Spaces:
Running
on
Zero
Running
on
Zero
Delete app.py
Browse files
app.py
DELETED
|
@@ -1,563 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import numpy as np
|
| 3 |
-
import torch
|
| 4 |
-
import torch.nn as nn
|
| 5 |
-
import gradio as gr
|
| 6 |
-
import time
|
| 7 |
-
import spaces
|
| 8 |
-
import timm
|
| 9 |
-
from torchvision.ops import nms, box_iou
|
| 10 |
-
import torch.nn.functional as F
|
| 11 |
-
from torchvision import transforms
|
| 12 |
-
from PIL import Image, ImageDraw, ImageFont, ImageFilter
|
| 13 |
-
from breed_health_info import breed_health_info
|
| 14 |
-
from breed_noise_info import breed_noise_info
|
| 15 |
-
from dog_database import get_dog_description
|
| 16 |
-
from scoring_calculation_system import UserPreferences
|
| 17 |
-
from recommendation_html_format import format_recommendation_html, get_breed_recommendations
|
| 18 |
-
from history_manager import UserHistoryManager
|
| 19 |
-
from search_history import create_history_tab, create_history_component
|
| 20 |
-
from styles import get_css_styles
|
| 21 |
-
from breed_detection import create_detection_tab
|
| 22 |
-
from breed_comparison import create_comparison_tab
|
| 23 |
-
from breed_recommendation import create_recommendation_tab
|
| 24 |
-
from html_templates import (
|
| 25 |
-
format_description_html,
|
| 26 |
-
format_single_dog_result,
|
| 27 |
-
format_multiple_breeds_result,
|
| 28 |
-
format_unknown_breed_message,
|
| 29 |
-
format_not_dog_message,
|
| 30 |
-
format_hint_html,
|
| 31 |
-
format_multi_dog_container,
|
| 32 |
-
format_breed_details_html,
|
| 33 |
-
get_color_scheme,
|
| 34 |
-
get_akc_breeds_link
|
| 35 |
-
)
|
| 36 |
-
from model_architecture import BaseModel, dog_breeds
|
| 37 |
-
from urllib.parse import quote
|
| 38 |
-
from ultralytics import YOLO
|
| 39 |
-
import asyncio
|
| 40 |
-
import traceback
|
| 41 |
-
|
| 42 |
-
history_manager = UserHistoryManager()
|
| 43 |
-
|
| 44 |
-
class ModelManager:
|
| 45 |
-
"""
|
| 46 |
-
Singleton class for managing model instances and device allocation
|
| 47 |
-
specifically designed for Hugging Face Spaces deployment.
|
| 48 |
-
"""
|
| 49 |
-
_instance = None
|
| 50 |
-
_initialized = False
|
| 51 |
-
_yolo_model = None
|
| 52 |
-
_breed_model = None
|
| 53 |
-
_device = None
|
| 54 |
-
|
| 55 |
-
def __new__(cls):
|
| 56 |
-
if cls._instance is None:
|
| 57 |
-
cls._instance = super().__new__(cls)
|
| 58 |
-
return cls._instance
|
| 59 |
-
|
| 60 |
-
def __init__(self):
|
| 61 |
-
if not ModelManager._initialized:
|
| 62 |
-
self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 63 |
-
ModelManager._initialized = True
|
| 64 |
-
|
| 65 |
-
@property
|
| 66 |
-
def device(self):
|
| 67 |
-
if self._device is None:
|
| 68 |
-
self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 69 |
-
return self._device
|
| 70 |
-
|
| 71 |
-
@property
|
| 72 |
-
def yolo_model(self):
|
| 73 |
-
if self._yolo_model is None:
|
| 74 |
-
self._yolo_model = YOLO('yolov8x.pt')
|
| 75 |
-
return self._yolo_model
|
| 76 |
-
|
| 77 |
-
@property
|
| 78 |
-
def breed_model(self):
|
| 79 |
-
if self._breed_model is None:
|
| 80 |
-
self._breed_model = BaseModel(
|
| 81 |
-
