Spaces:
Running
on
Zero
Running
on
Zero
Update scoring_calculation_system.py
Browse files- scoring_calculation_system.py +145 -124
scoring_calculation_system.py
CHANGED
|
@@ -1509,38 +1509,75 @@ def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -
|
|
| 1509 |
|
| 1510 |
|
| 1511 |
def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1512 |
"""
|
| 1513 |
-
|
| 1514 |
-
|
| 1515 |
-
主要改進:
|
| 1516 |
-
1. 提高關鍵參數權重
|
| 1517 |
-
2. 加強條件權重調整
|
| 1518 |
-
3. 更嚴格的不適配懲罰
|
| 1519 |
-
4. 非線性分數調整
|
| 1520 |
-
"""
|
| 1521 |
-
# 關鍵不適配參數檢查 - 加強懲罰機制
|
| 1522 |
-
critical_params = {
|
| 1523 |
'space': {
|
| 1524 |
-
'
|
| 1525 |
-
'
|
| 1526 |
-
'
|
| 1527 |
},
|
| 1528 |
-
'
|
| 1529 |
-
'
|
| 1530 |
-
'
|
| 1531 |
-
'
|
|
|
|
| 1532 |
},
|
| 1533 |
'experience': {
|
| 1534 |
-
'
|
| 1535 |
-
'
|
| 1536 |
-
'
|
| 1537 |
}
|
| 1538 |
}
|
| 1539 |
|
| 1540 |
-
#
|
| 1541 |
-
|
| 1542 |
-
|
| 1543 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1544 |
|
| 1545 |
# 基礎權重設定
|
| 1546 |
base_weights = {
|
|
@@ -1552,135 +1589,119 @@ def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreference
|
|
| 1552 |
'noise': 0.10
|
| 1553 |
}
|
| 1554 |
|
| 1555 |
-
#
|
| 1556 |
-
|
| 1557 |
-
|
| 1558 |
-
# 基礎分數調整:優秀匹配得到更高分數
|
| 1559 |
-
if score > 0.8:
|
| 1560 |
-
adjusted_scores[param] = min(1.0, score * 1.3) # 優秀匹配額外加分
|
| 1561 |
-
elif score < 0.4:
|
| 1562 |
-
adjusted_scores[param] = score * 0.7 # 較差匹配更大懲罰
|
| 1563 |
-
else:
|
| 1564 |
-
adjusted_scores[param] = score
|
| 1565 |
-
|
| 1566 |
-
# 權重動態調整
|
| 1567 |
-
adjusted_weights = {}
|
| 1568 |
-
for param, weight in base_weights.items():
|
| 1569 |
-
multiplier = 1.0
|
| 1570 |
|
| 1571 |
-
#
|
| 1572 |
-
if
|
| 1573 |
-
|
| 1574 |
-
|
| 1575 |
-
|
| 1576 |
-
|
| 1577 |
-
|
| 1578 |
-
|
| 1579 |
-
|
| 1580 |
-
|
| 1581 |
-
|
| 1582 |
-
|
| 1583 |
-
|
| 1584 |
-
|
| 1585 |
-
|
| 1586 |
-
|
| 1587 |
-
|
| 1588 |
-
elif user_prefs.exercise_time < 60:
|
| 1589 |
-
multiplier *= 0.6 # 運動時間嚴重不足
|
| 1590 |
-
elif exercise_needs == 'LOW' and user_prefs.exercise_time > 120:
|
| 1591 |
-
multiplier *= 0.8 # 過度運動對低運動需求品種不利
|
| 1592 |
-
|
| 1593 |
-
# 經驗需求調整
|
| 1594 |
-
elif param == 'experience':
|
| 1595 |
-
if breed_info.get('Care Level') == 'High':
|
| 1596 |
-
if user_prefs.experience_level == 'beginner':
|
| 1597 |
-
multiplier *= 0.6
|
| 1598 |
-
