Spaces:
Running
on
Zero
Running
on
Zero
Delete smart_breed_matcher.py
Browse files- smart_breed_matcher.py +0 -1001
smart_breed_matcher.py
DELETED
|
@@ -1,1001 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import re
|
| 3 |
-
import numpy as np
|
| 4 |
-
import spaces
|
| 5 |
-
from typing import List, Dict, Tuple, Optional
|
| 6 |
-
from dataclasses import dataclass
|
| 7 |
-
from breed_health_info import breed_health_info
|
| 8 |
-
from breed_noise_info import breed_noise_info
|
| 9 |
-
from dog_database import dog_data
|
| 10 |
-
from scoring_calculation_system import UserPreferences
|
| 11 |
-
from sentence_transformers import SentenceTransformer, util
|
| 12 |
-
from functools import wraps
|
| 13 |
-
|
| 14 |
-
def gpu_init_wrapper(func):
|
| 15 |
-
@spaces.GPU
|
| 16 |
-
@wraps(func)
|
| 17 |
-
def wrapper(*args, **kwargs):
|
| 18 |
-
return func(*args, **kwargs)
|
| 19 |
-
return wrapper
|
| 20 |
-
|
| 21 |
-
def safe_prediction(func):
|
| 22 |
-
"""錯誤處理裝飾器,提供 GPU 到 CPU 的降級機制"""
|
| 23 |
-
@wraps(func)
|
| 24 |
-
def wrapper(*args, **kwargs):
|
| 25 |
-
try:
|
| 26 |
-
return func(*args, **kwargs)
|
| 27 |
-
except RuntimeError as e:
|
| 28 |
-
if "CUDA" in str(e):
|
| 29 |
-
print("GPU 操作失敗,嘗試使用 CPU")
|
| 30 |
-
return func(*args, **kwargs)
|
| 31 |
-
raise
|
| 32 |
-
return wrapper
|
| 33 |
-
|
| 34 |
-
class SmartBreedMatcher:
|
| 35 |
-
|
| 36 |
-
def __init__(self, dog_data: List[Tuple]):
|
| 37 |
-
self.dog_data = dog_data
|
| 38 |
-
self.model = None
|
| 39 |
-
self._embedding_cache = {}
|
| 40 |
-
self._clear_cache()
|
| 41 |
-
|
| 42 |
-
def _initialize_model(self):
|
| 43 |
-
"""延遲初始化模型,只在需要時才創建"""
|
| 44 |
-
if self.model is None:
|
| 45 |
-
self.model = SentenceTransformer('all-mpnet-base-v2')
|
| 46 |
-
|
| 47 |
-
def _clear_cache(self):
|
| 48 |
-
self._embedding_cache = {}
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
@spaces.GPU
|
| 52 |
-
def _get_cached_embedding(self, text: str) -> torch.Tensor:
|
| 53 |
-
"""使用 GPU 裝飾器確保在正確的時機初始化 CUDA"""
|
| 54 |
-
if self.model is None:
|
| 55 |
-
self._initialize_model()
|
| 56 |
-
|
| 57 |
-
if text not in self._embedding_cache:
|
| 58 |
-
self._embedding_cache[text] = self.model.encode(text)
|
| 59 |
-
return self._embedding_cache[text]
|
| 60 |
-
|
| 61 |
-
def _categorize_breeds(self) -> Dict:
|
| 62 |
-
"""自動將狗品種分類"""
|
| 63 |
-
categories = {
|
| 64 |
-
'working_dogs': [],
|
| 65 |
-
'herding_dogs': [],
|
| 66 |
-
'hunting_dogs': [],
|
| 67 |
-
'companion_dogs': [],
|
| 68 |
-
'guard_dogs': []
|
| 69 |
-
}
|
| 70 |
-
|
| 71 |
-
for breed_info in self.dog_data:
|
| 72 |
-
description = breed_info[9].lower()
|
| 73 |
-
temperament = breed_info[4].lower()
|
| 74 |
-
|
| 75 |
-
# 根據描述和性格特徵自動分類
|
| 76 |
-
if any(word in description for word in ['herding', 'shepherd', 'cattle', 'flock']):
|
| 77 |
-
categories['herding_dogs'].append(breed_info[1])
|
| 78 |
-
elif any(word in description for word in ['hunting', 'hunt', 'retriever', 'pointer']):
|
| 79 |
-
categories['hunting_dogs'].append(breed_info[1])
|
| 80 |
-
