Spaces:
Running
on
Zero
Running
on
Zero
Update scoring_calculation_system.py
Browse files- scoring_calculation_system.py +215 -360
scoring_calculation_system.py
CHANGED
|
@@ -409,7 +409,7 @@ def calculate_additional_factors(breed_info: dict, user_prefs: 'UserPreferences'
|
|
| 409 |
|
| 410 |
|
| 411 |
def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences) -> dict:
|
| 412 |
-
"""
|
| 413 |
try:
|
| 414 |
print(f"Processing breed: {breed_info.get('Breed', 'Unknown')}")
|
| 415 |
print(f"Breed info keys: {breed_info.keys()}")
|
|
@@ -417,192 +417,10 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
| 417 |
if 'Size' not in breed_info:
|
| 418 |
print("Missing Size information")
|
| 419 |
raise KeyError("Size information missing")
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
# def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
|
| 423 |
-
# """
|
| 424 |
-
# 主要改進:
|
| 425 |
-
# 1. 更均衡的基礎分數分配
|
| 426 |
-
# 2. 更細緻的空間需求評估
|
| 427 |
-
# 3. 強化運動需求與空間的關聯性
|
| 428 |
-
# """
|
| 429 |
-
# # 重新設計基礎分數矩陣,降低普遍分數以增加區別度
|
| 430 |
-
# base_scores = {
|
| 431 |
-
# "Small": {
|
| 432 |
-
# "apartment": 0.90, # 降低滿分機會
|
| 433 |
-
# "house_small": 0.85, # 小型犬不應在大空間得到太高分數
|
| 434 |
-
# "house_large": 0.80 # 避免小型犬總是得到最高分
|
| 435 |
-
# },
|
| 436 |
-
# "Medium": {
|
| 437 |
-
# "apartment": 0.40, # 維持對公寓環境的限制
|
| 438 |
-
# "house_small": 0.80, # 適中的分數
|
| 439 |
-
# "house_large": 0.90 # 給予合理的獎勵
|
| 440 |
-
# },
|
| 441 |
-
# "Large": {
|
| 442 |
-
# "apartment": 0.10, # 加重對大型犬在公寓的限制
|
| 443 |
-
# "house_small": 0.60, # 中等適合度
|
| 444 |
-
# "house_large": 0.95 # 最適合的環境
|
| 445 |
-
# },
|
| 446 |
-
# "Giant": {
|
| 447 |
-
# "apartment": 0.10, # 更嚴格的限制
|
| 448 |
-
# "house_small": 0.45, # 顯著的空間限制
|
| 449 |
-
# "house_large": 0.95 # 最理想的配對
|
| 450 |
-
# }
|
| 451 |
-
# }
|
| 452 |
-
|
| 453 |
-
# # 取得基礎分數
|
| 454 |
-
# base_score = base_scores.get(size, base_scores["Medium"])[living_space]
|
| 455 |
-
|
| 456 |
-
# # 運動需求相關的調整更加動態
|
| 457 |
-
# exercise_adjustments = {
|
| 458 |
-
# "Very High": {
|
| 459 |
-
# "apartment": -0.25, # 加重在受限空間的懲罰
|
| 460 |
-
# "house_small": -0.15,
|
| 461 |
-
# "house_large": -0.05
|
| 462 |
-
# },
|
| 463 |
-
# "High": {
|
| 464 |
-
# "apartment": -0.20,
|
| 465 |
-
# "house_small": -0.10,
|
| 466 |
-
# "house_large": 0
|
| 467 |
-
# },
|
| 468 |
-
# "Moderate": {
|
| 469 |
-
# "apartment": -0.10,
|
| 470 |
-
# "house_small": -0.05,
|
| 471 |
-
# "house_large": 0
|
| 472 |
-
# },
|
| 473 |
-
# "Low": {
|
| 474 |
-
# "apartment": 0.05, # 低運動需求在小空間反而有優勢
|
| 475 |
-
# "house_small": 0,
|
| 476 |
-
# "house_large": -0.05 # 輕微降低評分,因為空間可能過大
|
| 477 |
-
# }
|
| 478 |
-
# }
|
| 479 |
-
|
| 480 |
-
# # 根據空間類型獲取運動需求調整
|
| 481 |
-
# adjustment = exercise_adjustments.get(exercise_needs,
|
| 482 |
-
# exercise_adjustments["Moderate"])[living_space]
|
| 483 |
-
|
| 484 |
-
# # 院子效益根據品種大小和運動需求動態調整
|
| 485 |
-
# if has_yard:
|
| 486 |
-
# yard_bonus = {
|
| 487 |
-
# "Giant": 0.20,
|
| 488 |
-
# "Large": 0.15,
|
| 489 |
-
# "Medium": 0.10,
|
| 490 |
-
# "Small": 0.05
|
| 491 |
-
# }.get(size, 0.10)
|
| 492 |
-
|
| 493 |
-
# # 運動需求會影響院子的重要性
|
| 494 |
-
# if exercise_needs in ["Very High", "High"]:
|
| 495 |
-
# yard_bonus *= 1.2
|
| 496 |
-
# elif exercise_needs == "Low":
|
| 497 |
-
# yard_bonus *= 0.8
|
| 498 |
-
|
| 499 |
-
# current_score = base_score + adjustment + yard_bonus
|
| 500 |
-
# else:
|
| 501 |
-
# current_score = base_score + adjustment
|
| 502 |
-
|
| 503 |
-
# # 確保分數在合理範圍內,但避免極端值
|
| 504 |
-
# return min(0.95, max(0.15, current_score))
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
# def calculate_exercise_score(breed_needs: str, exercise_time: int, exercise_type: str) -> float:
|
