Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -34,475 +34,9 @@ from html_templates import (
|
|
| 34 |
from urllib.parse import quote
|
| 35 |
from ultralytics import YOLO
|
| 36 |
import traceback
|
| 37 |
-
import spaces
|
| 38 |
-
import asyncio
|
| 39 |
-
|
| 40 |
-
# model_yolo = YOLO('yolov8l.pt')
|
| 41 |
-
|
| 42 |
-
# history_manager = UserHistoryManager()
|
| 43 |
-
|
| 44 |
-
# dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
|
| 45 |
-
# "Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog", "Bichon_Frise",
|
| 46 |
-
# "Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres",
|
| 47 |
-
# "Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever",
|
| 48 |
-
# "Chihuahua", "Dachshund", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter",
|
| 49 |
-
# "English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd",
|
| 50 |
-
# "German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees",
|
| 51 |
-
# "Greater_Swiss_Mountain_Dog","Havanese", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier",
|
| 52 |
-
# "Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel",
|
| 53 |
-
# "Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa",
|
| 54 |
-
# "Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound",
|
| 55 |
-
# "Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian",
|
| 56 |
-
# "Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed",
|
| 57 |
-
# "Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog", "Shiba_Inu",
|
| 58 |
-
# "Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel",
|
| 59 |
-
# "Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner",
|
| 60 |
-
# "Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier",
|
| 61 |
-
# "Affenpinscher", "Basenji", "Basset", "Beagle", "Black-and-Tan_Coonhound", "Bloodhound",
|
| 62 |
-
# "Bluetick", "Borzoi", "Boxer", "Briard", "Bull_Mastiff", "Cairn", "Chow", "Clumber",
|
| 63 |
-
# "Cocker_Spaniel", "Collie", "Curly-Coated_Retriever", "Dhole", "Dingo",
|
| 64 |
-
# "Flat-Coated_Retriever", "Giant_Schnauzer", "Golden_Retriever", "Groenendael", "Keeshond",
|
| 65 |
-
# "Kelpie", "Komondor", "Kuvasz", "Malamute", "Malinois", "Miniature_Pinscher",
|
| 66 |
-
# "Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone",
|
| 67 |
-
# "Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle",
|
| 68 |
-
# "Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet",
|
| 69 |
-
# "Wire-Haired_Fox_Terrier"]
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
# class MultiHeadAttention(nn.Module):
|
| 73 |
-
|
| 74 |
-
# def __init__(self, in_dim, num_heads=8):
|
| 75 |
-
# super().__init__()
|
| 76 |
-
# self.num_heads = num_heads
|
| 77 |
-
# self.head_dim = max(1, in_dim // num_heads)
|
| 78 |
-
# self.scaled_dim = self.head_dim * num_heads
|
| 79 |
-
# self.fc_in = nn.Linear(in_dim, self.scaled_dim)
|
| 80 |
-
# self.query = nn.Linear(self.scaled_dim, self.scaled_dim)
|
| 81 |
-
# self.key = nn.Linear(self.scaled_dim, self.scaled_dim)
|
| 82 |
-
# self.value = nn.Linear(self.scaled_dim, self.scaled_dim)
|
| 83 |
-
# self.fc_out = nn.Linear(self.scaled_dim, in_dim)
|
| 84 |
-
|
| 85 |
-
# def forward(self, x):
|
| 86 |
-
# N = x.shape[0]
|
| 87 |
-
# x = self.fc_in(x)
|
| 88 |
-
# q = self.query(x).view(N, self.num_heads, self.head_dim)
|
| 89 |
-
# k = self.key(x).view(N, self.num_heads, self.head_dim)
|
