Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -13,7 +13,7 @@ os.system('pip install ultralytics')
|
|
| 13 |
from ultralytics import YOLO
|
| 14 |
|
| 15 |
# 下載YOLOv5預訓練模型
|
| 16 |
-
model_yolo = YOLO('
|
| 17 |
|
| 18 |
|
| 19 |
dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
|
|
@@ -166,6 +166,103 @@ def get_akc_breeds_link():
|
|
| 166 |
# return f"An error occurred: {e}", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 167 |
|
| 168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
def predict(image):
|
| 171 |
if image is None:
|
|
@@ -177,22 +274,16 @@ def predict(image):
|
|
| 177 |
image = Image.fromarray(image)
|
| 178 |
|
| 179 |
# 使用 YOLO 偵測狗
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
if len(boxes) == 0:
|
| 184 |
-
return "The image is too unclear or the dog breed is not in the dataset. Please upload a clearer image of the dog.", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 185 |
-
|
| 186 |
-
# 檢查 YOLO 偵測到的邊界框���量
|
| 187 |
-
print(f"Detected {len(boxes)} dogs in the image.")
|
| 188 |
|
|
|
|
| 189 |
explanations = []
|
| 190 |
visible_buttons = []
|
|
|
|
| 191 |
|
| 192 |
-
|
| 193 |
-
for i, box in enumerate(boxes):
|
| 194 |
-
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
| 195 |
-
cropped_image = image.crop((x1, y1, x2, y2)) # 裁剪出每隻狗的區域
|
| 196 |
image_tensor = preprocess_image(cropped_image)
|
| 197 |
|
| 198 |
with torch.no_grad():
|
|
@@ -206,32 +297,36 @@ def predict(image):
|
|
| 206 |
topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
|
| 207 |
topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
|
| 208 |
|
| 209 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
if top1_prob >= 0.5:
|
| 211 |
breed = topk_breeds[0]
|
| 212 |
description = get_dog_description(breed)
|
| 213 |
-
explanations.append(f"
|
|
|
|
| 214 |
elif 0.2 <= top1_prob < 0.5:
|
| 215 |
explanation = (
|
| 216 |
-
f"
|
| 217 |
-
f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]}
|
| 218 |
-
f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]}
|
| 219 |
-
f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]}
|
| 220 |
)
|
| 221 |
explanations.append(explanation)
|
| 222 |
visible_buttons.extend([f"More about {topk_breeds[0]}", f"More about {topk_breeds[1]}", f"More about {topk_breeds[2]}"])
|
| 223 |
else:
|
| 224 |
-
explanations.append("The image is
|
| 225 |
|
| 226 |
-
# 將結果匯總後返回
|
| 227 |
final_explanation = "\n\n".join(explanations)
|
| 228 |
-
return final_explanation, gr.update(visible=len(visible_buttons) >= 1), gr.update(visible=len(visible_buttons) >= 2), gr.update(visible=len(visible_buttons) >= 3)
|
| 229 |
|
| 230 |
except Exception as e:
|
| 231 |
return f"An error occurred: {e}", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 232 |
|
| 233 |
|
| 234 |
-
|
| 235 |
def format_description(description, breed):
|
| 236 |
if isinstance(description, dict):
|
| 237 |
formatted_description = "\n\n".join([f"**{key}**: {value}" for key, value in description.items()])
|
|
@@ -249,11 +344,6 @@ def format_description(description, breed):
|
|
| 249 |
|
| 250 |
return formatted_description
|
| 251 |
|
| 252 |
-
def show_details(breed):
|
| 253 |
-
breed_name = breed.split("More about ")[-1]
|
| 254 |
-
description = get_dog_description(breed_name)
|
| 255 |
-
return format_description(description, breed_name)
|
| 256 |
-
|
| 257 |
with gr.Blocks(css="""
|
| 258 |
.container {
|
| 259 |
max-width: 900px;
|
|
@@ -290,6 +380,7 @@ with gr.Blocks(css="""
|
|
| 290 |
|
| 291 |
with gr.Row():
|
| 292 |
input_image = gr.Image(label="Upload a dog image", type="numpy")
|
|
|
|
| 293 |
output = gr.Markdown(label="Prediction Results")
|
| 294 |
|
| 295 |
with gr.Row():
|
|
@@ -297,7 +388,7 @@ with gr.Blocks(css="""
|
|
| 297 |
btn2 = gr.Button("View More 2", visible=False)
|
| 298 |
btn3 = gr.Button("View More 3", visible=False)
|
| 299 |
|
| 300 |
-
input_image.change(predict, inputs=input_image, outputs=[output, btn1, btn2, btn3])
|
| 301 |
|
| 302 |
btn1.click(show_details, inputs=btn1, outputs=output)
|
| 303 |
btn2.click(show_details, inputs=btn2, outputs=output)
|
|
@@ -314,3 +405,4 @@ with gr.Blocks(css="""
|
|
| 314 |
if __name__ == "__main__":
|
| 315 |
iface.launch()
|
| 316 |
|
|
|
|
|
|
| 13 |
from ultralytics import YOLO
|
| 14 |
|
| 15 |
# 下載YOLOv5預訓練模型
|
| 16 |
+
model_yolo = YOLO('yolov8n.pt') # 使用 YOLOv5 預訓練模型
|
| 17 |
|
| 18 |
|
| 19 |
dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
|
|
|
|
| 166 |
# return f"An error occurred: {e}", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 167 |
|
| 168 |
|
| 169 |
+
# def format_description(description, breed):
|
| 170 |
+
# if isinstance(description, dict):
|
| 171 |
+
# formatted_description = "\n\n".join([f"**{key}**: {value}" for key, value in description.items()])
|
| 172 |
+
# else:
|
| 173 |
+
# formatted_description = description
|
| 174 |
+
|
| 175 |
+
# akc_link = get_akc_breeds_link()
|
| 176 |
+
# formatted_description += f"\n\n**Want to learn more about dog breeds?** [Visit the AKC dog breeds page]({akc_link}) and search for {breed} to find detailed information."