elif user_prefs.experience_level == 'advanced':
|
| 1599 |
-
multiplier *= 1.3
|
| 1600 |
-
|
| 1601 |
-
adjusted_weights[param] = weight * multiplier
|
| 1602 |
-
|
| 1603 |
-
# 重新正規化權重
|
| 1604 |
-
total_weight = sum(adjusted_weights.values())
|
| 1605 |
-
normalized_weights = {k: v/total_weight for k, v in adjusted_weights.items()}
|
| 1606 |
-
|
| 1607 |
-
# 計算加權分數
|
| 1608 |
-
weighted_scores = {}
|
| 1609 |
-
for param, weight in normalized_weights.items():
|
| 1610 |
-
weighted_scores[param] = adjusted_scores[param] * weight
|
| 1611 |
|
| 1612 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1613 |
primary_params = {'space', 'exercise', 'experience'}
|
| 1614 |
-
primary_score = sum(weighted_scores[p] for p in primary_params)
|
| 1615 |
-
secondary_score = sum(weighted_scores[p] for p in weighted_scores if p not in primary_params)
|
| 1616 |
-
sum(normalized_weights[p] for p in normalized_weights if p not in primary_params)
|
| 1617 |
|
| 1618 |
-
#
|
| 1619 |
-
base_score = (primary_score * 0.7
|
| 1620 |
|
| 1621 |
-
#
|
| 1622 |
-
|
|
|
|
|
|
|
| 1623 |
if all(adjusted_scores[p] > 0.8 for p in primary_params):
|
| 1624 |
-
|
| 1625 |
-
|
| 1626 |
-
#
|
| 1627 |
-
|
|
|
|
| 1628 |
|
| 1629 |
-
#
|
| 1630 |
breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
|
| 1631 |
|
| 1632 |
-
#
|
| 1633 |
-
final_score = (
|
| 1634 |
|
| 1635 |
-
return final_score
|
|
|
|
| 1636 |
|
| 1637 |
def amplify_score_extreme(score: float) -> float:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1638 |
"""
|
| 1639 |
-
將原始分數(0-1範圍)映射到最終評分範圍(60-95%)
|
| 1640 |
-
|
| 1641 |
-
分數映射邏輯:
|
| 1642 |
-
- 0-0.3: 60-70% (較差匹配)
|
| 1643 |
-
- 0.3-0.6: 70-80% (中等匹配)
|
| 1644 |
-
- 0.6-0.8: 80-90% (良好匹配)
|
| 1645 |
-
- 0.8-1.0: 90-95% (優秀匹配)
|
| 1646 |
-
|
| 1647 |
-
每個區間使用線性映射,確保相同輸入產生相同輸出
|
| 1648 |
-
"""
|
| 1649 |
-
# 定義分數區間和對應的輸出範圍
|
| 1650 |
ranges = {
|
| 1651 |
'poor': {
|
| 1652 |
'range': (0.0, 0.3),
|
| 1653 |
-
'out_min': 0.
|
| 1654 |
-
'out_max': 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1655 |
},
|
| 1656 |
-
'
|
| 1657 |
-
'range': (0.
|
| 1658 |
-
'out_min': 0.
|
| 1659 |
-
'out_max': 0.
|
|
|
|
| 1660 |
},
|
| 1661 |
'good': {
|
| 1662 |
-
'range': (0.
|
| 1663 |
-
'out_min': 0.
|
| 1664 |
-
'out_max': 0.
|
|
|
|
| 1665 |
},
|
| 1666 |
'excellent': {
|
| 1667 |
-
'range': (0.8,
|
| 1668 |
-
'out_min': 0.