| 90 |
-
# v = self.value(x).view(N, self.num_heads, self.head_dim)
|
| 91 |
-
|
| 92 |
-
# energy = torch.einsum("nqd,nkd->nqk", [q, k])
|
| 93 |
-
# attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2)
|
| 94 |
-
|
| 95 |
-
# out = torch.einsum("nqk,nvd->nqd", [attention, v])
|
| 96 |
-
# out = out.reshape(N, self.scaled_dim)
|
| 97 |
-
# out = self.fc_out(out)
|
| 98 |
-
# return out
|
| 99 |
-
|
| 100 |
-
# class BaseModel(nn.Module):
|
| 101 |
-
# def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'):
|
| 102 |
-
# super().__init__()
|
| 103 |
-
# self.device = device
|
| 104 |
-
# self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1)
|
| 105 |
-
# self.feature_dim = self.backbone.classifier[1].in_features
|
| 106 |
-
# self.backbone.classifier = nn.Identity()
|
| 107 |
-
|
| 108 |
-
# self.num_heads = max(1, min(8, self.feature_dim // 64))
|
| 109 |
-
# self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads)
|
| 110 |
-
|
| 111 |
-
# self.classifier = nn.Sequential(
|
| 112 |
-
# nn.LayerNorm(self.feature_dim),
|
| 113 |
-
# nn.Dropout(0.3),
|
| 114 |
-
# nn.Linear(self.feature_dim, num_classes)
|
| 115 |
-
# )
|
| 116 |
-
|
| 117 |
-
# self.to(device)
|
| 118 |
-
|
| 119 |
-
# def forward(self, x):
|
| 120 |
-
# x = x.to(self.device)
|
| 121 |
-
# features = self.backbone(x)
|
| 122 |
-
# attended_features = self.attention(features)
|
| 123 |
-
# logits = self.classifier(attended_features)
|
| 124 |
-
# return logits, attended_features
|
| 125 |
-
|
| 126 |
-
# # Initialize model
|
| 127 |
-
# num_classes = len(dog_breeds)
|
| 128 |
-
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 129 |
-
|
| 130 |
-
# # Initialize base model
|
| 131 |
-
# model = BaseModel(num_classes=num_classes, device=device).to(device)
|
| 132 |
-
|
| 133 |
-
# # Load model path
|
| 134 |
-
# model_path = '124_best_model_dog.pth'
|
| 135 |
-
# checkpoint = torch.load(model_path, map_location=device)
|
| 136 |
-
|
| 137 |
-
# # Load model state
|
| 138 |
-
# model.load_state_dict(checkpoint['base_model'], strict=False)
|
| 139 |
-
# model.eval()
|
| 140 |
-
|
| 141 |
-
# # Image preprocessing function
|
| 142 |
-
# def preprocess_image(image):
|
| 143 |
-
# # If the image is numpy.ndarray turn into PIL.Image
|
| 144 |
-
# if isinstance(image, np.ndarray):
|
| 145 |
-
# image = Image.fromarray(image)
|
| 146 |
-
|
| 147 |
-
# # Use torchvision.transforms to process images
|
| 148 |
-
# transform = transforms.Compose([
|
| 149 |
-
# transforms.Resize((224, 224)),
|
| 150 |
-
# transforms.ToTensor(),
|
| 151 |
-
# transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 152 |
-
# ])
|
| 153 |
-
|
| 154 |
-
# return transform(image).unsqueeze(0)
|
| 155 |
-
|
| 156 |
-
# async def predict_single_dog(image):
|
| 157 |
-
# """
|
| 158 |
-
# Predicts the dog breed using only the classifier.
|
| 159 |
-
# Args:
|
| 160 |
-
# image: PIL Image or numpy array
|
| 161 |
-
# Returns:
|
| 162 |
-
# tuple: (top1_prob, topk_breeds, relative_probs)
|
| 163 |
-
# """
|
| 164 |
-
# image_tensor = preprocess_image(image).to(device)
|
| 165 |
-
|
| 166 |
-
# with torch.no_grad():
|
| 167 |
-
# # Get model outputs (只使用logits,不需要features)
|
| 168 |
-
# logits = model(image_tensor)[0] # 如果model仍返回tuple,取第一個元素
|
| 169 |
-
# probs = F.softmax(logits, dim=1)
|
| 170 |
-
|
| 171 |
-
# # Classifier prediction
|
