Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -534,12 +534,6 @@ dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staff
|
|
| 534 |
"Wire-Haired_Fox_Terrier"]
|
| 535 |
|
| 536 |
|
| 537 |
-
def gpu_wrapper(f):
|
| 538 |
-
@wraps(f)
|
| 539 |
-
async def wrapped(*args, **kwargs):
|
| 540 |
-
return await spaces.GPU(f)(*args, **kwargs)
|
| 541 |
-
return wrapped
|
| 542 |
-
|
| 543 |
class MultiHeadAttention(nn.Module):
|
| 544 |
|
| 545 |
def __init__(self, in_dim, num_heads=8):
|
|
@@ -619,7 +613,7 @@ def preprocess_image(image):
|
|
| 619 |
|
| 620 |
return transform(image).unsqueeze(0)
|
| 621 |
|
| 622 |
-
@
|
| 623 |
async def predict_single_dog(image):
|
| 624 |
"""
|
| 625 |
Predicts the dog breed using only the classifier.
|
|
@@ -652,7 +646,7 @@ async def predict_single_dog(image):
|
|
| 652 |
|
| 653 |
return probabilities[0], breeds[:3], relative_probs
|
| 654 |
|
| 655 |
-
@
|
| 656 |
async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
|
| 657 |
|
| 658 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
|
@@ -735,7 +729,7 @@ def create_breed_comparison(breed1: str, breed2: str) -> dict:
|
|
| 735 |
|
| 736 |
return comparison_data
|
| 737 |
|
| 738 |
-
@
|
| 739 |
async def predict(image):
|
| 740 |
"""
|
| 741 |
Main prediction function that handles both single and multiple dog detection.
|
|
@@ -888,6 +882,7 @@ def show_details_html(choice, previous_output, initial_state):
|
|
| 888 |
|
| 889 |
def main():
|
| 890 |
with gr.Blocks(css=get_css_styles()) as iface:
|
|
|
|
| 891 |
|
| 892 |
gr.HTML("""
|
| 893 |
<header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
|
|
|
|
| 534 |
"Wire-Haired_Fox_Terrier"]
|
| 535 |
|
| 536 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 537 |
class MultiHeadAttention(nn.Module):
|
| 538 |
|
| 539 |
def __init__(self, in_dim, num_heads=8):
|
|
|
|
| 613 |
|
| 614 |
return transform(image).unsqueeze(0)
|
| 615 |
|
| 616 |
+
@spaces.GPU
|
| 617 |
async def predict_single_dog(image):
|
| 618 |
"""
|
| 619 |
Predicts the dog breed using only the classifier.
|
|
|
|
| 646 |
|
| 647 |
return probabilities[0], breeds[:3], relative_probs
|
| 648 |
|
| 649 |
+
@spaces.GPU
|
| 650 |
async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
|
| 651 |
|
| 652 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
|
|
|
| 729 |
|
| 730 |
return comparison_data
|
| 731 |
|
| 732 |
+
@spaces.GPU
|
| 733 |
async def predict(image):
|
| 734 |
"""
|
| 735 |
Main prediction function that handles both single and multiple dog detection.
|
|
|
|
| 882 |
|
| 883 |
def main():
|
| 884 |
with gr.Blocks(css=get_css_styles()) as iface:
|
| 885 |
+
spaces.init()
|
| 886 |
|
| 887 |
gr.HTML("""
|
| 888 |
<header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
|