Spaces:
Running
on
Zero
Running
on
Zero
Update breed_detection.py
Browse files- breed_detection.py +48 -143
breed_detection.py
CHANGED
|
@@ -2,151 +2,56 @@ import re
|
|
| 2 |
import gradio as gr
|
| 3 |
from PIL import Image
|
| 4 |
|
| 5 |
-
# def create_detection_tab(predict_fn, example_images):
|
| 6 |
-
# with gr.TabItem("Breed Detection"):
|
| 7 |
-
# gr.HTML("""
|
| 8 |
-
# <div style='
|
| 9 |
-
# text-align: center;
|
| 10 |
-
# padding: 20px 0;
|
| 11 |
-
# margin: 15px 0;
|
| 12 |
-
# background: linear-gradient(to right, rgba(66, 153, 225, 0.1), rgba(72, 187, 120, 0.1));
|
| 13 |
-
# border-radius: 10px;
|
| 14 |
-
# '>
|
| 15 |
-
# <p style='
|
| 16 |
-
# font-size: 1.2em;
|
| 17 |
-
# margin: 0;
|
| 18 |
-
# padding: 0 20px;
|
| 19 |
-
# line-height: 1.5;
|
| 20 |
-
# background: linear-gradient(90deg, #4299e1, #48bb78);
|
| 21 |
-
# -webkit-background-clip: text;
|
| 22 |
-
# -webkit-text-fill-color: transparent;
|
| 23 |
-
# font-weight: 600;
|
| 24 |
-
# '>
|
| 25 |
-
# Upload a picture of a dog, and the model will predict its breed and provide detailed information!
|
| 26 |
-
# </p>
|
| 27 |
-
# <p style='
|
| 28 |
-
# font-size: 0.9em;
|
| 29 |
-
# color: #666;
|
| 30 |
-
# margin-top: 8px;
|
| 31 |
-
# padding: 0 20px;
|
| 32 |
-
# '>
|
| 33 |
-
# Note: The model's predictions may not always be 100% accurate, and it is recommended to use the results as a reference.
|
| 34 |
-
# </p>
|
| 35 |
-
# </div>
|
| 36 |
-
# """)
|
| 37 |
-
|
| 38 |
-
# with gr.Row():
|
| 39 |
-
# input_image = gr.Image(label="Upload a dog image", type="pil")
|
| 40 |
-
# output_image = gr.Image(label="Annotated Image")
|
| 41 |
-
|
| 42 |
-
# output = gr.HTML(label="Prediction Results")
|
| 43 |
-
# initial_state = gr.State()
|
| 44 |
-
|
| 45 |
-
# input_image.change(
|
| 46 |
-
# predict_fn,
|
| 47 |
-
# inputs=input_image,
|
| 48 |
-
# outputs=[output, output_image, initial_state]
|
| 49 |
-
# )
|
| 50 |
-
|
| 51 |
-
# gr.Examples(
|
| 52 |
-
# examples=example_images,
|
| 53 |
-
# inputs=input_image
|
| 54 |
-
# )
|
| 55 |
-
|
| 56 |
-
# return {
|
| 57 |
-
# 'input_image': input_image,
|
| 58 |
-
# 'output_image': output_image,
|
| 59 |
-
# 'output': output,
|
| 60 |
-
# 'initial_state': initial_state
|
| 61 |
-
# }
|
| 62 |
-
|
| 63 |
-
|
| 64 |
def create_detection_tab(predict_fn, example_images):
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
position: relative !important;
|
| 84 |
-
}
|
| 85 |
-
|
| 86 |
-
/* 被選中的標籤樣式 */
|
| 87 |
-
.tab-nav button.selected {
|
| 88 |
-
color: #4299e1 !important;
|
| 89 |
-
border-bottom: 2px solid #4299e1 !important;
|
| 90 |
-
background: linear-gradient(to bottom, rgba(66, 153, 225, 0.1), transparent) !important;
|
| 91 |
-
}
|
| 92 |
-
|
| 93 |
-
/* hover 效果 */
|
| 94 |
-
.tab-nav button:hover {
|
| 95 |
-
color: #4299e1 !important;
|
| 96 |
-