| 172 |
-
# top5_prob, top5_idx = torch.topk(probs, k=5)
|
| 173 |
-
# breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]]
|
| 174 |
-
# probabilities = [prob.item() for prob in top5_prob[0]]
|
| 175 |
-
|
| 176 |
-
# # Calculate relative probabilities
|
| 177 |
-
# sum_probs = sum(probabilities[:3]) # 只取前三個來計算相對概率
|
| 178 |
-
# relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]]
|
| 179 |
-
|
| 180 |
-
# # Debug output
|
| 181 |
-
# print("\nClassifier Predictions:")
|
| 182 |
-
# for breed, prob in zip(breeds[:5], probabilities[:5]):
|
| 183 |
-
# print(f"{breed}: {prob:.4f}")
|
| 184 |
-
|
| 185 |
-
# return probabilities[0], breeds[:3], relative_probs
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
# async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
|
| 189 |
-
# results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
| 190 |
-
# dogs = []
|
| 191 |
-
# boxes = []
|
| 192 |
-
# for box in results.boxes:
|
| 193 |
-
# if box.cls == 16: # COCO dataset class for dog is 16
|
| 194 |
-
# xyxy = box.xyxy[0].tolist()
|
| 195 |
-
# confidence = box.conf.item()
|
| 196 |
-
# boxes.append((xyxy, confidence))
|
| 197 |
-
|
| 198 |
-
# if not boxes:
|
| 199 |
-
# dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
| 200 |
-
# else:
|
| 201 |
-
# nms_boxes = non_max_suppression(boxes, iou_threshold)
|
| 202 |
-
|
| 203 |
-
# for box, confidence in nms_boxes:
|
| 204 |
-
# x1, y1, x2, y2 = box
|
| 205 |
-
# w, h = x2 - x1, y2 - y1
|
| 206 |
-
# x1 = max(0, x1 - w * 0.05)
|
| 207 |
-
# y1 = max(0, y1 - h * 0.05)
|
| 208 |
-
# x2 = min(image.width, x2 + w * 0.05)
|
| 209 |
-
# y2 = min(image.height, y2 + h * 0.05)
|
| 210 |
-
# cropped_image = image.crop((x1, y1, x2, y2))
|
| 211 |
-
# dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
|
| 212 |
-
|
| 213 |
-
# return dogs
|
| 214 |
-
|
| 215 |
-
# def non_max_suppression(boxes, iou_threshold):
|
| 216 |
-
# keep = []
|
| 217 |
-
# boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
|
| 218 |
-
# while boxes:
|
| 219 |
-
# current = boxes.pop(0)
|
| 220 |
-
# keep.append(current)
|
| 221 |
-
# boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
|
| 222 |
-
# return keep
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
# def calculate_iou(box1, box2):
|
| 226 |
-
# x1 = max(box1[0], box2[0])
|
| 227 |
-
# y1 = max(box1[1], box2[1])
|
| 228 |
-
# x2 = min(box1[2], box2[2])
|
| 229 |
-
# y2 = min(box1[3], box2[3])
|
| 230 |
-
|
| 231 |
-
# intersection = max(0, x2 - x1) * max(0, y2 - y1)
|
| 232 |
-
# area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
|
| 233 |
-
# area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
|
| 234 |
-
|
| 235 |
-
# iou = intersection / float(area1 + area2 - intersection)
|
| 236 |
-
# return iou
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
# def create_breed_comparison(breed1: str, breed2: str) -> dict:
|
| 241 |
-
# breed1_info = get_dog_description(breed1)
|
| 242 |
-
# breed2_info = get_dog_description(breed2)
|
| 243 |
-
|
| 244 |
-
# # 標準化數值轉換
|
| 245 |
-
# value_mapping = {
|
| 246 |
-
# 'Size': {'Small': 1, 'Medium': 2, 'Large': 3, 'Giant': 4},
|
| 247 |
-
# 'Exercise_Needs': {'Low': 1, 'Moderate': 2, 'High': 3, 'Very High': 4},
|
| 248 |
-
# 'Care_Level': {'Low': 1, 'Moderate': 2, 'High': 3},
|
| 249 |
-
# 'Grooming_Needs': {'Low': 1, 'Moderate': 2, 'High': 3}
|
