prefs.has_children and 'good with children' in temperament:
|
| 1976 |
+
bonus += 0.03
|
| 1977 |
+
|
| 1978 |
+
if user_prefs.living_space == "apartment" and 'adaptable' in temperament:
|
| 1979 |
+
bonus += 0.03
|
| 1980 |
+
|
| 1981 |
+
if user_prefs.experience_level == 'beginner' and 'easy to train' in temperament:
|
| 1982 |
+
bonus += 0.03
|
| 1983 |
+
|
| 1984 |
+
return min(1.15, bonus)
|
| 1985 |
+
|
| 1986 |
+
# 計算動態權重
|
| 1987 |
+
weights = calculate_dynamic_weights()
|
| 1988 |
+
|
| 1989 |
+
# 計算基礎加權分數
|
| 1990 |
+
base_score = sum(scores[k] * weights[k] for k in scores.keys())
|
| 1991 |
+
|
| 1992 |
+
# 應用關鍵因素
|
| 1993 |
+
critical_factor = calculate_critical_factors()
|
| 1994 |
+
|
| 1995 |
+
# 計算加分
|
| 1996 |
+
bonus_factor = calculate_bonus_factors()
|
| 1997 |
+
|
| 1998 |
+
# 計算最終原始分數
|
| 1999 |
+
raw_score = base_score * critical_factor * bonus_factor
|
| 2000 |
+
|
| 2001 |
+
# 轉���為最終分數(60-95範圍)
|
| 2002 |
+
final_score = 60 + (raw_score * 35)
|
| 2003 |
+
|
| 2004 |
+
# 確保分數在合理範圍內並保留兩位小數
|
| 2005 |
+
return round(max(60.0, min(95.0, final_score)), 2)
|
| 2006 |
+
|
| 2007 |
+
|
| 2008 |
+
# def amplify_score_extreme(score: float) -> float:
|
| 2009 |
+
# """
|
| 2010 |
+
# 改進的分數轉換函數
|
| 2011 |
+
# 提供更大的分數範圍和更明顯的差異
|
| 2012 |
+
|
| 2013 |
+
# 轉換邏輯:
|
| 2014 |
+
# - 極差匹配 (0.0-0.3) -> 60-68%
|
| 2015 |
+
# - 較差匹配 (0.3-0.5) -> 68-75%
|
| 2016 |
+
# - 中等匹配 (0.5-0.7) -> 75-85%
|
| 2017 |
+
# - 良好匹配 (0.7-0.85) -> 85-92%
|
| 2018 |
+
# - 優秀匹配 (0.85-1.0) -> 92-95%
|
| 2019 |
+
# """
|
| 2020 |
+
# if score < 0.3:
|
| 2021 |
+
# # 極差匹配:快速線性增長
|
| 2022 |
+
# return 0.60 + (score / 0.3) * 0.08
|
| 2023 |
+
# elif score < 0.5:
|
| 2024 |
+
# # 較差匹配:緩慢增長
|
| 2025 |
+
# position = (score - 0.3) / 0.2
|
| 2026 |
+
# return 0.68 + position * 0.07
|
| 2027 |
+
# elif score < 0.7:
|
| 2028 |
+
# # 中等匹配:穩定線性增長
|
| 2029 |
+
# position = (score - 0.5) / 0.2
|
| 2030 |
+
# return 0.75 + position * 0.10
|
| 2031 |
+
# elif score < 0.85:
|
| 2032 |
+
# # 良好匹配:加速增長
|
| 2033 |
+
# position = (score - 0.7) / 0.15
|
| 2034 |
+
# return 0.85 + position * 0.07
|
| 2035 |
+
# else:
|
| 2036 |
+
# # 優秀匹配:最後衝刺
|
| 2037 |
+
# position = (score - 0.85) / 0.15
|
| 2038 |
+
# return 0.92 + position * 0.03
|
| 2039 |
+
|
| 2040 |
|
| 2041 |
def amplify_score_extreme(score: float) -> float:
|
| 2042 |
"""
|
| 2043 |
+
將原始相容性分數(0-1)轉換為最終評分(60-95)
|
| 2044 |
+
|
| 2045 |
+
這個函數負責:
|
| 2046 |
+
1. 將內部計算的原始分數轉換為更有意義的最終分數
|
| 2047 |
+
2. 確保分數分布更自然且有區別性
|
| 2048 |
+
3. 突出極佳和極差的匹配
|
| 2049 |
+
4. 避免分數過度集中在中間區域
|
| 2050 |
+
|
| 2051 |
+
轉換策略:
|
| 2052 |
+
- 極佳匹配(0.85-1.0):轉換為 90-95 分
|
| 2053 |
+
- 優良匹配(0.70-0.85):轉換為 85-90 分
|
| 2054 |
+
- 良好匹配(0.55-0.70):轉換為 75-85 分
|
| 2055 |
+
- 一般匹配(0.40-0.55):轉換為 70-75 分
|
| 2056 |
+
- 勉強匹配(0.25-0.40):轉換為 65-70 分
|
| 2057 |
+
- 不推薦匹配(0-0.25):轉換為 60-65 分
|
| 2058 |
+
|
| 2059 |
+
Parameters:
|
| 2060 |
+
-----------
|
| 2061 |
+
score: 原始相容性分數(0.0-1.0)
|
| 2062 |
+
|
| 2063 |
+
Returns:
|
| 2064 |
+
--------
|
| 2065 |
+
float: 轉換後的最終分數(60.0-95.0)
|
| 2066 |
"""
|
| 2067 |
+
# 使用分段函數進行更自然的轉換
|
| 2068 |
+
if score >= 0.85:
|
| 2069 |
+
# 極佳匹配:90-95分
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2070 |
position = (score - 0.85) / 0.15
|
| 2071 |
+
return 90.0 + (position * 5.0)
|
| 2072 |
+
elif score >= 0.70:
|
| 2073 |
+
# 優良匹配:85-90分
|
| 2074 |
+
position = (score - 0.70) / 0.15
|
| 2075 |
+
return 85.0 + (position * 5.0)
|
| 2076 |
+
elif score >= 0.55:
|
| 2077 |
+
# 良好匹配:75-85分
|
| 2078 |
+
position = (score - 0.55) / 0.15
|
| 2079 |
+
return 75.0 + (position * 10.0)
|
| 2080 |
+
elif score >= 0.40:
|
| 2081 |
+
# 一般匹配:70-75分
|
| 2082 |
+
position = (score - 0.40) / 0.15
|
| 2083 |
+
return 70.0 + (position * 5.0)
|
| 2084 |
+
elif score >= 0.25:
|
| 2085 |
+
# 勉強匹配:65-70分
|
| 2086 |
+
position = (score - 0.25) / 0.15
|
| 2087 |
+
return 65.0 + (position * 5.0)
|
| 2088 |
+
else:
|
| 2089 |
+
# 不推薦匹配:60-65分
|
| 2090 |
+
position = score / 0.25
|
| 2091 |
+
return 60.0 + (position * 5.0)
|