Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -587,15 +587,55 @@ class BaseModel(nn.Module):
|
|
| 587 |
attended_features = self.attention(features)
|
| 588 |
logits = self.classifier(attended_features)
|
| 589 |
return logits, attended_features
|
| 590 |
-
|
| 591 |
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 599 |
|
| 600 |
|
| 601 |
# Image preprocessing function
|
|
@@ -627,7 +667,7 @@ async def predict_single_dog(image):
|
|
| 627 |
|
| 628 |
with torch.no_grad():
|
| 629 |
# Get model outputs (只使用logits,不需要features)
|
| 630 |
-
logits =
|
| 631 |
probs = F.softmax(logits, dim=1)
|
| 632 |
|
| 633 |
# Classifier prediction
|
|
@@ -649,7 +689,9 @@ async def predict_single_dog(image):
|
|
| 649 |
@spaces.GPU
|
| 650 |
async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
|
| 651 |
|
| 652 |
-
results =
|
|
|
|
|
|
|
| 653 |
dogs = []
|
| 654 |
boxes = []
|
| 655 |
for box in results.boxes:
|
|
|
|
| 587 |
attended_features = self.attention(features)
|
| 588 |
logits = self.classifier(attended_features)
|
| 589 |
return logits, attended_features
|
|
|
|
| 590 |
|
| 591 |
+
|
| 592 |
+
class ModelManager:
|
| 593 |
+
"""
|
| 594 |
+
模型管理器:負責AI模型的初始化和管理
|
| 595 |
+
使用單例模式確保只有一個實例在管理所有模型
|
| 596 |
+
"""
|
| 597 |
+
_instance = None
|
| 598 |
+
_initialized = False
|
| 599 |
+
_yolo_model = None
|
| 600 |
+
_breed_model = None
|
| 601 |
+
|
| 602 |
+
def __new__(cls):
|
| 603 |
+
if cls._instance is None:
|
| 604 |
+
cls._instance = super().__new__(cls)
|
| 605 |
+
return cls._instance
|
| 606 |
+
|
| 607 |
+
def __init__(self):
|
| 608 |
+
# 避免重複初始化
|
| 609 |
+
if not ModelManager._initialized:
|
| 610 |
+
ModelManager._initialized = True
|
| 611 |
+
|
| 612 |
+
@property
|
| 613 |
+
def yolo_model(self):
|
| 614 |
+
"""
|
| 615 |
+
延遲初始化YOLO模型
|
| 616 |
+
只有在第一次使用時才會創建實例
|
| 617 |
+
"""
|
| 618 |
+
if self._yolo_model is None:
|
| 619 |
+
self._yolo_model = YOLO('yolov8l.pt')
|
| 620 |
+
return self._yolo_model
|
| 621 |
+
|
| 622 |
+
@property
|
| 623 |
+
def breed_model(self):
|
| 624 |
+
"""
|
| 625 |
+
延遲初始化品種分類模型
|
| 626 |
+
只有在第一次使用時才會創建實例
|
| 627 |
+
"""
|
| 628 |
+
if self._breed_model is None:
|
| 629 |
+
self._breed_model = BaseModel(num_classes=len(dog_breeds),
|
| 630 |
+
device=device).to(device)
|
| 631 |
+
checkpoint = torch.load('124_best_model_dog.pth',
|
| 632 |
+
map_location=device)
|
| 633 |
+
self._breed_model.load_state_dict(checkpoint['base_model'],
|
| 634 |
+
strict=False)
|
| 635 |
+
self._breed_model.eval()
|
| 636 |
+
return self._breed_model
|
| 637 |
+
|
| 638 |
+
model_manager = ModelManager()
|
| 639 |
|
| 640 |
|
| 641 |
# Image preprocessing function
|
|
|
|
| 667 |
|
| 668 |
with torch.no_grad():
|
| 669 |
# Get model outputs (只使用logits,不需要features)
|
| 670 |
+
logits = model_manager.breed_model(image_tensor)[0] # 如果model仍返回tuple,取第一個元素
|
| 671 |
probs = F.softmax(logits, dim=1)
|
| 672 |
|
| 673 |
# Classifier prediction
|
|
|
|
| 689 |
@spaces.GPU
|
| 690 |
async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
|
| 691 |
|
| 692 |
+
results = model_manager.yolo_model(image, conf=conf_threshold,
|
| 693 |
+
iou=iou_threshold)[0]
|
| 694 |
+
|
| 695 |
dogs = []
|
| 696 |
boxes = []
|
| 697 |
for box in results.boxes:
|