| 250 |
-
# }
|
| 251 |
-
|
| 252 |
-
# comparison_data = {
|
| 253 |
-
# breed1: {},
|
| 254 |
-
# breed2: {}
|
| 255 |
-
# }
|
| 256 |
-
|
| 257 |
-
# for breed, info in [(breed1, breed1_info), (breed2, breed2_info)]:
|
| 258 |
-
# comparison_data[breed] = {
|
| 259 |
-
# 'Size': value_mapping['Size'].get(info['Size'], 2), # 預設 Medium
|
| 260 |
-
# 'Exercise_Needs': value_mapping['Exercise_Needs'].get(info['Exercise Needs'], 2), # 預設 Moderate
|
| 261 |
-
# 'Care_Level': value_mapping['Care_Level'].get(info['Care Level'], 2),
|
| 262 |
-
# 'Grooming_Needs': value_mapping['Grooming_Needs'].get(info['Grooming Needs'], 2),
|
| 263 |
-
# 'Good_with_Children': info['Good with Children'] == 'Yes',
|
| 264 |
-
# 'Original_Data': info
|
| 265 |
-
# }
|
| 266 |
-
|
| 267 |
-
# return comparison_data
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
# async def predict(image):
|
| 271 |
-
# """
|
| 272 |
-
# Main prediction function that handles both single and multiple dog detection.
|
| 273 |
-
|
| 274 |
-
# Args:
|
| 275 |
-
# image: PIL Image or numpy array
|
| 276 |
-
|
| 277 |
-
# Returns:
|
| 278 |
-
# tuple: (html_output, annotated_image, initial_state)
|
| 279 |
-
# """
|
| 280 |
-
# if image is None:
|
| 281 |
-
# return format_warning_html("Please upload an image to start."), None, None
|
| 282 |
-
|
| 283 |
-
# try:
|
| 284 |
-
# if isinstance(image, np.ndarray):
|
| 285 |
-
# image = Image.fromarray(image)
|
| 286 |
-
|
| 287 |
-
# # Detect dogs in the image
|
| 288 |
-
# dogs = await detect_multiple_dogs(image)
|
| 289 |
-
# color_scheme = get_color_scheme(len(dogs) == 1)
|
| 290 |
-
|
| 291 |
-
# # Prepare for annotation
|
| 292 |
-
# annotated_image = image.copy()
|
| 293 |
-
# draw = ImageDraw.Draw(annotated_image)
|
| 294 |
-
|
| 295 |
-
# try:
|
| 296 |
-
# font = ImageFont.truetype("arial.ttf", 24)
|
| 297 |
-
# except:
|
| 298 |
-
# font = ImageFont.load_default()
|
| 299 |
-
|
| 300 |
-
# dogs_info = ""
|
| 301 |
-
|
| 302 |
-
# # Process each detected dog
|
| 303 |
-
# for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
|
| 304 |
-
# color = color_scheme if len(dogs) == 1 else color_scheme[i % len(color_scheme)]
|
| 305 |
-
|
| 306 |
-
# # Draw box and label on image
|
| 307 |
-
# draw.rectangle(box, outline=color, width=4)
|
| 308 |
-
# label = f"Dog {i+1}"
|
| 309 |
-
# label_bbox = draw.textbbox((0, 0), label, font=font)
|
| 310 |
-
# label_width = label_bbox[2] - label_bbox[0]
|
| 311 |
-
# label_height = label_bbox[3] - label_bbox[1]
|
| 312 |
-
|
| 313 |
-
# # Draw label background and text
|
| 314 |
-
# label_x = box[0] + 5
|
| 315 |
-
# label_y = box[1] + 5
|
| 316 |
-
# draw.rectangle(
|
| 317 |
-
# [label_x - 2, label_y - 2, label_x + label_width + 4, label_y + label_height + 4],
|
| 318 |
-
# fill='white',
|
| 319 |
-
# outline=color,
|
| 320 |
-
# width=2
|
| 321 |
-
# )
|
| 322 |
-
# draw.text((label_x, label_y), label, fill=color, font=font)
|
| 323 |
-
|
| 324 |
-
# # Predict breed
|
| 325 |
-
# top1_prob, topk_breeds, relative_probs = await predict_single_dog(cropped_image)
|
| 326 |
-
# combined_confidence = detection_confidence * top1_prob
|
| 327 |
-
|
| 328 |
-
# # Format results based on confidence with error handling
|
| 329 |
-
# try:
|
| 330 |
-
# if combined_confidence < 0.2:
|
| 331 |
-
# dogs_info += format_error_message(color, i+1)
|
| 332 |