| 508 |
-
# """
|
| 509 |
-
# 精確評估品種運動需求與使用者運動條件的匹配度
|
| 510 |
-
|
| 511 |
-
# Parameters:
|
| 512 |
-
# breed_needs: 品種的運動需求等級
|
| 513 |
-
# exercise_time: 使用者能提供的運動時間(分鐘)
|
| 514 |
-
# exercise_type: 使用者偏好的運動類型
|
| 515 |
-
|
| 516 |
-
# Returns:
|
| 517 |
-
# float: -0.2 到 0.2 之間的��配分數
|
| 518 |
-
# """
|
| 519 |
-
# # 定義更細緻的運動需求等級
|
| 520 |
-
# exercise_levels = {
|
| 521 |
-
# 'VERY HIGH': {
|
| 522 |
-
# 'min': 120,
|
| 523 |
-
# 'ideal': 150,
|
| 524 |
-
# 'max': 180,
|
| 525 |
-
# 'intensity': 'high',
|
| 526 |
-
# 'sessions': 'multiple',
|
| 527 |
-
# 'preferred_types': ['active_training', 'intensive_exercise']
|
| 528 |
-
# },
|
| 529 |
-
# 'HIGH': {
|
| 530 |
-
# 'min': 90,
|
| 531 |
-
# 'ideal': 120,
|
| 532 |
-
# 'max': 150,
|
| 533 |
-
# 'intensity': 'moderate_high',
|
| 534 |
-
# 'sessions': 'multiple',
|
| 535 |
-
# 'preferred_types': ['active_training', 'moderate_activity']
|
| 536 |
-
# },
|
| 537 |
-
# 'MODERATE HIGH': {
|
| 538 |
-
# 'min': 70,
|
| 539 |
-
# 'ideal': 90,
|
| 540 |
-
# 'max': 120,
|
| 541 |
-
# 'intensity': 'moderate',
|
| 542 |
-
# 'sessions': 'flexible',
|
| 543 |
-
# 'preferred_types': ['moderate_activity', 'active_training']
|
| 544 |
-
# },
|
| 545 |
-
# 'MODERATE': {
|
| 546 |
-
# 'min': 45,
|
| 547 |
-
# 'ideal': 60,
|
| 548 |
-
# 'max': 90,
|
| 549 |
-
# 'intensity': 'moderate',
|
| 550 |
-
# 'sessions': 'flexible',
|
| 551 |
-
# 'preferred_types': ['moderate_activity', 'light_walks']
|
| 552 |
-
# },
|
| 553 |
-
# 'MODERATE LOW': {
|
| 554 |
-
# 'min': 30,
|
| 555 |
-
# 'ideal': 45,
|
| 556 |
-
# 'max': 70,
|
| 557 |
-
# 'intensity': 'light_moderate',
|
| 558 |
-
# 'sessions': 'flexible',
|
| 559 |
-
# 'preferred_types': ['light_walks', 'moderate_activity']
|
| 560 |
-
# },
|
| 561 |
-
# 'LOW': {
|
| 562 |
-
# 'min': 15,
|
| 563 |
-
# 'ideal': 30,
|
| 564 |
-
# 'max': 45,
|
| 565 |
-
# 'intensity': 'light',
|
| 566 |
-
# 'sessions': 'single',
|
| 567 |
-
# 'preferred_types': ['light_walks']
|
| 568 |
-
# }
|
| 569 |
-
# }
|
| 570 |
-
|
| 571 |
-
# # 獲取品種的運動需求配置
|
| 572 |
-
# breed_level = exercise_levels.get(breed_needs.upper(), exercise_levels['MODERATE'])
|
| 573 |
-
|
| 574 |
-
# # 計算時間匹配度(使用更平滑的評分曲線)
|
| 575 |
-
# if exercise_time >= breed_level['ideal']:
|
| 576 |
-
# if exercise_time > breed_level['max']:
|
| 577 |
-
# # 運動時間過長,適度降分
|
| 578 |
-
# time_score = 0.15 - (0.08 * (exercise_time - breed_level['max']) / 30)
|
| 579 |
-
# else:
|
| 580 |
-
# time_score = 0.15
|
| 581 |
-
# elif exercise_time >= breed_level['min']:
|
| 582 |
-
# # 在最小需求和理想需求之間,線性計算分數
|
| 583 |
-
# time_ratio = (exercise_time - breed_level['min']) / (breed_level['ideal'] - breed_level['min'])
|
| 584 |
-
# time_score = 0.05 + (time_ratio * 0.10)
|
| 585 |
-
# else:
|
| 586 |
-
# # 運動時間不足,根據差距程度扣分
|
| 587 |
-
# time_ratio = max(0, exercise_time / breed_level['min'])
|
| 588 |
-
# time_score = -0.20 * (1 - time_ratio)
|
| 589 |
-
|
| 590 |
-
# # 運動類型匹配度評估
|
| 591 |
-
# type_score = 0.0
|
| 592 |
-
# if exercise_type in breed_level['preferred_types']:
|
| 593 |
-
# type_score = 0.05
|
| 594 |
-
# if exercise_type == breed_level['preferred_types'][0]:
|
| 595 |
-
# type_score = 0.08 # 最佳匹配類型給予更高分數
|
| 596 |
-
|
| 597 |
-
# return max(-0.2, min(0.2, time_score + type_score))
|
| 598 |
-
|
| 599 |
|
| 600 |
def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
|
| 601 |
"""
|
| 602 |
-
|
| 603 |
-
|
| 604 |
-
改進重點:
|
| 605 |
-
1. 更動態的基礎分數矩陣
|
| 606 |
2. 強化空間品質評估
|
| 607 |
3. 增加極端情況處理
|
| 608 |
4. 考慮不同空間組合的協同效應
|
|
@@ -1479,210 +1297,212 @@ def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -
|
|
| 1479 |
|
| 1480 |