background: rgba(66, 153, 225, 0.05) !important;
|
| 97 |
-
}
|
| 98 |
-
"""
|
| 99 |
-
|
| 100 |
-
with gr.Blocks(css=custom_css) as detection_tab:
|
| 101 |
-
with gr.TabItem("Breed Detection"):
|
| 102 |
-
gr.HTML("""
|
| 103 |
-
<div style='
|
| 104 |
-
text-align: center;
|
| 105 |
-
padding: 20px 0;
|
| 106 |
-
margin: 15px 0;
|
| 107 |
-
background: linear-gradient(to right, rgba(66, 153, 225, 0.1), rgba(72, 187, 120, 0.1));
|
| 108 |
-
border-radius: 10px;
|
| 109 |
'>
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
input_image.change(
|
| 141 |
-
predict_fn,
|
| 142 |
-
inputs=input_image,
|
| 143 |
-
outputs=[output, output_image, initial_state]
|
| 144 |
-
)
|
| 145 |
-
|
| 146 |
-
gr.Examples(
|
| 147 |
-
examples=example_images,
|
| 148 |
-
inputs=input_image
|
| 149 |
-
)
|
| 150 |
|
| 151 |
return {
|
| 152 |
'input_image': input_image,
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
from PIL import Image
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
def create_detection_tab(predict_fn, example_images):
|
| 6 |
+
with gr.TabItem("Breed Detection"):
|
| 7 |
+
gr.HTML("""
|
| 8 |
+
<div style='
|
| 9 |
+
text-align: center;
|
| 10 |
+
padding: 20px 0;
|
| 11 |
+
margin: 15px 0;
|
| 12 |
+
background: linear-gradient(to right, rgba(66, 153, 225, 0.1), rgba(72, 187, 120, 0.1));
|
| 13 |
+
border-radius: 10px;
|
| 14 |
+
'>
|
| 15 |
+
<p style='
|
| 16 |
+
font-size: 1.2em;
|
| 17 |
+
margin: 0;
|
| 18 |
+
padding: 0 20px;
|
| 19 |
+
line-height: 1.5;
|
| 20 |
+
background: linear-gradient(90deg, #4299e1, #48bb78);
|
| 21 |
+
-webkit-background-clip: text;
|
| 22 |
+
-webkit-text-fill-color: transparent;
|
| 23 |
+
font-weight: 600;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
'>
|
| 25 |
+
Upload a picture of a dog, and the model will predict its breed and provide detailed information!
|
| 26 |
+
</p>
|
| 27 |
+
<p style='
|
| 28 |
+
font-size: 0.9em;
|
| 29 |
+
color: #666;
|
| 30 |
+
margin-top: 8px;
|
| 31 |
+
padding: 0 20px;
|
| 32 |
+
'>
|
| 33 |
+
Note: The model's predictions may not always be 100% accurate, and it is recommended to use the results as a reference.
|
| 34 |
+
</p>
|
| 35 |
+
</div>
|
| 36 |
+
""")
|
| 37 |
+
|
| 38 |
+
with gr.Row():
|
| 39 |
+
input_image = gr.Image(label="Upload a dog image", type="pil")
|
| 40 |
+
output_image = gr.Image(label="Annotated Image")
|
| 41 |
+
|
| 42 |
+
output = gr.HTML(label="Prediction Results")
|
| 43 |
+
initial_state = gr.State()
|
| 44 |
+
|
| 45 |
+
input_image.change(
|
| 46 |
+
predict_fn,
|
| 47 |
+
inputs=input_image,
|
| 48 |
+
outputs=[output, output_image, initial_state]
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
gr.Examples(
|
| 52 |
+
examples=example_images,
|
| 53 |
+
inputs=input_image
|
| 54 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
return {
|
| 57 |
'input_image': input_image,
|