-
# elif top1_prob >= 0.45:
|
| 333 |
-
# breed = topk_breeds[0]
|
| 334 |
-
# description = get_dog_description(breed)
|
| 335 |
-
# # Handle missing breed description
|
| 336 |
-
# if description is None:
|
| 337 |
-
# # 如果沒有描述,創建一個基本描述
|
| 338 |
-
# description = {
|
| 339 |
-
# "Name": breed,
|
| 340 |
-
# "Size": "Unknown",
|
| 341 |
-
# "Exercise Needs": "Unknown",
|
| 342 |
-
# "Grooming Needs": "Unknown",
|
| 343 |
-
# "Care Level": "Unknown",
|
| 344 |
-
# "Good with Children": "Unknown",
|
| 345 |
-
# "Description": f"Identified as {breed.replace('_', ' ')}"
|
| 346 |
-
# }
|
| 347 |
-
# dogs_info += format_single_dog_result(breed, description, color)
|
| 348 |
-
# else:
|
| 349 |
-
# # 修改format_multiple_breeds_result的調用,包含錯誤處理
|
| 350 |
-
# dogs_info += format_multiple_breeds_result(
|
| 351 |
-
# topk_breeds,
|
| 352 |
-
# relative_probs,
|
| 353 |
-
# color,
|
| 354 |
-
# i+1,
|
| 355 |
-
# lambda breed: get_dog_description(breed) or {
|
| 356 |
-
# "Name": breed,
|
| 357 |
-
# "Size": "Unknown",
|
| 358 |
-
# "Exercise Needs": "Unknown",
|
| 359 |
-
# "Grooming Needs": "Unknown",
|
| 360 |
-
# "Care Level": "Unknown",
|
| 361 |
-
# "Good with Children": "Unknown",
|
| 362 |
-
# "Description": f"Identified as {breed.replace('_', ' ')}"
|
| 363 |
-
# }
|
| 364 |
-
# )
|
| 365 |
-
# except Exception as e:
|
| 366 |
-
# print(f"Error formatting results for dog {i+1}: {str(e)}")
|
| 367 |
-
# dogs_info += format_error_message(color, i+1)
|
| 368 |
-
|
| 369 |
-
# # Wrap final HTML output
|
| 370 |
-
# html_output = format_multi_dog_container(dogs_info)
|
| 371 |
-
|
| 372 |
-
# # Prepare initial state
|
| 373 |
-
# initial_state = {
|
| 374 |
-
# "dogs_info": dogs_info,
|
| 375 |
-
# "image": annotated_image,
|
| 376 |
-
# "is_multi_dog": len(dogs) > 1,
|
| 377 |
-
# "html_output": html_output
|
| 378 |
-
# }
|
| 379 |
-
|
| 380 |
-
# return html_output, annotated_image, initial_state
|
| 381 |
-
|
| 382 |
-
# except Exception as e:
|
| 383 |
-
# error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
|
| 384 |
-
# print(error_msg)
|
| 385 |
-
# return format_warning_html(error_msg), None, None
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
# def show_details_html(choice, previous_output, initial_state):
|
| 389 |
-
# """
|
| 390 |
-
# Generate detailed HTML view for a selected breed.
|
| 391 |
-
|
| 392 |
-
# Args:
|
| 393 |
-
# choice: str, Selected breed option
|
| 394 |
-
# previous_output: str, Previous HTML output
|
| 395 |
-
# initial_state: dict, Current state information
|
| 396 |
-
|
| 397 |
-
# Returns:
|
| 398 |
-
# tuple: (html_output, gradio_update, updated_state)
|
| 399 |
-
# """
|
| 400 |
-
# if not choice:
|
| 401 |
-
# return previous_output, gr.update(visible=True), initial_state
|
| 402 |
-
|
| 403 |
-
# try:
|
| 404 |
-
# breed = choice.split("More about ")[-1]
|
| 405 |
-
# description = get_dog_description(breed)
|
| 406 |
-
# html_output = format_breed_details_html(description, breed)
|
| 407 |
-
|
| 408 |
-
# # Update state
|
| 409 |
-
# initial_state["current_description"] = html_output
|
| 410 |
-
# initial_state["original_buttons"] = initial_state.get("buttons", [])
|
| 411 |
-
|
| 412 |
-
# return html_output, gr.update(visible=True), initial_state
|
| 413 |
-
|
| 414 |
-
# except Exception as e:
|
| 415 |
-
# error_msg = f"An error occurred while showing details: {e}"
|