num_classes=len(dog_breeds),
|
| 82 |
-
device=self.device
|
| 83 |
-
).to(self.device)
|
| 84 |
-
|
| 85 |
-
checkpoint = torch.load(
|
| 86 |
-
'ConvNextV2Base_best_model.pth',
|
| 87 |
-
map_location=self.device
|
| 88 |
-
)
|
| 89 |
-
self._breed_model.load_state_dict(checkpoint['base_model'], strict=False)
|
| 90 |
-
self._breed_model.eval()
|
| 91 |
-
return self._breed_model
|
| 92 |
-
|
| 93 |
-
# Initialize model manager
|
| 94 |
-
model_manager = ModelManager()
|
| 95 |
-
|
| 96 |
-
def preprocess_image(image):
|
| 97 |
-
"""Preprocesses images for model input"""
|
| 98 |
-
if isinstance(image, np.ndarray):
|
| 99 |
-
image = Image.fromarray(image)
|
| 100 |
-
|
| 101 |
-
transform = transforms.Compose([
|
| 102 |
-
transforms.Resize((224, 224)),
|
| 103 |
-
transforms.ToTensor(),
|
| 104 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 105 |
-
])
|
| 106 |
-
|
| 107 |
-
return transform(image).unsqueeze(0)
|
| 108 |
-
|
| 109 |
-
@spaces.GPU
|
| 110 |
-
def predict_single_dog(image):
|
| 111 |
-
"""Predicts dog breed for a single image"""
|
| 112 |
-
image_tensor = preprocess_image(image).to(model_manager.device)
|
| 113 |
-
|
| 114 |
-
with torch.no_grad():
|
| 115 |
-
logits = model_manager.breed_model(image_tensor)[0]
|
| 116 |
-
probs = F.softmax(logits, dim=1)
|
| 117 |
-
|
| 118 |
-
top5_prob, top5_idx = torch.topk(probs, k=5)
|
| 119 |
-
breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]]
|
| 120 |
-
probabilities = [prob.item() for prob in top5_prob[0]]
|
| 121 |
-
|
| 122 |
-
sum_probs = sum(probabilities[:3])
|
| 123 |
-
relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]]
|
| 124 |
-
|
| 125 |
-
return probabilities[0], breeds[:3], relative_probs
|
| 126 |
-
|
| 127 |
-
def enhanced_preprocess(image, is_standing=False, has_overlap=False):
|
| 128 |
-
"""
|
| 129 |
-
Enhanced image preprocessing function with special handling for different poses
|
| 130 |
-
and overlapping cases.
|
| 131 |
-
"""
|
| 132 |
-
target_size = 224
|
| 133 |
-
w, h = image.size
|
| 134 |
-
|
| 135 |
-
if is_standing:
|
| 136 |
-
if h > w * 1.5:
|
| 137 |
-
new_h = target_size
|
| 138 |
-
new_w = min(target_size, int(w * (target_size / h)))
|
| 139 |
-
new_w = max(new_w, int(target_size * 0.6))
|
| 140 |
-
elif has_overlap:
|
| 141 |
-
scale = min(target_size/w, target_size/h) * 0.95
|
| 142 |
-
new_w = int(w * scale)
|
| 143 |
-
new_h = int(h * scale)
|
| 144 |
-
else:
|
| 145 |
-
scale = min(target_size/w, target_size/h)
|
| 146 |
-
new_w = int(w * scale)
|
| 147 |
-
new_h = int(h * scale)
|
| 148 |
-
|
| 149 |
-
resized = image.resize((new_w, new_h), Image.Resampling.LANCZOS)
|
| 150 |
-
final_image = Image.new('RGB', (target_size, target_size), (240, 240, 240))
|
| 151 |
-
paste_x = (target_size - new_w) // 2
|
| 152 |
-
paste_y = (target_size - new_h) // 2
|
| 153 |
-
final_image.paste(resized, (paste_x, paste_y))
|
| 154 |
-
|
| 155 |
-
return final_image
|
| 156 |
-
|
| 157 |
-
@spaces.GPU
|
| 158 |
-
def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.3):
|
| 159 |
-
"""
|
| 160 |
-
Enhanced multiple dog detection with improved bounding box handling and
|
| 161 |
-
intelligent boundary adjustments.