|
| 177 |
+
|
| 178 |
+
# disclaimer = ("\n\n*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page. "
|
| 179 |
+
# "You may need to search for the specific breed on that page. "
|
| 180 |
+
# "I am not responsible for the content on external sites. "
|
| 181 |
+
# "Please refer to the AKC's terms of use and privacy policy.*")
|
| 182 |
+
# formatted_description += disclaimer
|
| 183 |
+
|
| 184 |
+
# return formatted_description
|
| 185 |
+
|
| 186 |
+
# def show_details(breed):
|
| 187 |
+
# breed_name = breed.split("More about ")[-1]
|
| 188 |
+
# description = get_dog_description(breed_name)
|
| 189 |
+
# return format_description(description, breed_name)
|
| 190 |
+
|
| 191 |
+
# with gr.Blocks(css="""
|
| 192 |
+
# .container {
|
| 193 |
+
# max-width: 900px;
|
| 194 |
+
# margin: 0 auto;
|
| 195 |
+
# padding: 20px;
|
| 196 |
+
# background-color: rgba(255, 255, 255, 0.9);
|
| 197 |
+
# border-radius: 15px;
|
| 198 |
+
# box-shadow: 0 0 20px rgba(0, 0, 0, 0.1);
|
| 199 |
+
# }
|
| 200 |
+
# .gr-form { display: flex; flex-direction: column; align-items: center; }
|
| 201 |
+
# .gr-box { width: 100%; max-width: 500px; }
|
| 202 |
+
# .output-markdown, .output-image {
|
| 203 |
+
# margin-top: 20px;
|
| 204 |
+
# padding: 15px;
|
| 205 |
+
# background-color: #f5f5f5;
|
| 206 |
+
# border-radius: 10px;
|
| 207 |
+
# }
|
| 208 |
+
# .examples {
|
| 209 |
+
# display: flex;
|
| 210 |
+
# justify-content: center;
|
| 211 |
+
# flex-wrap: wrap;
|
| 212 |
+
# gap: 10px;
|
| 213 |
+
# margin-top: 20px;
|
| 214 |
+
# }
|
| 215 |
+
# .examples img {
|
| 216 |
+
# width: 100px;
|
| 217 |
+
# height: 100px;
|
| 218 |
+
# object-fit: cover;
|
| 219 |
+
# }
|
| 220 |
+
# """) as iface:
|
| 221 |
+
|
| 222 |
+
# gr.HTML("<h1 style='font-family:Roboto; font-weight:bold; color:#2C3E50; text-align:center;'>🐶 Dog Breed Classifier 🔍</h1>")
|
| 223 |
+
# gr.HTML("<p style='font-family:Open Sans; color:#34495E; text-align:center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
|
| 224 |
+
|
| 225 |
+
# with gr.Row():
|
| 226 |
+
# input_image = gr.Image(label="Upload a dog image", type="numpy")
|
| 227 |
+
# output = gr.Markdown(label="Prediction Results")
|
| 228 |
+
|
| 229 |
+
# with gr.Row():
|
| 230 |
+
# btn1 = gr.Button("View More 1", visible=False)
|
| 231 |
+
# btn2 = gr.Button("View More 2", visible=False)
|
| 232 |
+
# btn3 = gr.Button("View More 3", visible=False)
|
| 233 |
+
|
| 234 |
+
# input_image.change(predict, inputs=input_image, outputs=[output, btn1, btn2, btn3])
|
| 235 |
+
|
| 236 |
+
# btn1.click(show_details, inputs=btn1, outputs=output)
|
| 237 |
+
# btn2.click(show_details, inputs=btn2, outputs=output)
|
| 238 |
+
# btn3.click(show_details, inputs=btn3, outputs=output)
|
| 239 |
+
|
| 240 |
+
# gr.Examples(
|
| 241 |
+
# examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
|
| 242 |
+
# inputs=input_image
|
| 243 |
+
# )
|
| 244 |
+
|
| 245 |
+
# gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog%20Breed%20Classifier">Dog Breed Classifier</a>')
|
| 246 |
+
|
| 247 |
+
# # launch the program
|
| 248 |
+
# if __name__ == "__main__":
|
| 249 |
+
# iface.launch()
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
# 使用 YOLOv8 進行狗偵測
|
| 253 |
+
def detect_dogs(image):
|
| 254 |
+
results = yolo_model.predict(image)
|
| 255 |
+
dogs = []
|
| 256 |
+
|
| 257 |
+
for result in results:
|
| 258 |
+
for box in result.boxes:
|
| 259 |
+
if box.cls == 16: # COCO 資料集中的狗類別是16
|
| 260 |
+
xyxy = box.xyxy
|
| 261 |
+
confidence = box.conf
|
| 262 |
+
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
| 263 |
+
dogs.append((cropped_image, confidence, xyxy))