| 416 |
-
# print(error_msg)
|
| 417 |
-
# return format_warning_html(error_msg), gr.update(visible=True), initial_state
|
| 418 |
-
|
| 419 |
-
# def main():
|
| 420 |
-
# with gr.Blocks(css=get_css_styles()) as iface:
|
| 421 |
-
# # Header HTML
|
| 422 |
-
|
| 423 |
-
# gr.HTML("""
|
| 424 |
-
# <header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
|
| 425 |
-
# <h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
|
| 426 |
-
# 🐾 PawMatch AI
|
| 427 |
-
# </h1>
|
| 428 |
-
# <h2 style='font-size: 1.2em; font-weight: normal; color: #4A5568; margin-top: 5px;'>
|
| 429 |
-
# Your Smart Dog Breed Guide
|
| 430 |
-
# </h2>
|
| 431 |
-
# <div style='width: 50px; height: 3px; background: linear-gradient(90deg, #4299e1, #48bb78); margin: 15px auto;'></div>
|
| 432 |
-
# <p style='color: #718096; font-size: 0.9em;'>
|
| 433 |
-
# Powered by AI • Breed Recognition • Smart Matching • Companion Guide
|
| 434 |
-
# </p>
|
| 435 |
-
# </header>
|
| 436 |
-
# """)
|
| 437 |
-
|
| 438 |
-
# # 先創建歷史組件實例(但不創建標籤頁)
|
| 439 |
-
# history_component = create_history_component()
|
| 440 |
-
|
| 441 |
-
# with gr.Tabs():
|
| 442 |
-
# # 1. 品種檢測標籤頁
|
| 443 |
-
# example_images = [
|
| 444 |
-
# 'Border_Collie.jpg',
|
| 445 |
-
# 'Golden_Retriever.jpeg',
|
| 446 |
-
# 'Saint_Bernard.jpeg',
|
| 447 |
-
# 'Samoyed.jpg',
|
| 448 |
-
# 'French_Bulldog.jpeg'
|
| 449 |
-
# ]
|
| 450 |
-
# detection_components = create_detection_tab(predict, example_images)
|
| 451 |
-
|
| 452 |
-
# # 2. 品種比較標籤頁
|
| 453 |
-
# comparison_components = create_comparison_tab(
|
| 454 |
-
# dog_breeds=dog_breeds,
|
| 455 |
-
# get_dog_description=get_dog_description,
|
| 456 |
-
# breed_health_info=breed_health_info,
|
| 457 |
-
# breed_noise_info=breed_noise_info
|
| 458 |
-
# )
|
| 459 |
-
|
| 460 |
-
# # 3. 品種推薦標籤頁
|
| 461 |
-
# recommendation_components = create_recommendation_tab(
|
| 462 |
-
# UserPreferences=UserPreferences,
|
| 463 |
-
# get_breed_recommendations=get_breed_recommendations,
|
| 464 |
-
# format_recommendation_html=format_recommendation_html,
|
| 465 |
-
# history_component=history_component
|
| 466 |
-
# )
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
# # 4. 最後創建歷史記錄標籤頁
|
| 470 |
-
# create_history_tab(history_component)
|
| 471 |
-
|
| 472 |
-
# # Footer
|
| 473 |
-
# gr.HTML('''
|
| 474 |
-
# <div style="
|
| 475 |
-
# display: flex;
|
| 476 |
-
# align-items: center;
|
| 477 |
-
# justify-content: center;
|
| 478 |
-
# gap: 20px;
|
| 479 |
-
# padding: 20px 0;
|
| 480 |
-
# ">
|
| 481 |
-
# <p style="
|
| 482 |
-
# font-family: 'Arial', sans-serif;
|
| 483 |
-
# font-size: 14px;
|
| 484 |
-
# font-weight: 500;
|
| 485 |
-
# letter-spacing: 2px;
|
| 486 |
-
# background: linear-gradient(90deg, #555, #007ACC);
|
| 487 |
-
# -webkit-background-clip: text;
|
| 488 |
-
# -webkit-text-fill-color: transparent;
|
| 489 |
-
# margin: 0;
|
| 490 |
-
# text-transform: uppercase;
|
| 491 |
-
# display: inline-block;
|
| 492 |
-
# ">EXPLORE THE CODE →</p>
|
| 493 |
-
# <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/PawMatchAI" style="text-decoration: none;">
|
| 494 |
-
# <img src="https://img.shields.io/badge/GitHub-PawMatch_AI-007ACC?logo=github&style=for-the-badge">
|
| 495 |
-
# </a>
|
| 496 |
-
# </div>
|
| 497 |
-
# ''')
|
| 498 |
-
|
| 499 |
-
# return iface
|
| 500 |
-
|
| 501 |
-
