Spaces:
Running
on
Zero
Running
on
Zero
Update scoring_calculation_system.py
Browse files- scoring_calculation_system.py +349 -297
scoring_calculation_system.py
CHANGED
|
@@ -1294,110 +1294,143 @@ def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -
|
|
| 1294 |
|
| 1295 |
return min(0.2, adaptability_score)
|
| 1296 |
|
|
|
|
| 1297 |
# def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
| 1298 |
# """
|
| 1299 |
-
#
|
| 1300 |
-
#
|
|
|
|
|
|
|
|
|
|
| 1301 |
# """
|
| 1302 |
# def evaluate_perfect_conditions():
|
| 1303 |
-
# """
|
| 1304 |
# perfect_matches = {
|
| 1305 |
# 'size_match': 0,
|
| 1306 |
# 'exercise_match': 0,
|
| 1307 |
# 'experience_match': 0,
|
| 1308 |
-
# '
|
| 1309 |
# }
|
| 1310 |
|
| 1311 |
-
# #
|
| 1312 |
-
#
|
| 1313 |
-
#
|
| 1314 |
-
#
|
| 1315 |
-
#
|
| 1316 |
-
#
|
| 1317 |
-
#
|
| 1318 |
-
#
|
| 1319 |
-
#
|
| 1320 |
-
#
|
| 1321 |
-
#
|
| 1322 |
-
#
|
| 1323 |
-
#
|
| 1324 |
-
#
|
| 1325 |
-
#
|
| 1326 |
-
#
|
| 1327 |
-
#
|
| 1328 |
-
#
|
| 1329 |
-
#
|
| 1330 |
-
#
|
| 1331 |
-
#
|
| 1332 |
-
#
|
| 1333 |
-
|
| 1334 |
-
# #
|
| 1335 |
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
| 1336 |
# exercise_time = user_prefs.exercise_time
|
|
|
|
| 1337 |
|
| 1338 |
-
#
|
| 1339 |
-
#
|
| 1340 |
-
#
|
| 1341 |
-
#
|
| 1342 |
-
#
|
| 1343 |
-
#
|
| 1344 |
-
#
|
| 1345 |
-
|
| 1346 |
-
#
|
| 1347 |
-
#
|
| 1348 |
-
#
|
| 1349 |
-
#
|
| 1350 |
-
#
|
| 1351 |
-
#
|
| 1352 |
-
#
|
| 1353 |
-
#
|
| 1354 |
-
|
| 1355 |
-
#
|
| 1356 |
-
#
|
| 1357 |
-
#
|
| 1358 |
-
#
|
| 1359 |
-
#
|
| 1360 |
-
#
|
| 1361 |
-
#
|
| 1362 |
-
#
|
| 1363 |
-
#
|
| 1364 |
-
#
|
| 1365 |
-
#
|
| 1366 |
-
#
|
| 1367 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1368 |
# else:
|
| 1369 |
-
#
|
| 1370 |
|
| 1371 |
-
# #
|
| 1372 |
-
#
|
| 1373 |
-
#
|
| 1374 |
-
#
|
| 1375 |
-
#
|
| 1376 |
-
#
|
| 1377 |
-
#
|
| 1378 |
-
|
| 1379 |
-
#
|
| 1380 |
-
|
| 1381 |
-
# if user_prefs.experience_level == 'advanced':
|
| 1382 |
-
# perfect_matches['experience_match'] = 0.9
|
| 1383 |
-
# elif user_prefs.experience_level == 'intermediate':
|
| 1384 |
-
# perfect_matches['experience_match'] = 1.0
|
| 1385 |
-
# else:
|
| 1386 |
-
# perfect_matches['experience_match'] = 0.7
|
| 1387 |
-
# elif care_level == 'Low':
|
| 1388 |
-
# if user_prefs.experience_level == 'beginner':
|
| 1389 |
-
# perfect_matches['experience_match'] = 1.0
|
| 1390 |
-
# else:
|
| 1391 |
-
# perfect_matches['experience_match'] = 0.9
|
| 1392 |
-
|
| 1393 |
-
# # 一般條件匹配
|
| 1394 |
-
# if all(score >= 0.85 for score in scores.values()):
|
| 1395 |
-
# perfect_matches['general_match'] = True
|
| 1396 |
-
|
| 1397 |
# return perfect_matches
|
| 1398 |
|
| 1399 |
# def calculate_weights():
|
| 1400 |
-
# """
|
| 1401 |
# base_weights = {
|
| 1402 |
# 'space': 0.20,
|
| 1403 |
# 'exercise': 0.20,
|
|
@@ -1407,22 +1440,16 @@ def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -
|
|
| 1407 |
# 'noise': 0.10
|
| 1408 |
# }
|
| 1409 |
|
| 1410 |
-
# # 極端條件權重調整
|
| 1411 |
# multipliers = {}
|
| 1412 |
|
| 1413 |
-
# #
|
| 1414 |
-
# if user_prefs.
|
| 1415 |
-
#
|
| 1416 |
-
#
|
| 1417 |
-
#
|
| 1418 |
-
# multipliers['
|
| 1419 |
-
|
| 1420 |
-
#
|
| 1421 |
-
# multipliers['experience'] = 2.8
|
| 1422 |
-
# else:
|
| 1423 |
-
# multipliers['experience'] = 2.5
|
| 1424 |
-
|
| 1425 |
-
# # 運動需求更細緻的調整
|
| 1426 |
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
| 1427 |
# if exercise_needs == 'VERY HIGH':
|
| 1428 |
# if user_prefs.exercise_time < 90:
|
|
@@ -1432,40 +1459,62 @@ def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -
|
|
| 1432 |
# elif user_prefs.exercise_time < 30:
|
| 1433 |
# multipliers['exercise'] = 3.5
|
| 1434 |
|
| 1435 |
-
# #
|
| 1436 |
-
# if user_prefs.
|
| 1437 |
-
#
|
| 1438 |
-
#
|
| 1439 |
-
|
|
|
|
|
|
|
| 1440 |
# # 噪音敏感度調整
|
| 1441 |
# if user_prefs.noise_tolerance == 'low':
|
| 1442 |
-
# multipliers['noise'] = multipliers.get('noise', 1.0) *
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1443 |
|
| 1444 |
-
# #
|
| 1445 |
# for key, multiplier in multipliers.items():
|
| 1446 |
# base_weights[key] *= multiplier
|
| 1447 |
|
| 1448 |
# return base_weights
|
| 1449 |
|
| 1450 |
# def apply_special_case_adjustments(score):
|
| 1451 |
-
# """
|
| 1452 |
-
# #
|
| 1453 |
# if user_prefs.experience_level == 'beginner':
|
| 1454 |
-
# if
|
| 1455 |
-
# breed_info.get('Exercise Needs') == 'VERY HIGH'
|
| 1456 |
-
#
|
| 1457 |
-
|
| 1458 |
-
#
|
|
|
|
|
|
|
| 1459 |
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
| 1460 |
# if exercise_needs == 'VERY HIGH' and user_prefs.exercise_time < 60:
|
| 1461 |
-
# score *= 0.
|
| 1462 |
-
|
| 1463 |
-
#
|
| 1464 |
-
# if (user_prefs.noise_tolerance == 'low' and
|
| 1465 |
-
# breed_info.get('Breed') in breed_noise_info and
|
| 1466 |
-
# breed_noise_info[breed_info['Breed']]['noise_level'].lower() == 'high'):
|
| 1467 |
-
# score *= 0.7
|
| 1468 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1469 |
# return score
|
| 1470 |
|
| 1471 |
# # 評估完美匹配條件
|
|
@@ -1481,19 +1530,18 @@ def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -
|
|
| 1481 |
# # 計算基礎分數
|
| 1482 |
# base_score = sum(scores[k] * normalized_weights[k] for k in scores.keys())
|
| 1483 |
|
| 1484 |
-
# #
|
| 1485 |
# perfect_bonus = 1.0
|
| 1486 |
-
# perfect_bonus += 0.
|
| 1487 |
-
# perfect_bonus += 0.
|
| 1488 |
-
# perfect_bonus += 0.
|
| 1489 |
-
#
|
| 1490 |
-
|
| 1491 |
-
|
| 1492 |
# # 品種特性加成
|
| 1493 |
-
# breed_bonus = calculate_breed_bonus(breed_info, user_prefs) * 1.
|
| 1494 |
|
| 1495 |
# # 計算最終分數
|
| 1496 |
-
# final_score = (base_score * 0.
|
| 1497 |
|
| 1498 |
# # 應用特殊情況調整
|
| 1499 |
# final_score = apply_special_case_adjustments(final_score)
|
|
@@ -1503,14 +1551,15 @@ def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -
|
|
| 1503 |
|
| 1504 |
def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
| 1505 |
"""
|
| 1506 |
-
|
| 1507 |
-
|
| 1508 |
-
|
| 1509 |
-
2. 更動態的權重分配
|
| 1510 |
-
3. 更嚴格的特殊情況處理
|
| 1511 |
"""
|
| 1512 |
def evaluate_perfect_conditions():
|
| 1513 |
-
"""
|
|
|
|
|
|
|
|
|
|
| 1514 |
perfect_matches = {
|
| 1515 |
'size_match': 0,
|
| 1516 |
'exercise_match': 0,
|
|
@@ -1518,210 +1567,216 @@ def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreference
|
|
| 1518 |
'living_condition_match': 0
|
| 1519 |
}
|
| 1520 |
|
| 1521 |
-
#
|
| 1522 |
-
|
| 1523 |
'apartment': {
|
| 1524 |
'Small': 1.0,
|
| 1525 |
'Medium': 0.4,
|
| 1526 |
-
'Large': 0.
|
| 1527 |
-
'Giant': 0.
|
| 1528 |
},
|
| 1529 |
'house_small': {
|
| 1530 |
'Small': 0.9,
|
| 1531 |
'Medium': 1.0,
|
| 1532 |
-
'Large': 0.
|
| 1533 |
-
'Giant': 0.
|
| 1534 |
-
},
|
| 1535 |
-
'house_large': {
|
| 1536 |
-
'Small': 0.7,
|
| 1537 |
-
'Medium': 0.9,
|
| 1538 |
-
'Large': 1.0,
|
| 1539 |
-
'Giant': 0.9
|
| 1540 |
}
|
| 1541 |
}
|
| 1542 |
-
perfect_matches['size_match'] = size_living_matrix.get(user_prefs.living_space, {}).get(breed_info['Size'], 0.5)
|
| 1543 |
|
| 1544 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1545 |
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
| 1546 |
exercise_time = user_prefs.exercise_time
|
| 1547 |
-
exercise_type = user_prefs.exercise_type
|
| 1548 |
-
|
| 1549 |
-
# 建立運動時間範圍對照表
|
| 1550 |
-
exercise_ranges = {
|
| 1551 |
-
'VERY HIGH': {'ideal': (150, 180), 'acceptable': (120, 200)},
|
| 1552 |
-
'HIGH': {'ideal': (120, 150), 'acceptable': (90, 180)},
|
| 1553 |
-
'MODERATE': {'ideal': (60, 120), 'acceptable': (45, 150)},
|
| 1554 |
-
'LOW': {'ideal': (30, 60), 'acceptable': (20, 90)}
|
| 1555 |
-
}
|
| 1556 |
|
| 1557 |
-
#
|
| 1558 |
-
|
| 1559 |
-
|
| 1560 |
-
|
| 1561 |
-
|
| 1562 |
-
|
| 1563 |
-
|
| 1564 |
-
|
| 1565 |
-
|
| 1566 |
-
