Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -251,6 +251,7 @@ def get_akc_breeds_link():
|
|
| 251 |
# iface.launch()
|
| 252 |
|
| 253 |
def format_description(description, breed):
|
|
|
|
| 254 |
if isinstance(description, dict):
|
| 255 |
formatted_description = "\n".join([f"**{key}**: {value}" for key, value in description.items()])
|
| 256 |
else:
|
|
@@ -258,10 +259,9 @@ def format_description(description, breed):
|
|
| 258 |
|
| 259 |
formatted_description = f"""
|
| 260 |
**Breed**: {breed}
|
| 261 |
-
|
| 262 |
{formatted_description}
|
| 263 |
|
| 264 |
-
**Want to learn more about dog breeds?**
|
| 265 |
[Visit the AKC dog breeds page]({get_akc_breeds_link()}) and search for {breed} to find detailed information.
|
| 266 |
|
| 267 |
*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page.
|
|
@@ -271,7 +271,9 @@ Please refer to the AKC's terms of use and privacy policy.*
|
|
| 271 |
"""
|
| 272 |
return formatted_description
|
| 273 |
|
|
|
|
| 274 |
def predict_single_dog(image):
|
|
|
|
| 275 |
image_tensor = preprocess_image(image)
|
| 276 |
with torch.no_grad():
|
| 277 |
output = model(image_tensor)
|
|
@@ -283,18 +285,21 @@ def predict_single_dog(image):
|
|
| 283 |
topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
|
| 284 |
return top1_prob, topk_breeds, topk_probs_percent
|
| 285 |
|
|
|
|
| 286 |
def detect_multiple_dogs(image):
|
|
|
|
| 287 |
results = model_yolo(image)
|
| 288 |
dogs = []
|
| 289 |
for result in results:
|
| 290 |
for box in result.boxes:
|
| 291 |
-
if box.cls == 16: # COCO
|
| 292 |
xyxy = box.xyxy[0].tolist()
|
| 293 |
confidence = box.conf.item()
|
| 294 |
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
| 295 |
dogs.append((cropped_image, confidence, xyxy))
|
| 296 |
return dogs
|
| 297 |
|
|
|
|
| 298 |
def predict(image):
|
| 299 |
if image is None:
|
| 300 |
return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
|
@@ -303,22 +308,28 @@ def predict(image):
|
|
| 303 |
if isinstance(image, np.ndarray):
|
| 304 |
image = Image.fromarray(image)
|
| 305 |
|
| 306 |
-
#
|
| 307 |
dogs = detect_multiple_dogs(image)
|
| 308 |
|
| 309 |
-
if len(dogs)
|
| 310 |
-
#
|
| 311 |
top1_prob, topk_breeds, topk_probs_percent = predict_single_dog(image)
|
|
|
|
|
|
|
| 312 |
breed = topk_breeds[0]
|
| 313 |
description = get_dog_description(breed)
|
| 314 |
formatted_description = format_description(description, breed)
|
| 315 |
-
|
| 316 |
-
if top1_prob < 0.2:
|
| 317 |
-
return "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 318 |
-
|
| 319 |
return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 320 |
-
|
| 321 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 322 |
explanations = []
|
| 323 |
visible_buttons = []
|
| 324 |
annotated_image = image.copy()
|
|
@@ -337,7 +348,6 @@ def predict(image):
|
|
| 337 |
elif 0.2 <= top1_prob < 0.5:
|
| 338 |
explanation = f"""
|
| 339 |
Dog {i+1}: Detected with moderate confidence. Here are the top 3 possible breeds:
|
| 340 |
-
|
| 341 |
1. **{topk_breeds[0]}** ({topk_probs_percent[0]})
|
| 342 |
2. **{topk_breeds[1]}** ({topk_probs_percent[1]})
|
| 343 |
3. **{topk_breeds[2]}** ({topk_probs_percent[2]})
|
|
@@ -353,6 +363,7 @@ Dog {i+1}: Detected with moderate confidence. Here are the top 3 possible breeds
|
|
| 353 |
except Exception as e:
|
| 354 |
return f"An error occurred: {e}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 355 |
|
|
|
|
| 356 |
def show_details(breed):
|
| 357 |
breed_name = breed.split("More about ")[-1]
|
| 358 |
description = get_dog_description(breed_name)
|
|
|
|
| 251 |
# iface.launch()
|
| 252 |
|
| 253 |
def format_description(description, breed):
|
| 254 |
+
# 分別將不同的屬性分開來顯示,保持結果的可讀性
|
| 255 |
if isinstance(description, dict):
|
| 256 |
formatted_description = "\n".join([f"**{key}**: {value}" for key, value in description.items()])
|
| 257 |
else:
|
|
|
|
| 259 |
|
| 260 |
formatted_description = f"""
|
| 261 |
**Breed**: {breed}
|
|
|
|
| 262 |
{formatted_description}
|
| 263 |
|
| 264 |
+
**Want to learn more about dog breeds?**
|
| 265 |
[Visit the AKC dog breeds page]({get_akc_breeds_link()}) and search for {breed} to find detailed information.