# if __name__ == "__main__":
|
| 502 |
-
# iface = main()
|
| 503 |
-
# iface.launch()
|
| 504 |
|
| 505 |
|
|
|
|
| 506 |
|
| 507 |
history_manager = UserHistoryManager()
|
| 508 |
|
|
@@ -588,6 +122,21 @@ class BaseModel(nn.Module):
|
|
| 588 |
logits = self.classifier(attended_features)
|
| 589 |
return logits, attended_features
|
| 590 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 591 |
# Image preprocessing function
|
| 592 |
def preprocess_image(image):
|
| 593 |
# If the image is numpy.ndarray turn into PIL.Image
|
|
@@ -602,74 +151,41 @@ def preprocess_image(image):
|
|
| 602 |
])
|
| 603 |
|
| 604 |
return transform(image).unsqueeze(0)
|
| 605 |
-
|
| 606 |
-
global_models = {
|
| 607 |
-
'classification_model': None,
|
| 608 |
-
'detection_model': None
|
| 609 |
-
}
|
| 610 |
-
|
| 611 |
-
@spaces.GPU
|
| 612 |
-
async def initialize_models():
|
| 613 |
-
"""
|
| 614 |
-
初始化並預熱所有模型
|
| 615 |
-
這個函數集中管理所有模型的初始化,確保它們只被載入一次
|
| 616 |
-
"""
|
| 617 |
-
try:
|
| 618 |
-
# 初始化分類模型
|
| 619 |
-
if global_models['classification_model'] is None:
|
| 620 |
-
model = BaseModel(num_classes=len(dog_breeds), device='cuda').to('cuda')
|
| 621 |
-
checkpoint = torch.load('124_best_model_dog.pth', map_location='cuda')
|
| 622 |
-
model.load_state_dict(checkpoint['base_model'], strict=False)
|
| 623 |
-
model.eval()
|
| 624 |
-
global_models['classification_model'] = model
|
| 625 |
-
|
| 626 |
-
# 初始化檢測模型
|
| 627 |
-
if global_models['detection_model'] is None:
|
| 628 |
-
global_models['detection_model'] = YOLO('yolov8l.pt')
|
| 629 |
-
|
| 630 |
-
return True
|
| 631 |
-
except Exception as e:
|
| 632 |
-
print(f"模型初始化失敗: {str(e)}")
|
| 633 |
-
return False
|
| 634 |
-
|
| 635 |
|
| 636 |
-
@spaces.GPU
|
| 637 |
async def predict_single_dog(image):
|
| 638 |
"""
|
| 639 |
-
|
| 640 |
-
|
|
|
|
|
|
|
|
|
|
| 641 |
"""
|
| 642 |
-
|
| 643 |
-
if model is None:
|
| 644 |
-
await initialize_models()
|
| 645 |
-
model = global_models['classification_model']
|
| 646 |
-
|
| 647 |
-
image_tensor = preprocess_image(image).to('cuda')
|
| 648 |
|
| 649 |
with torch.no_grad():
|
| 650 |
-
|
|
|
|
| 651 |
probs = F.softmax(logits, dim=1)
|
| 652 |
|
|
|
|
| 653 |
top5_prob, top5_idx = torch.topk(probs, k=5)
|
| 654 |
breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]]
|
| 655 |
probabilities = [prob.item() for prob in top5_prob[0]]
|
| 656 |
|
| 657 |
-
|
|
|
|
| 658 |
relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]]
|
| 659 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 660 |
return probabilities[0], breeds[:3], relative_probs
|
| 661 |
|
| 662 |
-
|
| 663 |
-
@spaces.GPU(duration=120)
|
| 664 |
async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
|
| 665 |
-
|
| 666 |
-
model_yolo = global_models['detection_model']
|
| 667 |
-
if model_yolo is None:
|
| 668 |
-
await initialize_models()
|
| 669 |
-
model_yolo = global_models['detection_model']
|
| 670 |
-
|
| 671 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
| 672 |
-
|
| 673 |
dogs = []
|
| 674 |
boxes = []
|
| 675 |
for box in results.boxes:
|
|
@@ -749,7 +265,7 @@ def create_breed_comparison(breed1: str, breed2: str) -> dict:
|
|
| 749 |
|
| 750 |
return comparison_data
|
| 751 |
|
| 752 |
-
|
| 753 |
async def predict(image):
|
| 754 |
"""
|
| 755 |
Main prediction function that handles both single and multiple dog detection.