# 運動類型匹配評估
|
| 1567 |
-
exercise_type_matrix = {
|
| 1568 |
-
'VERY HIGH': {
|
| 1569 |
-
'light_walks': 0.2,
|
| 1570 |
-
'moderate_activity': 0.5,
|
| 1571 |
-
'active_training': 1.0
|
| 1572 |
-
},
|
| 1573 |
-
'HIGH': {
|
| 1574 |
-
'light_walks': 0.3,
|
| 1575 |
-
'moderate_activity': 0.8,
|
| 1576 |
-
'active_training': 1.0
|
| 1577 |
-
},
|
| 1578 |
-
'MODERATE': {
|
| 1579 |
-
'light_walks': 0.7,
|
| 1580 |
-
'moderate_activity': 1.0,
|
| 1581 |
-
'active_training': 0.8
|
| 1582 |
-
},
|
| 1583 |
-
'LOW': {
|
| 1584 |
-
'light_walks': 1.0,
|
| 1585 |
-
'moderate_activity': 0.7,
|
| 1586 |
-
'active_training': 0.4
|
| 1587 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1588 |
}
|
| 1589 |
|
| 1590 |
-
|
| 1591 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1592 |
|
| 1593 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1594 |
care_level = breed_info.get('Care Level', 'MODERATE').upper()
|
| 1595 |
-
|
| 1596 |
-
|
| 1597 |
-
|
| 1598 |
-
|
| 1599 |
-
|
| 1600 |
-
}
|
| 1601 |
-
'MODERATE': {
|
| 1602 |
-
'beginner': 0.5,
|
| 1603 |
-
'intermediate': 1.0,
|
| 1604 |
-
'advanced': 0.9
|
| 1605 |
-
},
|
| 1606 |
-
'LOW': {
|
| 1607 |
-
'beginner': 1.0,
|
| 1608 |
-
'intermediate': 0.9,
|
| 1609 |
-
'advanced': 0.8
|
| 1610 |
-
}
|
| 1611 |
}
|
| 1612 |
-
perfect_matches['experience_match'] = experience_matrix.get(care_level, {}).get(user_prefs.experience_level, 0.5)
|
| 1613 |
|
| 1614 |
-
|
| 1615 |
-
|
| 1616 |
|
| 1617 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1618 |
if breed_info.get('Exercise Needs', 'MODERATE').upper() in ['HIGH', 'VERY HIGH']:
|
| 1619 |
-
|
| 1620 |
-
|
| 1621 |
-
|
| 1622 |
-
|
| 1623 |
-
|
| 1624 |
-
|
| 1625 |
-
|
| 1626 |
-
# 時間可用性評估
|
| 1627 |
-
time_availability_scores = {
|
| 1628 |
-
'limited': 0.4,
|
| 1629 |
-
'moderate': 0.7,
|
| 1630 |
-
'flexible': 1.0
|
| 1631 |
-
}
|
| 1632 |
-
living_factors.append(time_availability_scores.get(user_prefs.time_availability, 0.7))
|
| 1633 |
|
| 1634 |
-
perfect_matches['living_condition_match'] =
|
| 1635 |
|
| 1636 |
return perfect_matches
|
| 1637 |
|
| 1638 |
def calculate_weights():
|
| 1639 |
-
"""
|
|
|
|
|
|
|
|
|
|
| 1640 |
base_weights = {
|
| 1641 |
'space': 0.20,
|
| 1642 |
'exercise': 0.20,
|
| 1643 |
'experience': 0.20,
|
| 1644 |
'grooming': 0.15,
|
| 1645 |
-
'
|
| 1646 |
-
'
|
| 1647 |
}
|
| 1648 |
|
| 1649 |
-
|
| 1650 |
-
|
| 1651 |
-
|
| 1652 |
-
if user_prefs.living_space == 'apartment':
|
| 1653 |
-
multipliers['space'] = 3.0
|
| 1654 |
-
multipliers['noise'] = 2.5
|
| 1655 |
-
if breed_info['Size'] in ['Large', 'Giant']:
|
| 1656 |
-
multipliers['space'] = 4.0
|
| 1657 |
-
|
| 1658 |
-
# 運動需求權重調整
|
| 1659 |
-
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
| 1660 |
-
if exercise_needs == 'VERY HIGH':
|
| 1661 |
-
if user_prefs.exercise_time < 90:
|
| 1662 |
-
multipliers['exercise'] = 4.0
|
| 1663 |
-
elif user_prefs.exercise_time > 150:
|
| 1664 |
-
multipliers['exercise'] = 3.0
|
| 1665 |
-
elif user_prefs.exercise_time < 30:
|
| 1666 |
-
multipliers['exercise'] = 3.5
|
| 1667 |
|
| 1668 |
-
|
| 1669 |
-
|
| 1670 |
-
|
| 1671 |
-
|
|
|
|
| 1672 |
else:
|
| 1673 |
-
|
| 1674 |
|
| 1675 |
-
|
| 1676 |
-
|
| 1677 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1678 |
|
| 1679 |
-
|
| 1680 |
-
|
| 1681 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1682 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1683 |
# 應用權重調整
|
| 1684 |
-
|
| 1685 |
-
|
|
|
|
| 1686 |
|
| 1687 |
-
return
|
| 1688 |
|
| 1689 |
def apply_special_case_adjustments(score):
|
| 1690 |
-
"""
|
| 1691 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1692 |
if user_prefs.experience_level == 'beginner':
|
| 1693 |
if breed_info.get('Care Level') == 'HIGH':
|
| 1694 |
-
if
|
| 1695 |
-
|
| 1696 |
else:
|
| 1697 |
-
|
| 1698 |
|
| 1699 |
-
#
|
| 1700 |
-
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
| 1701 |
-
if exercise_needs == 'VERY HIGH' and user_prefs.exercise_time < 60:
|
| 1702 |
-
score *= 0.4
|
| 1703 |
-
elif exercise_needs == 'LOW' and user_prefs.exercise_time > 150:
|
| 1704 |
-
score *= 0.5
|
| 1705 |