# def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
| 1481 |
# """
|
| 1482 |
-
#
|
| 1483 |
-
|
| 1484 |
-
# 主要改進:
|
| 1485 |
-
# 1. 更動態的權重系統
|
| 1486 |
-
# 2. 更強的極端情況處理
|
| 1487 |
-
# 3. 更精確的品種特性評估
|
| 1488 |
# """
|
| 1489 |
-
# def
|
| 1490 |
-
# """
|
| 1491 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1492 |
|
| 1493 |
-
# #
|
| 1494 |
-
# if user_prefs.living_space == 'apartment'
|
| 1495 |
-
#
|
| 1496 |
-
# elif user_prefs.living_space == 'house_large'
|
| 1497 |
-
#
|
| 1498 |
|
| 1499 |
-
# #
|
| 1500 |
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
| 1501 |
-
# if exercise_needs == 'VERY HIGH' and user_prefs.exercise_time
|
| 1502 |
-
#
|
| 1503 |
-
# elif exercise_needs == 'LOW' and user_prefs.exercise_time
|
| 1504 |
-
#
|
|
|
|
|
|
|
| 1505 |
|
| 1506 |
-
# #
|
| 1507 |
# care_level = breed_info.get('Care Level', 'MODERATE')
|
| 1508 |
-
# if care_level == 'High' and user_prefs.experience_level == '
|
| 1509 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1510 |
|
| 1511 |
-
# return
|
| 1512 |
|
| 1513 |
-
# def
|
| 1514 |
# """計算動態權重"""
|
| 1515 |
-
#
|
| 1516 |
-
# weights = {
|
| 1517 |
# 'space': 0.20,
|
| 1518 |
# 'exercise': 0.20,
|
| 1519 |
-
# 'experience': 0.
|
| 1520 |
# 'grooming': 0.15,
|
| 1521 |
# 'health': 0.15,
|
| 1522 |
-
# 'noise': 0.
|
| 1523 |
# }
|
| 1524 |
|
| 1525 |
-
# #
|
| 1526 |
-
#
|
| 1527 |
-
# weights['space'] *= 2.0
|
| 1528 |
-
# weights['noise'] *= 1.8
|
| 1529 |
-
|
| 1530 |
-
# # 根據家庭情況調整
|
| 1531 |
-
# if user_prefs.has_children:
|
| 1532 |
-
# if user_prefs.children_age == 'toddler':
|
| 1533 |
-
# weights['noise'] *= 2.0
|
| 1534 |
-
# weights['experience'] *= 1.8
|
| 1535 |
-
# weights['health'] *= 1.5
|
| 1536 |
-
# elif user_prefs.children_age == 'school_age':
|
| 1537 |
-
# weights['noise'] *= 1.5
|
| 1538 |
-
# weights['experience'] *= 1.3
|
| 1539 |
|
| 1540 |
-
# #
|
| 1541 |
-
# if user_prefs.
|
| 1542 |
-
#
|
| 1543 |
-
# elif user_prefs.
|
| 1544 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1545 |
|
| 1546 |
-
# #
|
| 1547 |
-
#
|
| 1548 |
-
#
|
| 1549 |
|
| 1550 |
-
# return
|
| 1551 |
|
| 1552 |
-
# #
|
| 1553 |
-
#
|
| 1554 |
|
| 1555 |
# # 計算動態權重
|
| 1556 |
-
# weights =
|
| 1557 |
|
| 1558 |
# # 正規化權重
|
| 1559 |
# total_weight = sum(weights.values())
|
| 1560 |
# normalized_weights = {k: v/total_weight for k, v in weights.items()}
|
| 1561 |
|
| 1562 |
-
# #
|
| 1563 |
-
#
|
| 1564 |
-
# k: scores[k] * normalized_weights[k] for k in scores.keys()
|
| 1565 |
-
# }
|
| 1566 |
-
|
| 1567 |
-
# # 基礎分數
|
| 1568 |
-
# base_score = sum(weighted_scores.values())
|
| 1569 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1570 |
# # 品種特性加成
|
| 1571 |
-
# breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
|
| 1572 |
-
|
| 1573 |
-
# # 根據極端程度調整最終分數
|
| 1574 |
-
# if extremity_level >= 3:
|
| 1575 |
-
# base_score *= 0.6 # 多個極端條件的嚴重懲罰
|
| 1576 |
-
# elif extremity_level >= 2:
|
| 1577 |
-
# base_score *= 0.8 # 較少極端條件的適度懲罰
|
| 1578 |
|
| 1579 |
-
# #
|
| 1580 |
-
#
|
| 1581 |
-
# base_score *= 1.3
|
| 1582 |
|
| 1583 |
-
#
|
| 1584 |
-
# bonus_weight = min(0.35, max(0.15, breed_bonus))
|
| 1585 |
-
|
| 1586 |
-
# # 最終分數計算
|
| 1587 |
-
# final_score = (base_score * (1.0 - bonus_weight)) + (breed_bonus * bonus_weight)
|
| 1588 |
-
|
| 1589 |
-
# return min(1.0, max(0.0, final_score))
|
| 1590 |
-
|
| 1591 |
-
|
| 1592 |
-
# def amplify_score_extreme(score: float) -> float:
|
| 1593 |
-
# """
|
| 1594 |
-
# 改進的分數轉換函數,提供更合理的分數分布
|
| 1595 |
-
|
| 1596 |
-
# 特點:
|
| 1597 |
-
# 1. 更大的分數範圍
|
| 1598 |
-
# 2. 更平滑的轉換曲線
|
| 1599 |
-
# 3. 更準確的極端情況處理
|
| 1600 |
-
# """
|
| 1601 |
-