|
| 162 |
-
"""
|
| 163 |
-
results = model_manager.yolo_model(image, conf=conf_threshold, iou=iou_threshold)[0]
|
| 164 |
-
img_width, img_height = image.size
|
| 165 |
-
detected_boxes = []
|
| 166 |
-
|
| 167 |
-
# Phase 1: Initial detection and processing
|
| 168 |
-
for box in results.boxes:
|
| 169 |
-
if box.cls.item() == 16: # Dog class
|
| 170 |
-
xyxy = box.xyxy[0].tolist()
|
| 171 |
-
confidence = box.conf.item()
|
| 172 |
-
x1, y1, x2, y2 = map(int, xyxy)
|
| 173 |
-
w = x2 - x1
|
| 174 |
-
h = y2 - y1
|
| 175 |
-
|
| 176 |
-
detected_boxes.append({
|
| 177 |
-
'coords': [x1, y1, x2, y2],
|
| 178 |
-
'width': w,
|
| 179 |
-
'height': h,
|
| 180 |
-
'center_x': (x1 + x2) / 2,
|
| 181 |
-
'center_y': (y1 + y2) / 2,
|
| 182 |
-
'area': w * h,
|
| 183 |
-
'confidence': confidence,
|
| 184 |
-
'aspect_ratio': w / h if h != 0 else 1
|
| 185 |
-
})
|
| 186 |
-
|
| 187 |
-
if not detected_boxes:
|
| 188 |
-
return [(image, 1.0, [0, 0, img_width, img_height], False)]
|
| 189 |
-
|
| 190 |
-
# Phase 2: Analysis of detection relationships
|
| 191 |
-
avg_height = sum(box['height'] for box in detected_boxes) / len(detected_boxes)
|
| 192 |
-
avg_width = sum(box['width'] for box in detected_boxes) / len(detected_boxes)
|
| 193 |
-
avg_area = sum(box['area'] for box in detected_boxes) / len(detected_boxes)
|
| 194 |
-
|
| 195 |
-
def calculate_iou(box1, box2):
|
| 196 |
-
x1 = max(box1['coords'][0], box2['coords'][0])
|
| 197 |
-
y1 = max(box1['coords'][1], box2['coords'][1])
|
| 198 |
-
x2 = min(box1['coords'][2], box2['coords'][2])
|
| 199 |
-
y2 = min(box1['coords'][3], box2['coords'][3])
|
| 200 |
-
|
| 201 |
-
if x2 <= x1 or y2 <= y1:
|
| 202 |
-
return 0.0
|
| 203 |
-
|
| 204 |
-
intersection = (x2 - x1) * (y2 - y1)
|
| 205 |
-
area1 = box1['area']
|
| 206 |
-
area2 = box2['area']
|
| 207 |
-
return intersection / (area1 + area2 - intersection)
|
| 208 |
-
|
| 209 |
-
# Phase 3: Processing each detection
|
| 210 |
-
processed_boxes = []
|
| 211 |
-
overlap_threshold = 0.2
|
| 212 |
-
|
| 213 |
-
for i, box_info in enumerate(detected_boxes):
|
| 214 |
-
x1, y1, x2, y2 = box_info['coords']
|
| 215 |
-
w = box_info['width']
|
| 216 |
-
h = box_info['height']
|
| 217 |
-
center_x = box_info['center_x']
|
| 218 |
-
center_y = box_info['center_y']
|
| 219 |
-
|
| 220 |
-
# Check for overlaps
|
| 221 |
-
has_overlap = False
|
| 222 |
-
for j, other_box in enumerate(detected_boxes):
|
| 223 |
-
if i != j and calculate_iou(box_info, other_box) > overlap_threshold:
|
| 224 |
-
has_overlap = True
|
| 225 |
-
break
|
| 226 |
-
|
| 227 |
-
# Adjust expansion strategy
|
| 228 |
-
base_expansion = 0.03
|
| 229 |
-
max_expansion = 0.05
|
| 230 |
-
|
| 231 |
-
is_standing = h > 1.5 * w
|
| 232 |
-
is_sitting = 0.8 <= h/w <= 1.2
|
| 233 |
-
is_abnormal_size = (h * w) > (avg_area * 1.5) or (h * w) < (avg_area * 0.5)
|
| 234 |
-
|
| 235 |
-
if has_overlap:
|
| 236 |
-
h_expansion = w_expansion = base_expansion * 0.8
|
| 237 |
-
else:
|
| 238 |
-
if is_standing:
|
| 239 |
-
h_expansion = min(base_expansion * 1.2, max_expansion)
|
| 240 |
-
w_expansion = base_expansion
|
| 241 |
-
elif is_sitting:
|
| 242 |
-
h_expansion = w_expansion = base_expansion