-
|
| 1706 |
-
# 居住空間極端不匹配
|
| 1707 |
-
if user_prefs.living_space == 'apartment':
|
| 1708 |
-
if breed_info['Size'] == 'Giant':
|
| 1709 |
-
score *= 0.3
|
| 1710 |
-
elif breed_info['Size'] == 'Large':
|
| 1711 |
-
score *= 0.5
|
| 1712 |
-
|
| 1713 |
-
# 噪音敏感度極端不匹配
|
| 1714 |
-
if user_prefs.noise_tolerance == 'low':
|
| 1715 |
-
if breed_info.get('Breed') in breed_noise_info:
|
| 1716 |
-
if breed_noise_info[breed_info['Breed']]['noise_level'].lower() == 'high':
|
| 1717 |
-
score *= 0.4
|
| 1718 |
-
|
| 1719 |
-
# 時間限制的影響
|
| 1720 |
if user_prefs.time_availability == 'limited':
|
| 1721 |
if breed_info.get('Exercise Needs').upper() in ['HIGH', 'VERY HIGH']:
|
| 1722 |
-
|
| 1723 |
|
| 1724 |
-
return score
|
| 1725 |
|
| 1726 |
# 評估完美匹配條件
|
| 1727 |
perfect_conditions = evaluate_perfect_conditions()
|
|
@@ -1736,20 +1791,18 @@ def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreference
|
|
| 1736 |
# 計算基礎分數
|
| 1737 |
base_score = sum(scores[k] * normalized_weights[k] for k in scores.keys())
|
| 1738 |
|
| 1739 |
-
#
|
| 1740 |
perfect_bonus = 1.0
|
| 1741 |
perfect_bonus += 0.15 * perfect_conditions['size_match']
|
| 1742 |
perfect_bonus += 0.15 * perfect_conditions['exercise_match']
|
| 1743 |
perfect_bonus += 0.15 * perfect_conditions['experience_match']
|
| 1744 |
perfect_bonus += 0.05 * perfect_conditions['living_condition_match']
|
| 1745 |
|
| 1746 |
-
#
|
| 1747 |
-
breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
|
| 1748 |
|
| 1749 |
-
#
|
| 1750 |
final_score = (base_score * 0.8 + breed_bonus * 0.2) * perfect_bonus
|
| 1751 |
-
|
| 1752 |
-
# 應用特殊情況調整
|
| 1753 |
final_score = apply_special_case_adjustments(final_score)
|
| 1754 |
|
| 1755 |
return min(1.0, final_score)
|
|
@@ -1757,7 +1810,6 @@ def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreference
|
|
| 1757 |
|
| 1758 |
def amplify_score_extreme(score: float) -> float:
|
| 1759 |
"""
|
| 1760 |
-
改進的分數轉換函數:實現更高的頂部分數
|
| 1761 |
- 完美匹配可達到95-99%
|
| 1762 |
- 優秀匹配在90-95%
|
| 1763 |
- 良好匹配在85-90%
|
|
|
|
| 1294 |
|
| 1295 |
return min(0.2, adaptability_score)
|
| 1296 |
|
| 1297 |
+
|
| 1298 |
# def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
| 1299 |
# """
|
| 1300 |
+
# 優化後的品種相容性評分系統
|
| 1301 |
+
# 主要改進:
|
| 1302 |
+
# 1. 更精確的條件匹配度評估
|
| 1303 |
+
# 2. 更動態的權重分配
|
| 1304 |
+
# 3. 更嚴格的特殊情況處理
|
| 1305 |
# """
|
| 1306 |
# def evaluate_perfect_conditions():
|
| 1307 |
+
# """評估完美條件匹配度,重點優化不同條件組合的評估邏輯"""
|
| 1308 |
# perfect_matches = {
|
| 1309 |
# 'size_match': 0,
|
| 1310 |
# 'exercise_match': 0,
|
| 1311 |
# 'experience_match': 0,
|
| 1312 |
+
# 'living_condition_match': 0
|
| 1313 |
# }
|
| 1314 |
|
| 1315 |
+
# # 體型與居住空間匹配評估
|
| 1316 |
+
# size_living_matrix = {
|
| 1317 |
+
# 'apartment': {
|
| 1318 |
+
# 'Small': 1.0,
|
| 1319 |
+
# 'Medium': 0.4,
|
| 1320 |
+
# 'Large': 0.1,
|
| 1321 |
+
# 'Giant': 0.05
|
| 1322 |
+
# },
|
| 1323 |
+
# 'house_small': {
|
| 1324 |
+
# 'Small': 0.9,
|
| 1325 |
+
# 'Medium': 1.0,
|
| 1326 |
+
# 'Large': 0.5,
|
| 1327 |
+
# 'Giant': 0.3
|
| 1328 |
+
# },
|
| 1329 |
+
# 'house_large': {
|
| 1330 |
+
# 'Small': 0.7,
|
| 1331 |
+
# 'Medium': 0.9,
|
| 1332 |
+
# 'Large': 1.0,
|
| 1333 |
+
# 'Giant': 0.9
|
| 1334 |
+
# }
|
| 1335 |
+
# }
|
| 1336 |
+
# perfect_matches['size_match'] = size_living_matrix.get(user_prefs.living_space, {}).get(breed_info['Size'], 0.5)
|
| 1337 |
+
|
| 1338 |
+
# # 運動需求匹配評估
|
| 1339 |
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
| 1340 |
# exercise_time = user_prefs.exercise_time
|
| 1341 |
+
# exercise_type = user_prefs.exercise_type
|
| 1342 |
|
| 1343 |
+
# # 建立運動時間範圍對照表
|
| 1344 |
+
# exercise_ranges = {
|
| 1345 |
+
# 'VERY HIGH': {'ideal': (150, 180), 'acceptable': (120, 200)},
|
| 1346 |
+
# 'HIGH': {'ideal': (120, 150), 'acceptable': (90, 180)},
|
| 1347 |
+
# 'MODERATE': {'ideal': (60, 120), 'acceptable': (45, 150)},
|
| 1348 |
+
# 'LOW': {'ideal': (30, 60), 'acceptable': (20, 90)}
|
| 1349 |
+
# }
|
| 1350 |
+
|
| 1351 |
+
# # 評估運動時間匹配度
|
| 1352 |
+
# breed_range = exercise_ranges.get(exercise_needs, exercise_ranges['MODERATE'])
|
| 1353 |
+
