Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -20,7 +20,7 @@ logger = logging.getLogger(__name__)
|
|
| 20 |
|
| 21 |
|
| 22 |
# 下載YOLOv8預訓練模型
|
| 23 |
-
model_yolo = YOLO('
|
| 24 |
|
| 25 |
|
| 26 |
dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
|
|
@@ -167,56 +167,34 @@ async def predict_single_dog(image):
|
|
| 167 |
return top1_prob, topk_breeds, topk_probs_percent
|
| 168 |
|
| 169 |
|
| 170 |
-
|
| 171 |
-
# results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
| 172 |
-
# dogs = []
|
| 173 |
-
# boxes = []
|
| 174 |
-
# for box in results.boxes:
|
| 175 |
-
# if box.cls == 16: # COCO dataset class for dog is 16
|
| 176 |
-
# xyxy = box.xyxy[0].tolist()
|
| 177 |
-
# confidence = box.conf.item()
|
| 178 |
-
# boxes.append((xyxy, confidence))
|
| 179 |
-
|
| 180 |
-
# if not boxes:
|
| 181 |
-
# dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
| 182 |
-
# else:
|
| 183 |
-
# nms_boxes = non_max_suppression(boxes, iou_threshold)
|
| 184 |
-
|
| 185 |
-
# for box, confidence in nms_boxes:
|
| 186 |
-
# x1, y1, x2, y2 = box
|
| 187 |
-
# w, h = x2 - x1, y2 - y1
|
| 188 |
-
# x1 = max(0, x1 - w * 0.05)
|
| 189 |
-
# y1 = max(0, y1 - h * 0.05)
|
| 190 |
-
# x2 = min(image.width, x2 + w * 0.05)
|
| 191 |
-
# y2 = min(image.height, y2 + h * 0.05)
|
| 192 |
-
# cropped_image = image.crop((x1, y1, x2, y2))
|
| 193 |
-
# dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
|
| 194 |
-
|
| 195 |
-
# return dogs
|
| 196 |
-
|
| 197 |
-
async def detect_multiple_dogs(image, conf_threshold=0.35, iou_threshold=0.5):
|
| 198 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
| 199 |
dogs = []
|
| 200 |
boxes = []
|
| 201 |
for box in results.boxes:
|
| 202 |
-
if box.cls == 16: #
|
| 203 |
xyxy = box.xyxy[0].tolist()
|
| 204 |
confidence = box.conf.item()
|
| 205 |
boxes.append((xyxy, confidence))
|
| 206 |
|
| 207 |
if not boxes:
|
| 208 |
-
# 當沒檢測到狗時,使用完整圖片
|
| 209 |
dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
| 210 |
else:
|
| 211 |
nms_boxes = non_max_suppression(boxes, iou_threshold)
|
|
|
|
| 212 |
for box, confidence in nms_boxes:
|
| 213 |
x1, y1, x2, y2 = box
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
cropped_image = image.crop((x1, y1, x2, y2))
|
| 215 |
dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
|
|
|
|
| 216 |
return dogs
|
| 217 |
|
| 218 |
|
| 219 |
-
|
| 220 |
def non_max_suppression(boxes, iou_threshold):
|
| 221 |
keep = []
|
| 222 |
boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
|
|
|
|
| 20 |
|
| 21 |
|
| 22 |
# 下載YOLOv8預訓練模型
|
| 23 |
+
model_yolo = YOLO('yolov8s.pt') # 使用 YOLOv8 預訓練模型
|
| 24 |
|
| 25 |
|
| 26 |
dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
|
|
|
|
| 167 |
return top1_prob, topk_breeds, topk_probs_percent
|
| 168 |
|
| 169 |
|
| 170 |
+
async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.6):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
| 172 |
dogs = []
|
| 173 |
boxes = []
|
| 174 |
for box in results.boxes:
|
| 175 |
+
if box.cls == 16: # COCO dataset class for dog is 16
|
| 176 |
xyxy = box.xyxy[0].tolist()
|
| 177 |
confidence = box.conf.item()
|
| 178 |
boxes.append((xyxy, confidence))
|
| 179 |
|
| 180 |
if not boxes:
|
|
|
|
| 181 |
dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
| 182 |
else:
|
| 183 |
nms_boxes = non_max_suppression(boxes, iou_threshold)
|
| 184 |
+
|
| 185 |
for box, confidence in nms_boxes:
|
| 186 |
x1, y1, x2, y2 = box
|
| 187 |
+
w, h = x2 - x1, y2 - y1
|
| 188 |
+
x1 = max(0, x1 - w * 0.05)
|
| 189 |
+
y1 = max(0, y1 - h * 0.05)
|
| 190 |
+
x2 = min(image.width, x2 + w * 0.05)
|
| 191 |
+
y2 = min(image.height, y2 + h * 0.05)
|
| 192 |
cropped_image = image.crop((x1, y1, x2, y2))
|
| 193 |
dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
|
| 194 |
+
|
| 195 |
return dogs
|
| 196 |
|
| 197 |
|
|
|
|
| 198 |
def non_max_suppression(boxes, iou_threshold):
|
| 199 |
keep = []
|
| 200 |
boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
|