|
| 243 |
-
else:
|
| 244 |
-
h_expansion = w_expansion = base_expansion * 0.9
|
| 245 |
-
|
| 246 |
-
# Position compensation
|
| 247 |
-
if center_x < img_width * 0.2 or center_x > img_width * 0.8:
|
| 248 |
-
w_expansion *= 0.9
|
| 249 |
-
|
| 250 |
-
if is_abnormal_size:
|
| 251 |
-
h_expansion *= 0.8
|
| 252 |
-
w_expansion *= 0.8
|
| 253 |
-
|
| 254 |
-
# Calculate final bounding box
|
| 255 |
-
expansion_w = w * w_expansion
|
| 256 |
-
expansion_h = h * h_expansion
|
| 257 |
-
|
| 258 |
-
new_x1 = max(0, center_x - (w + expansion_w)/2)
|
| 259 |
-
new_y1 = max(0, center_y - (h + expansion_h)/2)
|
| 260 |
-
new_x2 = min(img_width, center_x + (w + expansion_w)/2)
|
| 261 |
-
new_y2 = min(img_height, center_y + (h + expansion_h)/2)
|
| 262 |
-
|
| 263 |
-
# Crop and process image
|
| 264 |
-
cropped_image = image.crop((int(new_x1), int(new_y1),
|
| 265 |
-
int(new_x2), int(new_y2)))
|
| 266 |
-
|
| 267 |
-
processed_image = enhanced_preprocess(
|
| 268 |
-
cropped_image,
|
| 269 |
-
is_standing=is_standing,
|
| 270 |
-
has_overlap=has_overlap
|
| 271 |
-
)
|
| 272 |
-
|
| 273 |
-
processed_boxes.append((
|
| 274 |
-
processed_image,
|
| 275 |
-
box_info['confidence'],
|
| 276 |
-
[new_x1, new_y1, new_x2, new_y2],
|
| 277 |
-
True
|
| 278 |
-
))
|
| 279 |
-
|
| 280 |
-
return processed_boxes
|
| 281 |
-
|
| 282 |
-
@spaces.GPU
|
| 283 |
-
def predict(image):
|
| 284 |
-
"""
|
| 285 |
-
Main prediction function that handles both single and multiple dog detection.
|
| 286 |
-
Args:
|
| 287 |
-
image: PIL Image or numpy array
|
| 288 |
-
Returns:
|
| 289 |
-
tuple: (html_output, annotated_image, initial_state)
|
| 290 |
-
"""
|
| 291 |
-
if image is None:
|
| 292 |
-
return format_hint_html("Please upload an image to start."), None, None
|
| 293 |
-
|
| 294 |
-
try:
|
| 295 |
-
if isinstance(image, np.ndarray):
|
| 296 |
-
image = Image.fromarray(image)
|
| 297 |
-
|
| 298 |
-
# 檢測圖片中的物體
|
| 299 |
-
dogs = detect_multiple_dogs(image)
|
| 300 |
-
color_scheme = get_color_scheme(len(dogs) == 1)
|
| 301 |
-
|
| 302 |
-
# 準備標註
|
| 303 |
-
annotated_image = image.copy()
|
| 304 |
-
draw = ImageDraw.Draw(annotated_image)
|
| 305 |
-
|
| 306 |
-
try:
|
| 307 |
-
font = ImageFont.truetype("arial.ttf", 24)
|
| 308 |
-
except:
|
| 309 |
-
font = ImageFont.load_default()
|
| 310 |
-
|
| 311 |
-
dogs_info = ""
|
| 312 |
-
|
| 313 |
-
# 處理每個檢測到的物體
|
| 314 |
-
for i, (cropped_image, detection_confidence, box, is_dog) in enumerate(dogs):
|
| 315 |
-
print(f"Predict processing - Object {i+1}:")
|
| 316 |
-
print(f" Is dog: {is_dog}")
|
| 317 |
-
print(f" Detection confidence: {detection_confidence:.4f}")
|
| 318 |
-
|
| 319 |
-
# 如果是狗且進行品種預測,在這裡也加入打印語句
|
| 320 |
-
if is_dog:
|
| 321 |
-
top1_prob, topk_breeds, relative_probs = predict_single_dog(cropped_image)
|
| 322 |
-
print(f" Breed prediction - Top probability: {top1_prob:.4f}")
|
| 323 |
-
print(f" Top breeds: {topk_breeds[:3]}")
|
| 324 |
-
color = color_scheme if len(dogs) == 1 else color_scheme[i % len(color_scheme)]
|
| 325 |
-
|
| 326 |
-
# 繪製框和標籤
|
| 327 |
-
draw.rectangle(box, outline=color, width=4)
|
| 328 |
-
label = f"Dog {i+1}" if is_dog else f"Object {i+1}"