# if breed_range['ideal'][0] <= exercise_time <= breed_range['ideal'][1]:
|
| 1354 |
+
# time_match = 1.0
|
| 1355 |
+
# elif breed_range['acceptable'][0] <= exercise_time <= breed_range['acceptable'][1]:
|
| 1356 |
+
# time_match = 0.7
|
| 1357 |
+
# else:
|
| 1358 |
+
# time_match = 0.3
|
| 1359 |
+
|
| 1360 |
+
# # 運動類型匹配評估
|
| 1361 |
+
# exercise_type_matrix = {
|
| 1362 |
+
# 'VERY HIGH': {
|
| 1363 |
+
# 'light_walks': 0.2,
|
| 1364 |
+
# 'moderate_activity': 0.5,
|
| 1365 |
+
# 'active_training': 1.0
|
| 1366 |
+
# },
|
| 1367 |
+
# 'HIGH': {
|
| 1368 |
+
# 'light_walks': 0.3,
|
| 1369 |
+
# 'moderate_activity': 0.8,
|
| 1370 |
+
# 'active_training': 1.0
|
| 1371 |
+
# },
|
| 1372 |
+
# 'MODERATE': {
|
| 1373 |
+
# 'light_walks': 0.7,
|
| 1374 |
+
# 'moderate_activity': 1.0,
|
| 1375 |
+
# 'active_training': 0.8
|
| 1376 |
+
# },
|
| 1377 |
+
# 'LOW': {
|
| 1378 |
+
# 'light_walks': 1.0,
|
| 1379 |
+
# 'moderate_activity': 0.7,
|
| 1380 |
+
# 'active_training': 0.4
|
| 1381 |
+
# }
|
| 1382 |
+
# }
|
| 1383 |
+
|
| 1384 |
+
# type_match = exercise_type_matrix.get(exercise_needs, {}).get(exercise_type, 0.5)
|
| 1385 |
+
# perfect_matches['exercise_match'] = (time_match * 0.7) + (type_match * 0.3)
|
| 1386 |
+
|
| 1387 |
+
# # 經驗匹配度評估
|
| 1388 |
+
# care_level = breed_info.get('Care Level', 'MODERATE').upper()
|
| 1389 |
+
# experience_matrix = {
|
| 1390 |
+
# 'HIGH': {
|
| 1391 |
+
# 'beginner': 0.1,
|
| 1392 |
+
# 'intermediate': 0.6,
|
| 1393 |
+
# 'advanced': 1.0
|
| 1394 |
+
# },
|
| 1395 |
+
# 'MODERATE': {
|
| 1396 |
+
# 'beginner': 0.5,
|
| 1397 |
+
# 'intermediate': 1.0,
|
| 1398 |
+
# 'advanced': 0.9
|
| 1399 |
+
# },
|
| 1400 |
+
# 'LOW': {
|
| 1401 |
+
# 'beginner': 1.0,
|
| 1402 |
+
# 'intermediate': 0.9,
|
| 1403 |
+
# 'advanced': 0.8
|
| 1404 |
+
# }
|
| 1405 |
+
# }
|
| 1406 |
+
# perfect_matches['experience_match'] = experience_matrix.get(care_level, {}).get(user_prefs.experience_level, 0.5)
|
| 1407 |
+
|
| 1408 |
+
# # 生活條件整體匹配評估
|
| 1409 |
+
# living_factors = []
|
| 1410 |
+
|
| 1411 |
+
# # 院子可用性評估
|
| 1412 |
+
# if breed_info.get('Exercise Needs', 'MODERATE').upper() in ['HIGH', 'VERY HIGH']:
|
| 1413 |
+
# if user_prefs.yard_access == 'no_yard':
|
| 1414 |
+
# living_factors.append(0.3)
|
| 1415 |
+
# elif user_prefs.yard_access == 'shared_yard':
|
| 1416 |
+
# living_factors.append(0.7)
|
| 1417 |
# else:
|
| 1418 |
+
# living_factors.append(1.0)
|
| 1419 |
|
| 1420 |
+
# # 時間可用性評估
|
| 1421 |
+
# time_availability_scores = {
|
| 1422 |
+
# 'limited': 0.4,
|
| 1423 |
+
# 'moderate': 0.7,
|
| 1424 |
+
# 'flexible': 1.0
|
| 1425 |
+
# }
|
| 1426 |
+
# living_factors.append(time_availability_scores.get(user_prefs.time_availability, 0.7))
|
| 1427 |
+
|
| 1428 |
+
# perfect_matches['living_condition_match'] = sum(living_factors) / len(living_factors) if living_factors else 0.5
|
| 1429 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1430 |
# return perfect_matches
|
| 1431 |
|
| 1432 |
# def calculate_weights():
|
| 1433 |
+
# """計算動態權重,根據使用者條件調整各項評分的重要性"""
|
| 1434 |
# base_weights = {
|
| 1435 |
# 'space': 0.20,
|
| 1436 |
# 'exercise': 0.20,
|
|
|
|
| 1440 |
# 'noise': 0.10
|
| 1441 |
# }
|
| 1442 |
|
|
|
|
| 1443 |
# multipliers = {}
|
| 1444 |
|
| 1445 |
+
# # 居住空間權重調整
|
| 1446 |
+
# if user_prefs.living_space == 'apartment':
|
| 1447 |
+
# multipliers['space'] = 3.0
|
| 1448 |
+
# multipliers['noise'] = 2.5
|
| 1449 |
+
# if breed_info['Size'] in ['Large', 'Giant']:
|
| 1450 |
+
# multipliers['space'] = 4.0
|
| 1451 |
+
|
| 1452 |
+
# # 運動需求權重調整
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1453 |
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
| 1454 |
# if exercise_needs == 'VERY HIGH':
|
| 1455 |
# if user_prefs.exercise_time < 90:
|
|
|
|
| 1459 |
# elif user_prefs.exercise_time < 30:
|
| 1460 |
# multipliers['exercise'] = 3.5
|
| 1461 |
|
| 1462 |
+
# # 經驗需求權重調整
|
| 1463 |
+
# if user_prefs.experience_level == 'beginner':
|
| 1464 |
+
# if breed_info.get('Care Level', 'MODERATE').upper() == 'HIGH':
|
| 1465 |
+
# multipliers['experience'] = 4.0
|
| 1466 |
+
# else:
|
| 1467 |