# def sigmoid_transform(x: float, steepness: float = 10) -> float:
|
| 1602 |
-
# """使用 sigmoid 函數實現更平滑的轉換"""
|
| 1603 |
-
# import math
|
| 1604 |
-
# return 1 / (1 + math.exp(-steepness * (x - 0.5)))
|
| 1605 |
-
|
| 1606 |
-
# if score < 0.2:
|
| 1607 |
-
# # 極差匹配:使用更低的起始分數
|
| 1608 |
-
# base = 0.40
|
| 1609 |
-
# range_score = 0.15
|
| 1610 |
-
# position = score / 0.2
|
| 1611 |
-
# return base + (sigmoid_transform(position) * range_score)
|
| 1612 |
-
|
| 1613 |
-
# elif score < 0.4:
|
| 1614 |
-
# # 較差匹配:緩慢增長
|
| 1615 |
-
# base = 0.55
|
| 1616 |
-
# range_score = 0.15
|
| 1617 |
-
# position = (score - 0.2) / 0.2
|
| 1618 |
-
# return base + (sigmoid_transform(position) * range_score)
|
| 1619 |
-
|
| 1620 |
-
# elif score < 0.6:
|
| 1621 |
-
# # 中等匹配:較大增長
|
| 1622 |
-
# base = 0.70
|
| 1623 |
-
# range_score = 0.15
|
| 1624 |
-
# position = (score - 0.4) / 0.2
|
| 1625 |
-
# return base + (sigmoid_transform(position) * range_score)
|
| 1626 |
-
|
| 1627 |
-
# elif score < 0.8:
|
| 1628 |
-
# # 良好匹配:快速增長
|
| 1629 |
-
# base = 0.85
|
| 1630 |
-
# range_score = 0.10
|
| 1631 |
-
# position = (score - 0.6) / 0.2
|
| 1632 |
-
# return base + (sigmoid_transform(position) * range_score)
|
| 1633 |
-
|
| 1634 |
-
# elif score < 0.9:
|
| 1635 |
-
# # 優秀匹配:接近最高分
|
| 1636 |
-
# base = 0.95
|
| 1637 |
-
# range_score = 0.03
|
| 1638 |
-
# position = (score - 0.8) / 0.1
|
| 1639 |
-
# return base + (sigmoid_transform(position) * range_score)
|
| 1640 |
-
|
| 1641 |
-
# else:
|
| 1642 |
-
# # 完美匹配:可能達到最高分
|
| 1643 |
-
# base = 0.98
|
| 1644 |
-
# range_score = 0.02
|
| 1645 |
-
# position = (score - 0.9) / 0.1
|
| 1646 |
-
# return base + (sigmoid_transform(position) * range_score)
|
| 1647 |
-
|
| 1648 |
|
| 1649 |
def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
| 1650 |
"""
|
| 1651 |
重構的品種相容性評分系統
|
| 1652 |
-
|
| 1653 |
"""
|
| 1654 |
def evaluate_perfect_conditions():
|
| 1655 |
-
"""
|
| 1656 |
perfect_matches = {
|
| 1657 |
-
'size_match':
|
| 1658 |
-
'exercise_match':
|
| 1659 |
-
'experience_match':
|
| 1660 |
'general_match': False
|
| 1661 |
}
|
| 1662 |
|
| 1663 |
-
#
|
| 1664 |
if user_prefs.living_space == 'apartment':
|
| 1665 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1666 |
elif user_prefs.living_space == 'house_large':
|
| 1667 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1668 |
|
| 1669 |
-
#
|
| 1670 |
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
| 1671 |
-
|
| 1672 |
-
|
| 1673 |
-
|
| 1674 |
-
|
| 1675 |
-
|
| 1676 |
-
|
| 1677 |
-
|
| 1678 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1679 |
care_level = breed_info.get('Care Level', 'MODERATE')
|
| 1680 |
-
if care_level == 'High'
|
| 1681 |
-
|
| 1682 |
-
|
| 1683 |
-
|
| 1684 |
-
|
| 1685 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1686 |
|
| 1687 |
# 一般條件匹配
|
| 1688 |
if all(score >= 0.85 for score in scores.values()):
|
|
@@ -1691,11 +1511,11 @@ def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreference
|
|
| 1691 |
return perfect_matches
|
| 1692 |
|
| 1693 |
def calculate_weights():
|
| 1694 |
-
"""
|
| 1695 |
base_weights = {
|
| 1696 |
'space': 0.20,
|
| 1697 |
'exercise': 0.20,
|
| 1698 |
-
'experience': 0.20,
|
| 1699 |
'grooming': 0.15,
|
| 1700 |
'health': 0.15,
|
| 1701 |
'noise': 0.10
|
|
@@ -1704,15 +1524,25 @@ def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreference
|
|
| 1704 |
# 極端條件權重調整
|
| 1705 |
multipliers = {}
|
| 1706 |
|
| 1707 |
-
#
|
| 1708 |
if user_prefs.experience_level == 'beginner':
|
| 1709 |
-
|
|
|
|
|
|
|
|
|
|
| 1710 |
elif user_prefs.experience_level == 'advanced':
|
| 1711 |
-
|
| 1712 |
-
|
| 1713 |
-
|
| 1714 |
-
|