|
| 329 |
-
label_bbox = draw.textbbox((0, 0), label, font=font)
|
| 330 |
-
label_width = label_bbox[2] - label_bbox[0]
|
| 331 |
-
label_height = label_bbox[3] - label_bbox[1]
|
| 332 |
-
|
| 333 |
-
# 繪製標籤背景和文字
|
| 334 |
-
label_x = box[0] + 5
|
| 335 |
-
label_y = box[1] + 5
|
| 336 |
-
draw.rectangle(
|
| 337 |
-
[label_x - 2, label_y - 2, label_x + label_width + 4, label_y + label_height + 4],
|
| 338 |
-
fill='white',
|
| 339 |
-
outline=color,
|
| 340 |
-
width=2
|
| 341 |
-
)
|
| 342 |
-
draw.text((label_x, label_y), label, fill=color, font=font)
|
| 343 |
-
|
| 344 |
-
try:
|
| 345 |
-
# 首先檢查是否為狗
|
| 346 |
-
if not is_dog:
|
| 347 |
-
dogs_info += format_not_dog_message(color, i+1)
|
| 348 |
-
continue
|
| 349 |
-
|
| 350 |
-
# 如果是狗,進行品種預測
|
| 351 |
-
top1_prob, topk_breeds, relative_probs = predict_single_dog(cropped_image)
|
| 352 |
-
combined_confidence = detection_confidence * top1_prob
|
| 353 |
-
|
| 354 |
-
# 根據信心度決定輸出格式
|
| 355 |
-
if combined_confidence < 0.15:
|
| 356 |
-
dogs_info += format_unknown_breed_message(color, i+1)
|
| 357 |
-
elif top1_prob >= 0.4:
|
| 358 |
-
breed = topk_breeds[0]
|
| 359 |
-
description = get_dog_description(breed)
|
| 360 |
-
if description is None:
|
| 361 |
-
description = {
|
| 362 |
-
"Name": breed,
|
| 363 |
-
"Size": "Unknown",
|
| 364 |
-
"Exercise Needs": "Unknown",
|
| 365 |
-
"Grooming Needs": "Unknown",
|
| 366 |
-
"Care Level": "Unknown",
|
| 367 |
-
"Good with Children": "Unknown",
|
| 368 |
-
"Description": f"Identified as {breed.replace('_', ' ')}"
|
| 369 |
-
}
|
| 370 |
-
dogs_info += format_single_dog_result(breed, description, color)
|
| 371 |
-
else:
|
| 372 |
-
dogs_info += format_multiple_breeds_result(
|
| 373 |
-
topk_breeds,
|
| 374 |
-
relative_probs,
|
| 375 |
-
color,
|
| 376 |
-
i+1,
|
| 377 |
-
lambda breed: get_dog_description(breed) or {
|
| 378 |
-
"Name": breed,
|
| 379 |
-
"Size": "Unknown",
|
| 380 |
-
"Exercise Needs": "Unknown",
|
| 381 |
-
"Grooming Needs": "Unknown",
|
| 382 |
-
"Care Level": "Unknown",
|
| 383 |
-
"Good with Children": "Unknown",
|
| 384 |
-
"Description": f"Identified as {breed.replace('_', ' ')}"
|
| 385 |
-
}
|
| 386 |
-
)
|
| 387 |
-
except Exception as e:
|
| 388 |
-
print(f"Error formatting results for dog {i+1}: {str(e)}")
|
| 389 |
-
dogs_info += format_unknown_breed_message(color, i+1)
|
| 390 |
-
|
| 391 |
-
# 包裝最終的HTML輸出
|
| 392 |
-
html_output = format_multi_dog_container(dogs_info)
|
| 393 |
-
|
| 394 |
-
# 準備初始狀態
|
| 395 |
-
initial_state = {
|
| 396 |
-
"dogs_info": dogs_info,
|
| 397 |
-
"image": annotated_image,
|
| 398 |
-
"is_multi_dog": len(dogs) > 1,
|
| 399 |
-
"html_output": html_output
|
| 400 |
-
}
|
| 401 |
-
|
| 402 |
-
return html_output, annotated_image, initial_state
|
| 403 |
-
|
| 404 |
-
except Exception as e:
|
| 405 |
-
error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
|
| 406 |
-
print(error_msg)
|
| 407 |
-
return format_hint_html(error_msg), None, None
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
def show_details_html(choice, previous_output, initial_state):
|
| 411 |
-
"""
|
| 412 |
-
Generate detailed HTML view for a selected breed.