+
# multipliers['experience'] = 3.0
|
| 1468 |
+
|
| 1469 |
# # 噪音敏感度調整
|
| 1470 |
# if user_prefs.noise_tolerance == 'low':
|
| 1471 |
+
# multipliers['noise'] = multipliers.get('noise', 1.0) * 3.0
|
| 1472 |
+
|
| 1473 |
+
# # 有小孩的情況特別注重經驗需求
|
| 1474 |
+
# if user_prefs.has_children and user_prefs.children_age == 'toddler':
|
| 1475 |
+
# multipliers['experience'] = multipliers.get('experience', 1.0) * 2.0
|
| 1476 |
|
| 1477 |
+
# # 應用權重調整
|
| 1478 |
# for key, multiplier in multipliers.items():
|
| 1479 |
# base_weights[key] *= multiplier
|
| 1480 |
|
| 1481 |
# return base_weights
|
| 1482 |
|
| 1483 |
# def apply_special_case_adjustments(score):
|
| 1484 |
+
# """處理特殊情況,給予更嚴格的分數調整"""
|
| 1485 |
+
# # 極端不匹配情況的嚴格懲罰
|
| 1486 |
# if user_prefs.experience_level == 'beginner':
|
| 1487 |
+
# if breed_info.get('Care Level') == 'HIGH':
|
| 1488 |
+
# if breed_info.get('Exercise Needs') == 'VERY HIGH':
|
| 1489 |
+
# score *= 0.4
|
| 1490 |
+
# else:
|
| 1491 |
+
# score *= 0.6
|
| 1492 |
+
|
| 1493 |
+
# # 運動需求極端不匹配
|
| 1494 |
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
| 1495 |
# if exercise_needs == 'VERY HIGH' and user_prefs.exercise_time < 60:
|
| 1496 |
+
# score *= 0.4
|
| 1497 |
+
# elif exercise_needs == 'LOW' and user_prefs.exercise_time > 150:
|
| 1498 |
+
# score *= 0.5
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1499 |
|
| 1500 |
+
# # 居住空間極端不匹配
|
| 1501 |
+
# if user_prefs.living_space == 'apartment':
|
| 1502 |
+
# if breed_info['Size'] == 'Giant':
|
| 1503 |
+
# score *= 0.3
|
| 1504 |
+
# elif breed_info['Size'] == 'Large':
|
| 1505 |
+
# score *= 0.5
|
| 1506 |
+
|
| 1507 |
+
# # 噪音敏感度極端不匹配
|
| 1508 |
+
# if user_prefs.noise_tolerance == 'low':
|
| 1509 |
+
# if breed_info.get('Breed') in breed_noise_info:
|
| 1510 |
+
# if breed_noise_info[breed_info['Breed']]['noise_level'].lower() == 'high':
|
| 1511 |
+
# score *= 0.4
|
| 1512 |
+
|
| 1513 |
+
# # 時間限制的影響
|
| 1514 |
+
# if user_prefs.time_availability == 'limited':
|
| 1515 |
+
# if breed_info.get('Exercise Needs').upper() in ['HIGH', 'VERY HIGH']:
|
| 1516 |
+
# score *= 0.6
|
| 1517 |
+
|
| 1518 |
# return score
|
| 1519 |
|
| 1520 |
# # 評估完美匹配條件
|
|
|
|
| 1530 |
# # 計算基礎分數
|
| 1531 |
# base_score = sum(scores[k] * normalized_weights[k] for k in scores.keys())
|
| 1532 |
|
| 1533 |
+
# # 完美匹配獎勵計算
|
| 1534 |
# perfect_bonus = 1.0
|
| 1535 |
+
# perfect_bonus += 0.15 * perfect_conditions['size_match']
|
| 1536 |
+
# perfect_bonus += 0.15 * perfect_conditions['exercise_match']
|
| 1537 |
+
# perfect_bonus += 0.15 * perfect_conditions['experience_match']
|
| 1538 |
+
# perfect_bonus += 0.05 * perfect_conditions['living_condition_match']
|
| 1539 |
+
|
|
|
|
| 1540 |
# # 品種特性加成
|
| 1541 |
+
# breed_bonus = calculate_breed_bonus(breed_info, user_prefs) * 1.2
|
| 1542 |
|
| 1543 |
# # 計算最終分數
|
| 1544 |
+
# final_score = (base_score * 0.8 + breed_bonus * 0.2) * perfect_bonus
|
| 1545 |
|
| 1546 |
# # 應用特殊情況調整
|
| 1547 |
# final_score = apply_special_case_adjustments(final_score)
|
|
|
|
| 1551 |
|
| 1552 |
def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
| 1553 |
"""
|
| 1554 |
+
1. 條件間的相互影響
|
| 1555 |
+
2. 動態權重調整
|
| 1556 |
+
3. 更自然的評分機制
|
|
|
|
|
|
|
| 1557 |
"""
|
| 1558 |
def evaluate_perfect_conditions():
|
| 1559 |
+
"""
|
| 1560 |
+
評估條件匹配度,考慮條件間的相互關係。
|
| 1561 |
+
返回的不只是單純的匹配分數,而是綜合了各種條件互相影響後的結果。
|
| 1562 |
+
"""
|
| 1563 |
perfect_matches = {
|
| 1564 |
'size_match': 0,
|
| 1565 |
'exercise_match': 0,
|
|
|
|
| 1567 |
'living_condition_match': 0
|
| 1568 |
}
|
| 1569 |
|
| 1570 |
+
# 居住空間與體型匹配評估
|
| 1571 |
+
size_living_evaluation = {
|
| 1572 |
'apartment': {
|
| 1573 |
'Small': 1.0,
|
| 1574 |
'Medium': 0.4,
|
| 1575 |
+
'Large': 0.2,
|
| 1576 |
+
'Giant': 0.1
|
| 1577 |
},
|
| 1578 |
'house_small': {
|
| 1579 |
'Small': 0.9,
|
| 1580 |
'Medium': 1.0,
|
| 1581 |
+
'Large': 0.6,
|
| 1582 |
+
'Giant': 0.4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1583 |
}
|
| 1584 |
}
|
|
|
|
| 1585 |
|
| 1586 |
+
# 對於大房子,我們不使用固定的匹配矩陣,而是根據其他條件動態評估
|
| 1587 |
+
if user_prefs.living_space == 'house_large':
|
| 1588 |
+
# 大房子的評估更關注其他因素而不是體型限制
|