| 1715 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1716 |
elif user_prefs.exercise_time < 30:
|
| 1717 |
multipliers['exercise'] = 3.5
|
| 1718 |
|
|
@@ -1721,12 +1551,37 @@ def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreference
|
|
| 1721 |
multipliers['space'] = 2.5
|
| 1722 |
multipliers['noise'] = 2.0
|
| 1723 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1724 |
# 應用乘數
|
| 1725 |
for key, multiplier in multipliers.items():
|
| 1726 |
base_weights[key] *= multiplier
|
| 1727 |
|
| 1728 |
return base_weights
|
| 1729 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1730 |
# 評估完美匹配條件
|
| 1731 |
perfect_conditions = evaluate_perfect_conditions()
|
| 1732 |
|
|
@@ -1740,23 +1595,23 @@ def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreference
|
|
| 1740 |
# 計算基礎分數
|
| 1741 |
base_score = sum(scores[k] * normalized_weights[k] for k in scores.keys())
|
| 1742 |
|
| 1743 |
-
#
|
| 1744 |
perfect_bonus = 1.0
|
| 1745 |
-
|
| 1746 |
-
|
| 1747 |
-
|
| 1748 |
-
perfect_bonus += 0.2
|
| 1749 |
-
if perfect_conditions['experience_match']:
|
| 1750 |
-
perfect_bonus += 0.2
|
| 1751 |
if perfect_conditions['general_match']:
|
| 1752 |
perfect_bonus += 0.2
|
| 1753 |
|
| 1754 |
# 品種特性加成
|
| 1755 |
-
breed_bonus = calculate_breed_bonus(breed_info, user_prefs) * 1.5
|
| 1756 |
|
| 1757 |
# 計算最終分數
|
| 1758 |
final_score = (base_score * 0.7 + breed_bonus * 0.3) * perfect_bonus
|
| 1759 |
|
|
|
|
|
|
|
|
|
|
| 1760 |
return min(1.0, final_score)
|
| 1761 |
|
| 1762 |
|
|
|
|
| 409 |
|
| 410 |
|
| 411 |
def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences) -> dict:
|
| 412 |
+
"""計算品種與使用者條件的相容性分數"""
|
| 413 |
try:
|
| 414 |
print(f"Processing breed: {breed_info.get('Breed', 'Unknown')}")
|
| 415 |
print(f"Breed info keys: {breed_info.keys()}")
|
|
|
|
| 417 |
if 'Size' not in breed_info:
|
| 418 |
print("Missing Size information")
|
| 419 |
raise KeyError("Size information missing")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
|
| 421 |
def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
|
| 422 |
"""
|
| 423 |
+
1. 動態的基礎分數矩陣
|
|
|
|
|
|
|
|
|
|
| 424 |
2. 強化空間品質評估
|
| 425 |
3. 增加極端情況處理
|
| 426 |
4. 考慮不同空間組合的協同效應
|
|
|
|
| 1297 |
|
| 1298 |
# def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
| 1299 |
# """
|
| 1300 |
+
# 重構的品種相容性評分系統
|
| 1301 |
+
# 目標:實現更大的分數差異和更高的頂部分數
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1302 |
# """
|
| 1303 |
+
# def evaluate_perfect_conditions():
|
| 1304 |
+
# """評估完美條件匹配度"""
|
| 1305 |
+
# perfect_matches = {
|
| 1306 |
+
# 'size_match': False,
|
| 1307 |
+
# 'exercise_match': False,
|
| 1308 |
+
# 'experience_match': False,
|
| 1309 |
+
# 'general_match': False
|
| 1310 |
+
# }
|
| 1311 |
|
| 1312 |
+
# # 體型與空間匹配
|
| 1313 |
+
# if user_prefs.living_space == 'apartment':
|
| 1314 |
+
# perfect_matches['size_match'] = breed_info['Size'] == 'Small'
|
| 1315 |
+
# elif user_prefs.living_space == 'house_large':
|
| 1316 |
+
# perfect_matches['size_match'] = breed_info['Size'] in ['Medium', 'Large']
|
| 1317 |
|
| 1318 |
+
# # 運動需求匹配
|
| 1319 |
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
| 1320 |
+
# if exercise_needs == 'VERY HIGH' and user_prefs.exercise_time >= 150:
|
| 1321 |
+
# perfect_matches['exercise_match'] = True
|
| 1322 |
+
# elif exercise_needs == 'LOW' and 30 <= user_prefs.exercise_time <= 90:
|
| 1323 |
+
# perfect_matches['exercise_match'] = True
|
| 1324 |
+
# elif 60 <= user_prefs.exercise_time <= 120:
|
| 1325 |
+
# perfect_matches['exercise_match'] = True
|
| 1326 |
|
| 1327 |
+
# # 經驗匹配
|
| 1328 |
# care_level = breed_info.get('Care Level', 'MODERATE')
|
| 1329 |
+