|
| 413 |
-
|
| 414 |
-
Args:
|
| 415 |
-
choice: str, Selected breed option
|
| 416 |
-
previous_output: str, Previous HTML output
|
| 417 |
-
initial_state: dict, Current state information
|
| 418 |
-
|
| 419 |
-
Returns:
|
| 420 |
-
tuple: (html_output, gradio_update, updated_state)
|
| 421 |
-
"""
|
| 422 |
-
if not choice:
|
| 423 |
-
return previous_output, gr.update(visible=True), initial_state
|
| 424 |
-
|
| 425 |
-
try:
|
| 426 |
-
breed = choice.split("More about ")[-1]
|
| 427 |
-
description = get_dog_description(breed)
|
| 428 |
-
html_output = format_breed_details_html(description, breed)
|
| 429 |
-
|
| 430 |
-
# Update state
|
| 431 |
-
initial_state["current_description"] = html_output
|
| 432 |
-
initial_state["original_buttons"] = initial_state.get("buttons", [])
|
| 433 |
-
|
| 434 |
-
return html_output, gr.update(visible=True), initial_state
|
| 435 |
-
|
| 436 |
-
except Exception as e:
|
| 437 |
-
error_msg = f"An error occurred while showing details: {e}"
|
| 438 |
-
print(error_msg)
|
| 439 |
-
return format_hint_html(error_msg), gr.update(visible=True), initial_state
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
def get_pwa_html():
|
| 443 |
-
return """
|
| 444 |
-
<!DOCTYPE html>
|
| 445 |
-
<html lang="en">
|
| 446 |
-
<head>
|
| 447 |
-
<meta charset="UTF-8" />
|
| 448 |
-
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 449 |
-
<meta name="apple-mobile-web-app-capable" content="yes">
|
| 450 |
-
<meta name="apple-mobile-web-app-status-bar-style" content="black">
|
| 451 |
-
<meta name="theme-color" content="#4299e1">
|
| 452 |
-
|
| 453 |
-
<link rel="manifest" href="manifest.json">
|
| 454 |
-
<link rel="apple-touch-icon" href="assets/icon-192.png">
|
| 455 |
-
|
| 456 |
-
<script>
|
| 457 |
-
// PWA: Service Worker 註冊
|
| 458 |
-
document.addEventListener('DOMContentLoaded', function() {
|
| 459 |
-
if ('serviceWorker' in navigator) {
|
| 460 |
-
const swURL = new URL('service-worker.js', window.location.origin + window.location.pathname).href;
|
| 461 |
-
navigator.serviceWorker.register(swURL)
|
| 462 |
-
.then(function(registration) {
|
| 463 |
-
console.log('Service Worker 註冊成功,範圍:', registration.scope);
|
| 464 |
-
})
|
| 465 |
-
.catch(function(error) {
|
| 466 |
-
console.log('Service Worker 註冊失敗:', error.message);
|
| 467 |
-
});
|
| 468 |
-
}
|
| 469 |
-
});
|
| 470 |
-
</script>
|
| 471 |
-
</head>
|
| 472 |
-
<body>
|
| 473 |
-
"""
|
| 474 |
-
|
| 475 |
-
def main():
|
| 476 |
-
with gr.Blocks(css=get_css_styles()) as iface:
|
| 477 |
-
|
| 478 |
-
gr.HTML(get_pwa_html())
|
| 479 |
-
|
| 480 |
-
# Header HTML
|
| 481 |
-
gr.HTML("""
|
| 482 |
-
<header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
|
| 483 |
-
<h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
|
| 484 |
-
🐾 PawMatch AI
|
| 485 |
-
</h1>
|
| 486 |
-