| 1589 |
+
perfect_matches['size_match'] = 0.8 # 基礎分數較高
|
| 1590 |
+
if breed_info['Size'] in ['Medium', 'Large']:
|
| 1591 |
+
perfect_matches['size_match'] = 0.9
|
| 1592 |
+
else:
|
| 1593 |
+
perfect_matches['size_match'] = size_living_evaluation.get(
|
| 1594 |
+
user_prefs.living_space, {}
|
| 1595 |
+
).get(breed_info['Size'], 0.5)
|
| 1596 |
+
|
| 1597 |
+
# 運動需求匹配評估,考慮多個相關因素
|
| 1598 |
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
| 1599 |
exercise_time = user_prefs.exercise_time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1600 |
|
| 1601 |
+
# 建立運動時間的基礎評估
|
| 1602 |
+
def evaluate_exercise_match():
|
| 1603 |
+
# 根據運動需求級別動態計算理想範圍
|
| 1604 |
+
exercise_ranges = {
|
| 1605 |
+
'VERY HIGH': (120, 180),
|
| 1606 |
+
'HIGH': (90, 150),
|
| 1607 |
+
'MODERATE': (60, 120),
|
| 1608 |
+
'LOW': (30, 90)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1609 |
}
|
| 1610 |
+
|
| 1611 |
+
# 獲取該品種的理想運動範圍
|
| 1612 |
+
ideal_range = exercise_ranges.get(exercise_needs, (60, 120))
|
| 1613 |
+
min_time, max_time = ideal_range
|
| 1614 |
+
|
| 1615 |
+
# 動態計算匹配度,避免硬性分界
|
| 1616 |
+
if min_time <= exercise_time <= max_time:
|
| 1617 |
+
base_score = 1.0
|
| 1618 |
+
else:
|
| 1619 |
+
# 計算與理想範圍的偏差程度
|
| 1620 |
+
if exercise_time < min_time:
|
| 1621 |
+
deviation = (min_time - exercise_time) / min_time
|
| 1622 |
+
else:
|
| 1623 |
+
deviation = (exercise_time - max_time) / max_time
|
| 1624 |
+
base_score = max(0.3, 1 - deviation)
|
| 1625 |
+
|
| 1626 |
+
return base_score
|
| 1627 |
+
|
| 1628 |
+
# 結合運動時間與其他條件
|
| 1629 |
+
exercise_base_score = evaluate_exercise_match()
|
| 1630 |
+
|
| 1631 |
+
# 考慮時間可用性的影響
|
| 1632 |
+
time_availability_impact = {
|
| 1633 |
+
'limited': 0.7,
|
| 1634 |
+
'moderate': 0.9,
|
| 1635 |
+
'flexible': 1.0
|
| 1636 |
}
|
| 1637 |
|
| 1638 |
+
# 考慮使用者經驗對運動安排的影響
|
| 1639 |
+
experience_impact = {
|
| 1640 |
+
'beginner': 0.8,
|
| 1641 |
+
'intermediate': 0.9,
|
| 1642 |
+
'advanced': 1.0
|
| 1643 |
+
}
|
| 1644 |
|
| 1645 |
+
# 計算最終運動匹配度
|
| 1646 |
+
exercise_modifiers = (
|
| 1647 |
+
time_availability_impact.get(user_prefs.time_availability, 0.9) *
|
| 1648 |
+
experience_impact.get(user_prefs.experience_level, 0.9)
|
| 1649 |
+
)
|
| 1650 |
+
|
| 1651 |
+
perfect_matches['exercise_match'] = exercise_base_score * exercise_modifiers
|
| 1652 |
+
|
| 1653 |
+
# 經驗匹配評估,考慮品種難度和其他因素
|
| 1654 |
care_level = breed_info.get('Care Level', 'MODERATE').upper()
|
| 1655 |
+
|
| 1656 |
+
# 基礎經驗匹配評估
|
| 1657 |
+
experience_base = {
|
| 1658 |
+
'HIGH': {'beginner': 0.3, 'intermediate': 0.7, 'advanced': 1.0},
|
| 1659 |
+
'MODERATE': {'beginner': 0.6, 'intermediate': 0.9, 'advanced': 1.0},
|
| 1660 |
+
'LOW': {'beginner': 0.9, 'intermediate': 1.0, 'advanced': 0.9}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1661 |
}
|
|
|
|
| 1662 |
|
| 1663 |
+
experience_score = experience_base.get(care_level, experience_base['MODERATE']
|
| 1664 |
+
).get(user_prefs.experience_level, 0.7)
|
| 1665 |
|
| 1666 |
+
# 調整經驗分數基於其他因素
|
| 1667 |
+
if user_prefs.has_children:
|
| 1668 |
+
experience_score *= 0.8 if user_prefs.experience_level == 'beginner' else 0.9
|
| 1669 |
+
|
| 1670 |
+
perfect_matches['experience_match'] = experience_score
|
| 1671 |
+
|
| 1672 |
+
# 生活條件整體評估
|
| 1673 |
+
living_score = 1.0
|
| 1674 |
+
|
| 1675 |
+
# 院子影響評估
|
| 1676 |
if breed_info.get('Exercise Needs', 'MODERATE').upper() in ['HIGH', 'VERY HIGH']:
|
| 1677 |
+
yard_impacts = {
|
| 1678 |
+
'no_yard': 0.6,
|
| 1679 |
+
'shared_yard': 0.8,
|
| 1680 |
+
'private_yard': 1.0
|
| 1681 |
+
}
|
| 1682 |
+
living_score *= yard_impacts.get(user_prefs.yard_access, 0.8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1683 |
|
| 1684 |
+
perfect_matches['living_condition_match'] = living_score
|
| 1685 |
|
| 1686 |
return perfect_matches
|
| 1687 |
|
| 1688 |
def calculate_weights():
|
| 1689 |
+
"""
|
| 1690 |
+
計算動態權重,根據條件的極端程度自動調整各項評分的重要性
|
| 1691 |
+
"""
|
| 1692 |
+
# 基礎權重設定
|
| 1693 |
base_weights = {
|
| 1694 |
'space': 0.20,
|
| 1695 |
'exercise': 0.20,
|
| 1696 |
'experience': 0.20,
|
| 1697 |
'grooming': 0.15,