|
| 1669 |
-
'out_max': 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1670 |
}
|
| 1671 |
}
|
| 1672 |
|
| 1673 |
-
# 找出分數所屬區間並進行映射
|
| 1674 |
for config in ranges.values():
|
| 1675 |
range_min, range_max = config['range']
|
| 1676 |
if range_min <= score <= range_max:
|
|
|
|
| 1677 |
position = (score - range_min) / (range_max - range_min)
|
| 1678 |
|
| 1679 |
-
#
|
|
|
|
|
|
|
|
|
|
| 1680 |
result = config['out_min'] + (config['out_max'] - config['out_min']) * position
|
| 1681 |
|
| 1682 |
-
|
| 1683 |
-
return round(result, 1)
|
| 1684 |
|
| 1685 |
-
|
| 1686 |
-
return 0.6 if score < 0.0 else 0.95
|
|
|
|
| 1509 |
|
| 1510 |
|
| 1511 |
def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
| 1512 |
+
"""
|
| 1513 |
+
主要優化:
|
| 1514 |
+
1. 更細緻的特徵匹配評估
|
| 1515 |
+
2. 非線性的權重計算
|
| 1516 |
+
3. 多層次的條件影響
|
| 1517 |
+
4. 動態閾值調整
|
| 1518 |
"""
|
| 1519 |
+
# 關鍵特徵評估閾值
|
| 1520 |
+
feature_thresholds = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1521 |
'space': {
|
| 1522 |
+
'apartment': {'Small': 0.9, 'Medium': 0.6, 'Large': 0.3, 'Giant': 0.2},
|
| 1523 |
+
'house_small': {'Small': 0.8, 'Medium': 0.8, 'Large': 0.6, 'Giant': 0.4},
|
| 1524 |
+
'house_large': {'Small': 0.7, 'Medium': 0.85, 'Large': 0.9, 'Giant': 0.9}
|
| 1525 |
},
|
| 1526 |
+
'exercise': {
|
| 1527 |
+
'VERY HIGH': {'min': 120, 'optimal': 180, 'factor': 1.5},
|
| 1528 |
+
'HIGH': {'min': 90, 'optimal': 120, 'factor': 1.3},
|
| 1529 |
+
'MODERATE': {'min': 45, 'optimal': 90, 'factor': 1.1},
|
| 1530 |
+
'LOW': {'min': 20, 'optimal': 45, 'factor': 0.9}
|
| 1531 |
},
|
| 1532 |
'experience': {
|
| 1533 |
+
'beginner': {'High': 0.4, 'Moderate': 0.7, 'Low': 0.9},
|
| 1534 |
+
'intermediate': {'High': 0.7, 'Moderate': 0.85, 'Low': 0.95},
|
| 1535 |
+
'advanced': {'High': 0.9, 'Moderate': 0.95, 'Low': 1.0}
|
| 1536 |
}
|
| 1537 |
}
|
| 1538 |
|
| 1539 |
+
# 評估空間適配性
|
| 1540 |
+
def evaluate_space_compatibility():
|
| 1541 |
+
size = breed_info['Size']
|
| 1542 |
+
base_threshold = feature_thresholds['space'][user_prefs.living_space][size]
|
| 1543 |
+
space_score = scores['space']
|
| 1544 |
+
|
| 1545 |
+
# 根據空間類型調整評分
|
| 1546 |
+
if user_prefs.living_space == 'apartment' and size in ['Large', 'Giant']:
|
| 1547 |
+
space_score *= 0.5
|
| 1548 |
+
elif user_prefs.living_space == 'house_large' and size in ['Large', 'Giant']:
|
| 1549 |
+
space_score *= 1.2
|
| 1550 |
+
|
| 1551 |
+
return min(1.0, space_score * base_threshold)
|
| 1552 |
+
|
| 1553 |
+
# 評估運動需求匹配度
|
| 1554 |
+
def evaluate_exercise_compatibility():
|
| 1555 |
+
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