|
| 264 |
+
|
| 265 |
+
return dogs
|
| 266 |
|
| 267 |
def predict(image):
|
| 268 |
if image is None:
|
|
|
|
| 274 |
image = Image.fromarray(image)
|
| 275 |
|
| 276 |
# 使用 YOLO 偵測狗
|
| 277 |
+
dogs = detect_dogs(image)
|
| 278 |
+
if len(dogs) == 0:
|
| 279 |
+
return "No dogs detected or the image is too unclear. Please upload a clearer image.", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
|
| 281 |
+
# 開始處理每一隻狗
|
| 282 |
explanations = []
|
| 283 |
visible_buttons = []
|
| 284 |
+
annotated_image = image.copy()
|
| 285 |
|
| 286 |
+
for i, (cropped_image, confidence, box) in enumerate(dogs):
|
|
|
|
|
|
|
|
|
|
| 287 |
image_tensor = preprocess_image(cropped_image)
|
| 288 |
|
| 289 |
with torch.no_grad():
|
|
|
|
| 297 |
topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
|
| 298 |
topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
|
| 299 |
|
| 300 |
+
# 標註狗的邊界框
|
| 301 |
+
draw = ImageDraw.Draw(annotated_image)
|
| 302 |
+
draw.rectangle(box.tolist(), outline="red", width=3)
|
| 303 |
+
draw.text((box[0], box[1]), f"Dog {i+1}", fill="red")
|
| 304 |
+
|
| 305 |
+
# 信心度大於 50%,顯示詳細品種資訊
|
| 306 |
if top1_prob >= 0.5:
|
| 307 |
breed = topk_breeds[0]
|
| 308 |
description = get_dog_description(breed)
|
| 309 |
+
explanations.append(f"Dog {i+1}: **{breed}**\n{format_description(description, breed)}")
|
| 310 |
+
# 信心度 20%-49%,顯示 Top 3 品種
|
| 311 |
elif 0.2 <= top1_prob < 0.5:
|
| 312 |
explanation = (
|
| 313 |
+
f"Dog {i+1}: Detected with moderate confidence. Here are the top 3 possible breeds:\n"
|
| 314 |
+
f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]})\n"
|
| 315 |
+
f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]})\n"
|
| 316 |
+
f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]})\n"
|
| 317 |
)
|
| 318 |
explanations.append(explanation)
|
| 319 |
visible_buttons.extend([f"More about {topk_breeds[0]}", f"More about {topk_breeds[1]}", f"More about {topk_breeds[2]}"])
|
| 320 |
else:
|
| 321 |
+
explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
|
| 322 |
|
|
|
|
| 323 |
final_explanation = "\n\n".join(explanations)
|
| 324 |
+
return annotated_image, final_explanation, gr.update(visible=len(visible_buttons) >= 1), gr.update(visible=len(visible_buttons) >= 2), gr.update(visible=len(visible_buttons) >= 3)
|
| 325 |
|
| 326 |
except Exception as e:
|
| 327 |
return f"An error occurred: {e}", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 328 |
|
| 329 |
|
|
|
|
| 330 |
def format_description(description, breed):
|
| 331 |
if isinstance(description, dict):
|
| 332 |
formatted_description = "\n\n".join([f"**{key}**: {value}" for key, value in description.items()])
|
|
|
|
| 344 |
|
| 345 |
return formatted_description
|
| 346 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
with gr.Blocks(css="""
|
| 348 |
.container {
|
| 349 |
max-width: 900px;
|
|
|
|
| 380 |
|
| 381 |
with gr.Row():
|
| 382 |
input_image = gr.Image(label="Upload a dog image", type="numpy")
|
| 383 |
+
output_image = gr.Image(label="Annotated Image")
|
| 384 |
output = gr.Markdown(label="Prediction Results")
|
| 385 |
|
| 386 |
with gr.Row():
|
|
|
|
| 388 |
btn2 = gr.Button("View More 2", visible=False)
|
| 389 |
btn3 = gr.Button("View More 3", visible=False)
|
| 390 |
|
| 391 |
+
input_image.change(predict, inputs=input_image, outputs=[output_image, output, btn1, btn2, btn3])
|
| 392 |
|
| 393 |
btn1.click(show_details, inputs=btn1, outputs=output)
|
| 394 |
btn2.click(show_details, inputs=btn2, outputs=output)
|
|
|
|
| 405 |
if __name__ == "__main__":
|
| 406 |
iface.launch()
|
| 407 |
|
| 408 |
+
|