# if care_level == 'High' and user_prefs.experience_level == 'advanced':
|
| 1330 |
+
# perfect_matches['experience_match'] = True
|
| 1331 |
+
# elif care_level == 'Low' and user_prefs.experience_level == 'beginner':
|
| 1332 |
+
# perfect_matches['experience_match'] = True
|
| 1333 |
+
# elif user_prefs.experience_level == 'intermediate':
|
| 1334 |
+
# perfect_matches['experience_match'] = True
|
| 1335 |
+
|
| 1336 |
+
# # 一般條件匹配
|
| 1337 |
+
# if all(score >= 0.85 for score in scores.values()):
|
| 1338 |
+
# perfect_matches['general_match'] = True
|
| 1339 |
|
| 1340 |
+
# return perfect_matches
|
| 1341 |
|
| 1342 |
+
# def calculate_weights():
|
| 1343 |
# """計算動態權重"""
|
| 1344 |
+
# base_weights = {
|
|
|
|
| 1345 |
# 'space': 0.20,
|
| 1346 |
# 'exercise': 0.20,
|
| 1347 |
+
# 'experience': 0.20,
|
| 1348 |
# 'grooming': 0.15,
|
| 1349 |
# 'health': 0.15,
|
| 1350 |
+
# 'noise': 0.10
|
| 1351 |
# }
|
| 1352 |
|
| 1353 |
+
# # 極端條件權重調整
|
| 1354 |
+
# multipliers = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1355 |
|
| 1356 |
+
# # 經驗權重調整
|
| 1357 |
+
# if user_prefs.experience_level == 'beginner':
|
| 1358 |
+
# multipliers['experience'] = 3.0 # 新手經驗極其重要
|
| 1359 |
+
# elif user_prefs.experience_level == 'advanced':
|
| 1360 |
+
# multipliers['experience'] = 2.5 # 專家經驗很重要
|
| 1361 |
+
|
| 1362 |
+
# # 運動需求權重調整
|
| 1363 |
+
# if user_prefs.exercise_time > 150:
|
| 1364 |
+
# multipliers['exercise'] = 3.0
|
| 1365 |
+
# elif user_prefs.exercise_time < 30:
|
| 1366 |
+
# multipliers['exercise'] = 3.5
|
| 1367 |
+
|
| 1368 |
+
# # 空間限制權重調整
|
| 1369 |
+
# if user_prefs.living_space == 'apartment':
|
| 1370 |
+
# multipliers['space'] = 2.5
|
| 1371 |
+
# multipliers['noise'] = 2.0
|
| 1372 |
|
| 1373 |
+
# # 應用乘數
|
| 1374 |
+
# for key, multiplier in multipliers.items():
|
| 1375 |
+
# base_weights[key] *= multiplier
|
| 1376 |
|
| 1377 |
+
# return base_weights
|
| 1378 |
|
| 1379 |
+
# # 評估完美匹配條件
|
| 1380 |
+
# perfect_conditions = evaluate_perfect_conditions()
|
| 1381 |
|
| 1382 |
# # 計算動態權重
|
| 1383 |
+
# weights = calculate_weights()
|
| 1384 |
|
| 1385 |
# # 正規化權重
|
| 1386 |
# total_weight = sum(weights.values())
|
| 1387 |
# normalized_weights = {k: v/total_weight for k, v in weights.items()}
|
| 1388 |
|
| 1389 |
+
# # 計算基礎分數
|
| 1390 |
+
# base_score = sum(scores[k] * normalized_weights[k] for k in scores.keys())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1391 |
|
| 1392 |
+
# # 完美匹配獎勵
|
| 1393 |
+
# perfect_bonus = 1.0
|
| 1394 |
+
# if perfect_conditions['size_match']:
|
| 1395 |
+
# perfect_bonus += 0.2
|
| 1396 |
+
# if perfect_conditions['exercise_match']:
|
| 1397 |
+
# perfect_bonus += 0.2
|
| 1398 |
+
# if perfect_conditions['experience_match']:
|
| 1399 |
+
# perfect_bonus += 0.2
|
| 1400 |
+
# if perfect_conditions['general_match']:
|
| 1401 |
+
# perfect_bonus += 0.2
|
| 1402 |
+
|
| 1403 |
# # 品種特性加成
|
| 1404 |
+
# breed_bonus = calculate_breed_bonus(breed_info, user_prefs) * 1.5 # 增加品種特性影響
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1405 |
|
| 1406 |
+
# # 計算最終分數
|
| 1407 |
+
# final_score = (base_score * 0.7 + breed_bonus * 0.3) * perfect_bonus
|
|
|
|
| 1408 |
|
| 1409 |
+
# return min(1.0, final_score)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1410 |
|
| 1411 |
def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
| 1412 |
"""
|
| 1413 |
重構的品種相容性評分系統
|
| 1414 |
+
目標:實現更大的分數差異和更高的頂部分數,更精確的條件匹配
|
| 1415 |
"""
|
| 1416 |
def evaluate_perfect_conditions():
|
| 1417 |
+
"""評估完美條件匹配度,允許部分匹配"""
|
| 1418 |
perfect_matches = {
|
| 1419 |
+
'size_match': 0,
|
| 1420 |
+
'exercise_match': 0,
|
| 1421 |
+
'experience_match': 0,
|
| 1422 |