<h2 style='font-size: 1.2em; font-weight: normal; color: #4A5568; margin-top: 5px;'>
|
| 487 |
-
Your Smart Dog Breed Guide
|
| 488 |
-
</h2>
|
| 489 |
-
<div style='width: 50px; height: 3px; background: linear-gradient(90deg, #4299e1, #48bb78); margin: 15px auto;'></div>
|
| 490 |
-
<p style='color: #718096; font-size: 0.9em;'>
|
| 491 |
-
Powered by AI • Breed Recognition • Smart Matching • Companion Guide
|
| 492 |
-
</p>
|
| 493 |
-
</header>
|
| 494 |
-
""")
|
| 495 |
-
|
| 496 |
-
# 先創建歷史組件實例(但不創建標籤頁)
|
| 497 |
-
history_component = create_history_component()
|
| 498 |
-
|
| 499 |
-
with gr.Tabs():
|
| 500 |
-
# 1. 品種檢測標籤頁
|
| 501 |
-
example_images = [
|
| 502 |
-
'Border_Collie.jpg',
|
| 503 |
-
'Golden_Retriever.jpeg',
|
| 504 |
-
'Saint_Bernard.jpeg',
|
| 505 |
-
'Samoyed.jpeg',
|
| 506 |
-
'French_Bulldog.jpeg'
|
| 507 |
-
]
|
| 508 |
-
detection_components = create_detection_tab(predict, example_images)
|
| 509 |
-
|
| 510 |
-
# 2. 品種比較標籤頁
|
| 511 |
-
comparison_components = create_comparison_tab(
|
| 512 |
-
dog_breeds=dog_breeds,
|
| 513 |
-
get_dog_description=get_dog_description,
|
| 514 |
-
breed_health_info=breed_health_info,
|
| 515 |
-
breed_noise_info=breed_noise_info
|
| 516 |
-
)
|
| 517 |
-
|
| 518 |
-
# 3. 品種推薦標籤頁
|
| 519 |
-
recommendation_components = create_recommendation_tab(
|
| 520 |
-
UserPreferences=UserPreferences,
|
| 521 |
-
get_breed_recommendations=get_breed_recommendations,
|
| 522 |
-
format_recommendation_html=format_recommendation_html,
|
| 523 |
-
history_component=history_component
|
| 524 |
-
)
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
# 4. 最後創建歷史記錄標籤頁
|
| 528 |
-
create_history_tab(history_component)
|
| 529 |
-
|
| 530 |
-
# Footer
|
| 531 |
-
gr.HTML('''
|
| 532 |
-
<div style="
|
| 533 |
-
display: flex;
|
| 534 |
-
align-items: center;
|
| 535 |
-
justify-content: center;
|
| 536 |
-
gap: 20px;
|
| 537 |
-
padding: 20px 0;
|
| 538 |
-
">
|
| 539 |
-
<p style="
|
| 540 |
-
font-family: 'Arial', sans-serif;
|
| 541 |
-
font-size: 14px;
|
| 542 |
-
font-weight: 500;
|
| 543 |
-
letter-spacing: 2px;
|
| 544 |
-
background: linear-gradient(90deg, #555, #007ACC);
|
| 545 |
-
-webkit-background-clip: text;
|
| 546 |
-
-webkit-text-fill-color: transparent;
|
| 547 |
-
margin: 0;
|
| 548 |
-
text-transform: uppercase;
|
| 549 |
-
display: inline-block;
|
| 550 |
-
">EXPLORE THE CODE →</p>
|
| 551 |
-
<a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/PawMatchAI" style="text-decoration: none;">
|
| 552 |
-
<img src="https://img.shields.io/badge/GitHub-PawMatch_AI-007ACC?logo=github&style=for-the-badge">
|
| 553 |
-
</a>
|
| 554 |
-
</div>
|
| 555 |
-
''')
|
| 556 |
-
|
| 557 |
-
gr.HTML("</body></html>")
|
| 558 |
-
|
| 559 |
-
return iface
|
| 560 |
-
|
| 561 |
-
if __name__ == "__main__":
|
| 562 |
-
iface = main()
|
| 563 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|