| 1556 |
+
config = feature_thresholds['exercise'][exercise_needs]
|
| 1557 |
+
|
| 1558 |
+
if user_prefs.exercise_time < config['min']:
|
| 1559 |
+
return scores['exercise'] * 0.6
|
| 1560 |
+
elif user_prefs.exercise_time >= config['optimal']:
|
| 1561 |
+
return min(1.0, scores['exercise'] * config['factor'])
|
| 1562 |
+
else:
|
| 1563 |
+
ratio = (user_prefs.exercise_time - config['min']) / (config['optimal'] - config['min'])
|
| 1564 |
+
return scores['exercise'] * (0.6 + ratio * 0.4)
|
| 1565 |
+
|
| 1566 |
+
# 評估經驗需求匹配度
|
| 1567 |
+
def evaluate_experience_compatibility():
|
| 1568 |
+
care_level = breed_info.get('Care Level', 'Moderate')
|
| 1569 |
+
base_score = feature_thresholds['experience'][user_prefs.experience_level][care_level]
|
| 1570 |
+
return min(1.0, scores['experience'] * base_score)
|
| 1571 |
+
|
| 1572 |
+
# 計算調整後的分數
|
| 1573 |
+
adjusted_scores = {
|
| 1574 |
+
'space': evaluate_space_compatibility(),
|
| 1575 |
+
'exercise': evaluate_exercise_compatibility(),
|
| 1576 |
+
'experience': evaluate_experience_compatibility(),
|
| 1577 |
+
'grooming': scores['grooming'],
|
| 1578 |
+
'health': scores['health'],
|
| 1579 |
+
'noise': scores['noise']
|
| 1580 |
+
}
|
| 1581 |
|
| 1582 |
# 基礎權重設定
|
| 1583 |
base_weights = {
|
|
|
|
| 1589 |
'noise': 0.10
|
| 1590 |
}
|
| 1591 |
|
| 1592 |
+
# 動態權重調整
|
| 1593 |
+
def calculate_dynamic_weights():
|
| 1594 |
+
weights = base_weights.copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1595 |
|
| 1596 |
+
# 空間權重調整
|
| 1597 |
+
if user_prefs.living_space == 'apartment':
|
| 1598 |
+
weights['space'] *= 1.4
|
| 1599 |
+
weights['noise'] *= 1.3
|
| 1600 |
+
|
| 1601 |
+
# 運動權重調整
|
| 1602 |
+
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
| 1603 |
+
if exercise_needs in ['VERY HIGH', 'HIGH']:
|
| 1604 |
+
weights['exercise'] *= 1.3
|
| 1605 |
+
|
| 1606 |
+
# 經驗權重調整
|
| 1607 |
+
if user_prefs.experience_level == 'beginner':
|
| 1608 |
+
weights['experience'] *= 1.4
|
| 1609 |
+
|
| 1610 |
+
# 重新正規化
|
| 1611 |
+
total = sum(weights.values())
|
| 1612 |
+
return {k: v/total for k, v in weights.items()}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1613 |
|
| 1614 |
+
# 計算最終分數
|
| 1615 |
+
weights = calculate_dynamic_weights()
|
| 1616 |
+
weighted_scores = {param: score * weights[param]
|
| 1617 |
+
for param, score in adjusted_scores.items()}
|
| 1618 |
+
|
| 1619 |
+
# 分開計算主要和次要參數
|
| 1620 |
primary_params = {'space', 'exercise', 'experience'}
|
| 1621 |
+
primary_score = sum(weighted_scores[p] for p in primary_params)
|
| 1622 |
+