|
| 266 |
|
| 267 |
*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page.
|
|
|
|
| 271 |
"""
|
| 272 |
return formatted_description
|
| 273 |
|
| 274 |
+
|
| 275 |
def predict_single_dog(image):
|
| 276 |
+
# 直接使用模型進行預測,無需通過 YOLO
|
| 277 |
image_tensor = preprocess_image(image)
|
| 278 |
with torch.no_grad():
|
| 279 |
output = model(image_tensor)
|
|
|
|
| 285 |
topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
|
| 286 |
return top1_prob, topk_breeds, topk_probs_percent
|
| 287 |
|
| 288 |
+
|
| 289 |
def detect_multiple_dogs(image):
|
| 290 |
+
# 使用 YOLO 檢測多隻狗
|
| 291 |
results = model_yolo(image)
|
| 292 |
dogs = []
|
| 293 |
for result in results:
|
| 294 |
for box in result.boxes:
|
| 295 |
+
if box.cls == 16: # COCO 資料集中狗的類別是 16
|
| 296 |
xyxy = box.xyxy[0].tolist()
|
| 297 |
confidence = box.conf.item()
|
| 298 |
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
| 299 |
dogs.append((cropped_image, confidence, xyxy))
|
| 300 |
return dogs
|
| 301 |
|
| 302 |
+
|
| 303 |
def predict(image):
|
| 304 |
if image is None:
|
| 305 |
return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
|
|
|
| 308 |
if isinstance(image, np.ndarray):
|
| 309 |
image = Image.fromarray(image)
|
| 310 |
|
| 311 |
+
# 首先檢查圖片中是否有多隻狗
|
| 312 |
dogs = detect_multiple_dogs(image)
|
| 313 |
|
| 314 |
+
if len(dogs) == 0:
|
| 315 |
+
# 沒有狗或 YOLO 未檢測到狗,使用單狗直接分類
|
| 316 |
top1_prob, topk_breeds, topk_probs_percent = predict_single_dog(image)
|
| 317 |
+
if top1_prob < 0.2:
|
| 318 |
+
return "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 319 |
breed = topk_breeds[0]
|
| 320 |
description = get_dog_description(breed)
|
| 321 |
formatted_description = format_description(description, breed)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 322 |
return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 323 |
+
|
| 324 |
+
if len(dogs) == 1:
|
| 325 |
+
# 檢測到一隻狗時,直接分類不使用 YOLO 來節省時間
|
| 326 |
+
top1_prob, topk_breeds, topk_probs_percent = predict_single_dog(image)
|
| 327 |
+
breed = topk_breeds[0]
|
| 328 |
+
description = get_dog_description(breed)
|
| 329 |
+
formatted_description = format_description(description, breed)
|
| 330 |
+
return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 331 |
+
|
| 332 |
+
# 若有多隻狗,則使用 YOLO 的檢測結果來處理
|
| 333 |
explanations = []
|
| 334 |
visible_buttons = []
|
| 335 |
annotated_image = image.copy()
|
|
|
|
| 348 |
elif 0.2 <= top1_prob < 0.5:
|
| 349 |
explanation = f"""
|
| 350 |
Dog {i+1}: Detected with moderate confidence. Here are the top 3 possible breeds:
|
|
|
|
| 351 |
1. **{topk_breeds[0]}** ({topk_probs_percent[0]})
|
| 352 |
2. **{topk_breeds[1]}** ({topk_probs_percent[1]})
|
| 353 |
3. **{topk_breeds[2]}** ({topk_probs_percent[2]})
|
|
|
|
| 363 |
except Exception as e:
|
| 364 |
return f"An error occurred: {e}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 365 |
|
| 366 |
+
|
| 367 |
def show_details(breed):
|
| 368 |
breed_name = breed.split("More about ")[-1]
|
| 369 |
description = get_dog_description(breed_name)
|