'general_match': False
|
| 1423 |
}
|
| 1424 |
|
| 1425 |
+
# 體型與空間匹配更細緻化
|
| 1426 |
if user_prefs.living_space == 'apartment':
|
| 1427 |
+
if breed_info['Size'] == 'Small':
|
| 1428 |
+
perfect_matches['size_match'] = 1.0
|
| 1429 |
+
elif breed_info['Size'] == 'Medium':
|
| 1430 |
+
perfect_matches['size_match'] = 0.5
|
| 1431 |
+
else:
|
| 1432 |
+
perfect_matches['size_match'] = 0
|
| 1433 |
+
elif user_prefs.living_space == 'house_small':
|
| 1434 |
+
if breed_info['Size'] in ['Small', 'Medium']:
|
| 1435 |
+
perfect_matches['size_match'] = 1.0
|
| 1436 |
+
elif breed_info['Size'] == 'Large':
|
| 1437 |
+
perfect_matches['size_match'] = 0.6
|
| 1438 |
+
else:
|
| 1439 |
+
perfect_matches['size_match'] = 0.3
|
| 1440 |
elif user_prefs.living_space == 'house_large':
|
| 1441 |
+
if breed_info['Size'] in ['Medium', 'Large']:
|
| 1442 |
+
perfect_matches['size_match'] = 1.0
|
| 1443 |
+
elif breed_info['Size'] == 'Small':
|
| 1444 |
+
perfect_matches['size_match'] = 0.7
|
| 1445 |
+
else:
|
| 1446 |
+
perfect_matches['size_match'] = 0.8
|
| 1447 |
|
| 1448 |
+
# 運動需求匹配更精確
|
| 1449 |
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
| 1450 |
+
exercise_time = user_prefs.exercise_time
|
| 1451 |
+
|
| 1452 |
+
if exercise_needs == 'VERY HIGH':
|
| 1453 |
+
if exercise_time >= 150:
|
| 1454 |
+
perfect_matches['exercise_match'] = 1.0
|
| 1455 |
+
elif exercise_time >= 120:
|
| 1456 |
+
perfect_matches['exercise_match'] = 0.7
|
| 1457 |
+
elif exercise_time >= 90:
|
| 1458 |
+
perfect_matches['exercise_match'] = 0.4
|
| 1459 |
+
else:
|
| 1460 |
+
perfect_matches['exercise_match'] = 0
|
| 1461 |
+
elif exercise_needs == 'HIGH':
|
| 1462 |
+
if 120 <= exercise_time <= 150:
|
| 1463 |
+
perfect_matches['exercise_match'] = 1.0
|
| 1464 |
+
elif exercise_time >= 90:
|
| 1465 |
+
perfect_matches['exercise_match'] = 0.8
|
| 1466 |
+
elif exercise_time >= 60:
|
| 1467 |
+
perfect_matches['exercise_match'] = 0.5
|
| 1468 |
+
else:
|
| 1469 |
+
perfect_matches['exercise_match'] = 0.2
|
| 1470 |
+
elif exercise_needs == 'MODERATE':
|
| 1471 |
+
if 60 <= exercise_time <= 120:
|
| 1472 |
+
perfect_matches['exercise_match'] = 1.0
|
| 1473 |
+
elif exercise_time > 120:
|
| 1474 |
+
perfect_matches['exercise_match'] = 0.8
|
| 1475 |
+
else:
|
| 1476 |
+
perfect_matches['exercise_match'] = 0.6
|
| 1477 |
+
elif exercise_needs == 'LOW':
|
| 1478 |
+
if 30 <= exercise_time <= 90:
|
| 1479 |
+
perfect_matches['exercise_match'] = 1.0
|
| 1480 |
+
elif exercise_time > 90:
|
| 1481 |
+
perfect_matches['exercise_match'] = 0.7
|
| 1482 |
+
else:
|
| 1483 |
+
perfect_matches['exercise_match'] = 0.5
|
| 1484 |
+
|
| 1485 |
+
# 經驗匹配更細緻
|
| 1486 |
care_level = breed_info.get('Care Level', 'MODERATE')
|
| 1487 |
+
if care_level == 'High':
|
| 1488 |
+
if user_prefs.experience_level == 'advanced':
|
| 1489 |
+
perfect_matches['experience_match'] = 1.0
|
| 1490 |
+
elif user_prefs.experience_level == 'intermediate':
|
| 1491 |
+
perfect_matches['experience_match'] = 0.6
|
| 1492 |
+
else:
|
| 1493 |
+
perfect_matches['experience_match'] = 0.2
|
| 1494 |
+
elif care_level == 'Moderate':
|
| 1495 |
+
if user_prefs.experience_level == 'advanced':
|
| 1496 |
+
perfect_matches['experience_match'] = 0.9
|
| 1497 |
+
elif user_prefs.experience_level == 'intermediate':
|
| 1498 |
+
perfect_matches['experience_match'] = 1.0
|
| 1499 |
+
else:
|
| 1500 |
+
perfect_matches['experience_match'] = 0.7
|
| 1501 |
+
elif care_level == 'Low':
|
| 1502 |
+
if user_prefs.experience_level == 'beginner':
|
| 1503 |
+
perfect_matches['experience_match'] = 1.0
|
| 1504 |
+
else:
|
| 1505 |
+
perfect_matches['experience_match'] = 0.9