|
| 1698 |
+
'noise': 0.15,
|
| 1699 |
+
'health': 0.10
|
| 1700 |
}
|
| 1701 |
|
| 1702 |
+
# 計算條件的極端程度
|
| 1703 |
+
def calculate_extremity():
|
| 1704 |
+
extremities = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1705 |
|
| 1706 |
+
# 運動時間極端度
|
| 1707 |
+
if user_prefs.exercise_time < 30:
|
| 1708 |
+
extremities['exercise'] = ('low', 0.8)
|
| 1709 |
+
elif user_prefs.exercise_time > 150:
|
| 1710 |
+
extremities['exercise'] = ('high', 0.8)
|
| 1711 |
else:
|
| 1712 |
+
extremities['exercise'] = ('normal', 0.3)
|
| 1713 |
|
| 1714 |
+
# 居住空間極端度
|
| 1715 |
+
if user_prefs.living_space == 'apartment':
|
| 1716 |
+
extremities['space'] = ('restrictive', 0.9)
|
| 1717 |
+
elif user_prefs.living_space == 'house_large':
|
| 1718 |
+
extremities['space'] = ('relaxed', 0.2)
|
| 1719 |
+
else:
|
| 1720 |
+
extremities['space'] = ('normal', 0.5)
|
| 1721 |
+
|
| 1722 |
+
return extremities
|
| 1723 |
|
| 1724 |
+
extremities = calculate_extremity()
|
| 1725 |
+
|
| 1726 |
+
# 根據極端程度調整權重
|
| 1727 |
+
weight_adjustments = {}
|
| 1728 |
+
|
| 1729 |
+
# 空間限制的權重調整
|
| 1730 |
+
if extremities['space'][0] == 'restrictive':
|
| 1731 |
+
weight_adjustments['space'] = 3.0
|
| 1732 |
+
weight_adjustments['noise'] = 2.0
|
| 1733 |
+
elif extremities['space'][0] == 'relaxed':
|
| 1734 |
+
weight_adjustments['space'] = 0.5
|
| 1735 |
+
weight_adjustments['exercise'] = 1.5
|
| 1736 |
+
|
| 1737 |
+
# 運動需求的權重調整
|
| 1738 |
+
if extremities['exercise'][0] in ['low', 'high']:
|
| 1739 |
+
weight_adjustments['exercise'] = 2.5
|
| 1740 |
|
| 1741 |
+
# 經驗需求的權重調整
|
| 1742 |
+
if user_prefs.experience_level == 'beginner':
|
| 1743 |
+
weight_adjustments['experience'] = 2.0
|
| 1744 |
+
|
| 1745 |
# 應用權重調整
|
| 1746 |
+
final_weights = base_weights.copy()
|
| 1747 |
+
for key, adjustment in weight_adjustments.items():
|
| 1748 |
+
final_weights[key] *= adjustment
|
| 1749 |
|
| 1750 |
+
return final_weights
|
| 1751 |
|
| 1752 |
def apply_special_case_adjustments(score):
|
| 1753 |
+
"""
|
| 1754 |
+
處理特殊情況,考慮條件組合產生的效果
|
| 1755 |
+
"""
|
| 1756 |
+
# 評估條件組合的嚴重程度
|
| 1757 |
+
severity = 1.0
|
| 1758 |
+
|
| 1759 |
+
# 空間與運動組合評估
|
| 1760 |
+
if user_prefs.living_space == 'apartment':
|
| 1761 |
+
if breed_info.get('Exercise Needs', 'MODERATE').upper() == 'VERY HIGH':
|
| 1762 |
+
severity *= 0.6
|
| 1763 |
+
elif breed_info['Size'] in ['Large', 'Giant']:
|
| 1764 |
+
severity *= 0.7
|
| 1765 |
+
|
| 1766 |
+
# 經驗與品種難度組合評估
|
| 1767 |
if user_prefs.experience_level == 'beginner':
|
| 1768 |
if breed_info.get('Care Level') == 'HIGH':
|
| 1769 |
+
if user_prefs.has_children:
|
| 1770 |
+
severity *= 0.6
|
| 1771 |
else:
|
| 1772 |
+
severity *= 0.7
|
| 1773 |
|
| 1774 |
+
# 時間限制與需求組合評估
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1775 |
if user_prefs.time_availability == 'limited':
|
| 1776 |
if breed_info.get('Exercise Needs').upper() in ['HIGH', 'VERY HIGH']:
|
| 1777 |
+
severity *= 0.8
|
| 1778 |
|
| 1779 |
+
return score * severity
|
| 1780 |
|
| 1781 |
# 評估完美匹配條件
|
| 1782 |
perfect_conditions = evaluate_perfect_conditions()
|
|
|
|
| 1791 |
# 計算基礎分數
|
| 1792 |
base_score = sum(scores[k] * normalized_weights[k] for k in scores.keys())
|
| 1793 |
|
| 1794 |
+
# 完美匹配獎勵
|
| 1795 |
perfect_bonus = 1.0
|
| 1796 |
perfect_bonus += 0.15 * perfect_conditions['size_match']
|
| 1797 |
perfect_bonus += 0.15 * perfect_conditions['exercise_match']
|
| 1798 |
perfect_bonus += 0.15 * perfect_conditions['experience_match']
|
| 1799 |
perfect_bonus += 0.05 * perfect_conditions['living_condition_match']
|
| 1800 |
|
| 1801 |
+
# 品種特性加成(使用原有的 calculate_breed_bonus 函數)
|
| 1802 |
+
breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
|
| 1803 |
|
| 1804 |
+
# 計算最終分數並應用特殊情況調整
|
| 1805 |
final_score = (base_score * 0.8 + breed_bonus * 0.2) * perfect_bonus
|
|
|
|
|
|
|
| 1806 |
final_score = apply_special_case_adjustments(final_score)
|
| 1807 |
|
| 1808 |
return min(1.0, final_score)
|
|
|
|
| 1810 |
|
| 1811 |
def amplify_score_extreme(score: float) -> float:
|
| 1812 |
"""
|
|
|
|
| 1813 |
- 完美匹配可達到95-99%
|
| 1814 |
- 優秀匹配在90-95%
|
| 1815 |
- 良好匹配在85-90%
|