secondary_score = sum(weighted_scores[p] for p in weighted_scores if p not in primary_params)
|
|
|
|
| 1623 |
|
| 1624 |
+
# 計算基礎分數
|
| 1625 |
+
base_score = (primary_score * 0.7 + secondary_score * 0.3)
|
| 1626 |
|
| 1627 |
+
# 特殊條件加成或懲罰
|
| 1628 |
+
bonus = 0.0
|
| 1629 |
+
|
| 1630 |
+
# 完美匹配加成
|
| 1631 |
if all(adjusted_scores[p] > 0.8 for p in primary_params):
|
| 1632 |
+
bonus += 0.1
|
| 1633 |
+
|
| 1634 |
+
# 極端不適配懲罰
|
| 1635 |
+
if any(adjusted_scores[p] < 0.4 for p in primary_params):
|
| 1636 |
+
bonus -= 0.15
|
| 1637 |
|
| 1638 |
+
# 整合品種特性加成
|
| 1639 |
breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
|
| 1640 |
|
| 1641 |
+
# 計算最終分數
|
| 1642 |
+
final_score = (base_score + bonus) * 0.8 + breed_bonus * 0.2
|
| 1643 |
|
| 1644 |
+
return max(0.0, min(1.0, final_score))
|
| 1645 |
+
|
| 1646 |
|
| 1647 |
def amplify_score_extreme(score: float) -> float:
|
| 1648 |
+
"""
|
| 1649 |
+
改進:
|
| 1650 |
+
1. 更細緻的分數區間劃分
|
| 1651 |
+
2. 非線性的分數轉換
|
| 1652 |
+
3. 更合理的分數分布
|
| 1653 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1654 |
ranges = {
|
| 1655 |
'poor': {
|
| 1656 |
'range': (0.0, 0.3),
|
| 1657 |
+
'out_min': 0.60,
|
| 1658 |
+
'out_max': 0.68,
|
| 1659 |
+
'curve': 1.2 # 加強懲罰效果
|
| 1660 |
+
},
|
| 1661 |
+
'below_average': {
|
| 1662 |
+
'range': (0.3, 0.5),
|
| 1663 |
+
'out_min': 0.68,
|
| 1664 |
+
'out_max': 0.75,
|
| 1665 |
+
'curve': 1.1
|
| 1666 |
},
|
| 1667 |
+
'average': {
|
| 1668 |
+
'range': (0.5, 0.65),
|
| 1669 |
+
'out_min': 0.75,
|
| 1670 |
+
'out_max': 0.82,
|
| 1671 |
+
'curve': 1.0
|
| 1672 |
},
|
| 1673 |
'good': {
|
| 1674 |
+
'range': (0.65, 0.8),
|
| 1675 |
+
'out_min': 0.82,
|
| 1676 |
+
'out_max': 0.88,
|
| 1677 |
+
'curve': 1.1
|
| 1678 |
},
|
| 1679 |
'excellent': {
|
| 1680 |
+
'range': (0.8, 0.9),
|
| 1681 |
+
'out_min': 0.88,
|
| 1682 |
+
'out_max': 0.92,
|
| 1683 |
+
'curve': 1.2
|
| 1684 |
+
},
|
| 1685 |
+
'perfect': {
|
| 1686 |
+
'range': (0.9, 1.0),
|
| 1687 |
+
'out_min': 0.92,
|
| 1688 |
+
'out_max': 0.95,
|
| 1689 |
+
'curve': 1.3
|
| 1690 |
}
|
| 1691 |
}
|
| 1692 |
|
|
|
|
| 1693 |
for config in ranges.values():
|
| 1694 |
range_min, range_max = config['range']
|
| 1695 |
if range_min <= score <= range_max:
|
| 1696 |
+
# 計算在區間內的相對位置
|
| 1697 |
position = (score - range_min) / (range_max - range_min)
|
| 1698 |
|
| 1699 |
+
# 應用非線性曲線
|
| 1700 |
+
position = pow(position, config['curve'])
|
| 1701 |
+
|
| 1702 |
+
# 映射到輸出範圍
|
| 1703 |
result = config['out_min'] + (config['out_max'] - config['out_min']) * position
|
| 1704 |
|
| 1705 |
+
return round(result, 3)
|
|
|
|
| 1706 |
|
| 1707 |
+
return 0.60 if score < 0.0 else 0.95
|
|
|