|
|
@@ -901,7 +417,7 @@ def show_details_html(choice, previous_output, initial_state):
|
|
| 901 |
|
| 902 |
def main():
|
| 903 |
with gr.Blocks(css=get_css_styles()) as iface:
|
| 904 |
-
|
| 905 |
|
| 906 |
gr.HTML("""
|
| 907 |
<header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
|
|
|
|
| 34 |
from urllib.parse import quote
|
| 35 |
from ultralytics import YOLO
|
| 36 |
import traceback
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
|
| 39 |
+
model_yolo = YOLO('yolov8l.pt')
|
| 40 |
|
| 41 |
history_manager = UserHistoryManager()
|
| 42 |
|
|
|
|
| 122 |
logits = self.classifier(attended_features)
|
| 123 |
return logits, attended_features
|
| 124 |
|
| 125 |
+
# Initialize model
|
| 126 |
+
num_classes = len(dog_breeds)
|
| 127 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 128 |
+
|
| 129 |
+
# Initialize base model
|
| 130 |
+
model = BaseModel(num_classes=num_classes, device=device).to(device)
|
| 131 |
+
|
| 132 |
+
# Load model path
|
| 133 |
+
model_path = '124_best_model_dog.pth'
|
| 134 |
+
checkpoint = torch.load(model_path, map_location=device)
|
| 135 |
+
|
| 136 |
+
# Load model state
|
| 137 |
+
model.load_state_dict(checkpoint['base_model'], strict=False)
|
| 138 |
+
model.eval()
|
| 139 |
+
|
| 140 |
# Image preprocessing function
|
| 141 |
def preprocess_image(image):
|
| 142 |
# If the image is numpy.ndarray turn into PIL.Image
|
|
|
|
| 151 |
])
|
| 152 |
|
| 153 |
return transform(image).unsqueeze(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
|
|
|
|
| 155 |
async def predict_single_dog(image):
|
| 156 |
"""
|
| 157 |
+
Predicts the dog breed using only the classifier.
|
| 158 |
+
Args:
|
| 159 |
+
image: PIL Image or numpy array
|
| 160 |
+
Returns:
|
| 161 |
+
tuple: (top1_prob, topk_breeds, relative_probs)
|
| 162 |
"""
|
| 163 |
+
image_tensor = preprocess_image(image).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
with torch.no_grad():
|
| 166 |
+
# Get model outputs (只使用logits,不需要features)
|
| 167 |
+
logits = model(image_tensor)[0] # 如果model仍返回tuple,取第一個元素
|
| 168 |
probs = F.softmax(logits, dim=1)
|
| 169 |
|
| 170 |
+
# Classifier prediction
|
| 171 |
top5_prob, top5_idx = torch.topk(probs, k=5)
|
| 172 |
breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]]
|
| 173 |
probabilities = [prob.item() for prob in top5_prob[0]]
|
| 174 |
|
| 175 |
+
# Calculate relative probabilities
|
| 176 |
+
sum_probs = sum(probabilities[:3]) # 只取前三個來計算相對概率
|
| 177 |
relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]]
|
| 178 |
|
| 179 |
+
# Debug output
|
| 180 |
+
print("\nClassifier Predictions:")
|
| 181 |
+
for breed, prob in zip(breeds[:5], probabilities[:5]):
|
| 182 |
+
print(f"{breed}: {prob:.4f}")
|
| 183 |
+
|
| 184 |
return probabilities[0], breeds[:3], relative_probs
|
| 185 |
|
| 186 |
+
|
|
|
|
| 187 |
async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
|
|
|
| 189 |
dogs = []
|
| 190 |
boxes = []
|
| 191 |
for box in results.boxes:
|
|
|
|
| 265 |
|
| 266 |
return comparison_data
|
| 267 |
|
| 268 |
+
|
| 269 |
async def predict(image):
|
| 270 |
"""
|
| 271 |
Main prediction function that handles both single and multiple dog detection.
|
|
|
|
| 417 |
|
| 418 |
def main():
|
| 419 |
with gr.Blocks(css=get_css_styles()) as iface:
|
| 420 |
+
# Header HTML
|
| 421 |
|
| 422 |
gr.HTML("""
|
| 423 |
<header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
|