|
| 1506 |
|
| 1507 |
# 一般條件匹配
|
| 1508 |
if all(score >= 0.85 for score in scores.values()):
|
|
|
|
| 1511 |
return perfect_matches
|
| 1512 |
|
| 1513 |
def calculate_weights():
|
| 1514 |
+
"""計算更動態的權重"""
|
| 1515 |
base_weights = {
|
| 1516 |
'space': 0.20,
|
| 1517 |
'exercise': 0.20,
|
| 1518 |
+
'experience': 0.20,
|
| 1519 |
'grooming': 0.15,
|
| 1520 |
'health': 0.15,
|
| 1521 |
'noise': 0.10
|
|
|
|
| 1524 |
# 極端條件權重調整
|
| 1525 |
multipliers = {}
|
| 1526 |
|
| 1527 |
+
# 經驗權重更細緻的調整
|
| 1528 |
if user_prefs.experience_level == 'beginner':
|
| 1529 |
+
if breed_info.get('Care Level') == 'High':
|
| 1530 |
+
multipliers['experience'] = 3.5
|
| 1531 |
+
else:
|
| 1532 |
+
multipliers['experience'] = 3.0
|
| 1533 |
elif user_prefs.experience_level == 'advanced':
|
| 1534 |
+
if breed_info.get('Care Level') == 'High':
|
| 1535 |
+
multipliers['experience'] = 2.8
|
| 1536 |
+
else:
|
| 1537 |
+
multipliers['experience'] = 2.5
|
| 1538 |
+
|
| 1539 |
+
# 運動需求更細緻的調整
|
| 1540 |
+
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
| 1541 |
+
if exercise_needs == 'VERY HIGH':
|
| 1542 |
+
if user_prefs.exercise_time < 90:
|
| 1543 |
+
multipliers['exercise'] = 4.0
|
| 1544 |
+
elif user_prefs.exercise_time > 150:
|
| 1545 |
+
multipliers['exercise'] = 3.0
|
| 1546 |
elif user_prefs.exercise_time < 30:
|
| 1547 |
multipliers['exercise'] = 3.5
|
| 1548 |
|
|
|
|
| 1551 |
multipliers['space'] = 2.5
|
| 1552 |
multipliers['noise'] = 2.0
|
| 1553 |
|
| 1554 |
+
# 噪音敏感度調整
|
| 1555 |
+
if user_prefs.noise_tolerance == 'low':
|
| 1556 |
+
multipliers['noise'] = multipliers.get('noise', 1.0) * 2.5
|
| 1557 |
+
|
| 1558 |
# 應用乘數
|
| 1559 |
for key, multiplier in multipliers.items():
|
| 1560 |
base_weights[key] *= multiplier
|
| 1561 |
|
| 1562 |
return base_weights
|
| 1563 |
|
| 1564 |
+
def apply_special_case_adjustments(score):
|
| 1565 |
+
"""處理特殊情況"""
|
| 1566 |
+
# 新手不適合的特殊情況
|
| 1567 |
+
if user_prefs.experience_level == 'beginner':
|
| 1568 |
+
if (breed_info.get('Care Level') == 'High' and
|
| 1569 |
+
breed_info.get('Exercise Needs') == 'VERY HIGH'):
|
| 1570 |
+
score *= 0.7
|
| 1571 |
+
|
| 1572 |
+
# 運動時間極端不匹配的情況
|
| 1573 |
+
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
| 1574 |
+
if exercise_needs == 'VERY HIGH' and user_prefs.exercise_time < 60:
|
| 1575 |
+
score *= 0.6
|
| 1576 |
+
|
| 1577 |
+
# 噪音敏感度極端情況
|
| 1578 |
+
if (user_prefs.noise_tolerance == 'low' and
|
| 1579 |
+
breed_info.get('Breed') in breed_noise_info and
|
| 1580 |
+
breed_noise_info[breed_info['Breed']]['noise_level'].lower() == 'high'):
|
| 1581 |
+
score *= 0.7
|
| 1582 |
+
|
| 1583 |
+
return score
|
| 1584 |
+
|
| 1585 |
# 評估完美匹配條件
|
| 1586 |
perfect_conditions = evaluate_perfect_conditions()
|
| 1587 |
|
|
|
|
| 1595 |
# 計算基礎分數
|
| 1596 |
base_score = sum(scores[k] * normalized_weights[k] for k in scores.keys())
|
| 1597 |
|
| 1598 |
+
# 完美匹配獎勵更動態
|
| 1599 |
perfect_bonus = 1.0
|
| 1600 |
+
perfect_bonus += 0.2 * perfect_conditions['size_match']
|
| 1601 |
+
perfect_bonus += 0.2 * perfect_conditions['exercise_match']
|
| 1602 |
+
perfect_bonus += 0.2 * perfect_conditions['experience_match']
|
|
|
|
|
|
|
|
|
|
| 1603 |
if perfect_conditions['general_match']:
|
| 1604 |
perfect_bonus += 0.2
|
| 1605 |
|
| 1606 |
# 品種特性加成
|
| 1607 |
+
breed_bonus = calculate_breed_bonus(breed_info, user_prefs) * 1.5
|
| 1608 |
|
| 1609 |
# 計算最終分數
|
| 1610 |
final_score = (base_score * 0.7 + breed_bonus * 0.3) * perfect_bonus
|
| 1611 |
|
| 1612 |
+
# 應用特殊情況調整
|
| 1613 |
+
final_score = apply_special_case_adjustments(final_score)
|
| 1614 |
+
|
| 1615 |
return min(1.0, final_score)
|
| 1616 |
|
| 1617 |
|