Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -243,12 +243,13 @@ def _predict_single_dog(image):
|
|
| 243 |
# print(error_msg) # 添加日誌輸出
|
| 244 |
# return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
| 245 |
|
| 246 |
-
|
|
|
|
| 247 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
| 248 |
dogs = []
|
| 249 |
|
| 250 |
image_area = image.width * image.height
|
| 251 |
-
min_area_ratio = 0.
|
| 252 |
|
| 253 |
for box in results.boxes:
|
| 254 |
if box.cls == 16: # COCO 數據集中狗的類別是 16
|
|
@@ -256,34 +257,32 @@ async def detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.4, mer
|
|
| 256 |
area = (xyxy[2] - xyxy[0]) * (xyxy[3] - xyxy[1])
|
| 257 |
if area / image_area >= min_area_ratio:
|
| 258 |
confidence = box.conf.item()
|
| 259 |
-
|
| 260 |
-
dogs.append((cropped_image, confidence, xyxy))
|
| 261 |
|
| 262 |
-
#
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
to_merge = [base_dog]
|
| 268 |
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
|
| 278 |
-
|
| 279 |
-
merged_dogs.append(base_dog)
|
| 280 |
-
else:
|
| 281 |
-
merged_box = torch.tensor([dog[2] for dog in to_merge]).mean(0)
|
| 282 |
-
merged_confidence = max(dog[1] for dog in to_merge)
|
| 283 |
-
merged_image = image.crop(merged_box.tolist())
|
| 284 |
-
merged_dogs.append((merged_image, merged_confidence, merged_box.tolist()))
|
| 285 |
|
| 286 |
-
|
|
|
|
| 287 |
|
| 288 |
async def predict(image):
|
| 289 |
if image is None:
|
|
@@ -295,10 +294,15 @@ async def predict(image):
|
|
| 295 |
|
| 296 |
dogs = await detect_multiple_dogs(image)
|
| 297 |
|
| 298 |
-
|
| 299 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 300 |
|
| 301 |
-
#
|
| 302 |
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
| 303 |
explanations = []
|
| 304 |
buttons = []
|
|
|
|
| 243 |
# print(error_msg) # 添加日誌輸出
|
| 244 |
# return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
| 245 |
|
| 246 |
+
|
| 247 |
+
async def detect_multiple_dogs(image, conf_threshold=0.1, iou_threshold=0.3, merge_threshold=0.5):
|
| 248 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
| 249 |
dogs = []
|
| 250 |
|
| 251 |
image_area = image.width * image.height
|
| 252 |
+
min_area_ratio = 0.005 # 降低最小面積比例以捕獲更多小型狗狗
|
| 253 |
|
| 254 |
for box in results.boxes:
|
| 255 |
if box.cls == 16: # COCO 數據集中狗的類別是 16
|
|
|
|
| 257 |
area = (xyxy[2] - xyxy[0]) * (xyxy[3] - xyxy[1])
|
| 258 |
if area / image_area >= min_area_ratio:
|
| 259 |
confidence = box.conf.item()
|
| 260 |
+
dogs.append((xyxy, confidence))
|
|
|
|
| 261 |
|
| 262 |
+
# 使用 NMS 進行後處理
|
| 263 |
+
if dogs:
|
| 264 |
+
boxes = torch.tensor([dog[0] for dog in dogs])
|
| 265 |
+
scores = torch.tensor([dog[1] for dog in dogs])
|
| 266 |
+
keep = nms(boxes, scores, iou_threshold)
|
|
|
|
| 267 |
|
| 268 |
+
merged_dogs = []
|
| 269 |
+
for i in keep:
|
| 270 |
+
xyxy = boxes[i].tolist()
|
| 271 |
+
confidence = scores[i].item()
|
| 272 |
+
# 擴大邊界框以包含更多上下文
|
| 273 |
+
expanded_xyxy = [
|
| 274 |
+
max(0, xyxy[0] - 20),
|
| 275 |
+
max(0, xyxy[1] - 20),
|
| 276 |
+
min(image.width, xyxy[2] + 20),
|
| 277 |
+
min(image.height, xyxy[3] + 20)
|
| 278 |
+
]
|
| 279 |
+
cropped_image = image.crop(expanded_xyxy)
|
| 280 |
+
merged_dogs.append((cropped_image, confidence, expanded_xyxy))
|
| 281 |
|
| 282 |
+
return merged_dogs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
|
| 284 |
+
# 如果沒有檢測到狗狗,返回整張圖片
|
| 285 |
+
return [(image, 1.0, [0, 0, image.width, image.height])]
|
| 286 |
|
| 287 |
async def predict(image):
|
| 288 |
if image is None:
|
|
|
|
| 294 |
|
| 295 |
dogs = await detect_multiple_dogs(image)
|
| 296 |
|
| 297 |
+
# 如果沒有檢測到狗狗或只檢測到一隻,使用整張圖像進行分類
|
| 298 |
+
if len(dogs) <= 1:
|
| 299 |
+
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
| 300 |
+
if top1_prob >= 0.5:
|
| 301 |
+
return await process_single_dog(image)
|
| 302 |
+
else:
|
| 303 |
+
dogs = [(image, 1.0, [0, 0, image.width, image.height])]
|
| 304 |
|
| 305 |
+
# 多狗情境處理保持不變
|
| 306 |
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
| 307 |
explanations = []
|
| 308 |
buttons = []
|