elif any(word in description for word in ['companion', 'toy', 'family', 'lap']):
|
| 81 |
-
categories['companion_dogs'].append(breed_info[1])
|
| 82 |
-
elif any(word in description for word in ['guard', 'protection', 'watchdog']):
|
| 83 |
-
categories['guard_dogs'].append(breed_info[1])
|
| 84 |
-
elif any(word in description for word in ['working', 'draft', 'cart']):
|
| 85 |
-
categories['working_dogs'].append(breed_info[1])
|
| 86 |
-
|
| 87 |
-
return categories
|
| 88 |
-
|
| 89 |
-
def find_similar_breeds(self, breed_name: str, top_n: int = 5) -> List[Tuple[str, float]]:
|
| 90 |
-
"""
|
| 91 |
-
找出與指定品種最相似的其他品種
|
| 92 |
-
|
| 93 |
-
Args:
|
| 94 |
-
breed_name: 目標品種名稱
|
| 95 |
-
top_n: 返回的相似品種數量
|
| 96 |
-
|
| 97 |
-
Returns:
|
| 98 |
-
List[Tuple[str, float]]: 相似品種列表,包含品種名稱和相似度分數
|
| 99 |
-
"""
|
| 100 |
-
try:
|
| 101 |
-
if self.model is None:
|
| 102 |
-
self._initialize_model()
|
| 103 |
-
target_breed = next((breed for breed in self.dog_data if breed[1] == breed_name), None)
|
| 104 |
-
if not target_breed:
|
| 105 |
-
return []
|
| 106 |
-
|
| 107 |
-
# 獲取完整的目標品種特徵
|
| 108 |
-
target_features = {
|
| 109 |
-
'breed_name': target_breed[1],
|
| 110 |
-
'size': target_breed[2],
|
| 111 |
-
'temperament': target_breed[4],
|
| 112 |
-
'exercise': target_breed[7],
|
| 113 |
-
'grooming': target_breed[8],
|
| 114 |
-
'description': target_breed[9],
|
| 115 |
-
'good_with_children': target_breed[6] # 添加這個特徵
|
| 116 |
-
}
|
| 117 |
-
|
| 118 |
-
similarities = []
|
| 119 |
-
for breed in self.dog_data:
|
| 120 |
-
if breed[1] != breed_name:
|
| 121 |
-
breed_features = {
|
| 122 |
-
'breed_name': breed[1],
|
| 123 |
-
'size': breed[2],
|
| 124 |
-
'temperament': breed[4],
|
| 125 |
-
'exercise': breed[7],
|
| 126 |
-
'grooming': breed[8],
|
| 127 |
-
'description': breed[9],
|
| 128 |
-
'good_with_children': breed[6] # 添加這個特徵
|
| 129 |
-
}
|
| 130 |
-
|
| 131 |
-
try:
|
| 132 |
-
similarity_score = self._calculate_breed_similarity(target_features, breed_features)
|
| 133 |
-
# 確保分數在有效範圍內
|
| 134 |
-
similarity_score = min(1.0, max(0.0, similarity_score))
|
| 135 |
-
similarities.append((breed[1], similarity_score))
|
| 136 |
-
except Exception as e:
|
| 137 |
-
print(f"Error calculating similarity for {breed[1]}: {str(e)}")
|
| 138 |
-
continue
|
| 139 |
-
|
| 140 |
-
# 根據相似度排序並返回前N個
|
| 141 |
-
return sorted(similarities, key=lambda x: x[1], reverse=True)[:top_n]
|
| 142 |
-
|
| 143 |
-
except Exception as e:
|
| 144 |
-
print(f"Error in find_similar_breeds: {str(e)}")
|
| 145 |
-
return []
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
def _calculate_breed_similarity(self, breed1_features: Dict, breed2_features: Dict, weights: Dict[str, float]) -> float:
|
| 149 |
-
try:
|
| 150 |
-
# 1. 基礎相似度計算
|
| 151 |
-
size_similarity = self._calculate_size_similarity_enhanced(
|
| 152 |
-
breed1_features.get('size', 'Medium'),
|
| 153 |
-
breed2_features.get('size', 'Medium'),
|
| 154 |
-
breed2_features.get('description', '')
|
| 155 |
-
)
|
| 156 |
-
|
| 157 |
-
exercise_similarity = self._calculate_exercise_similarity_enhanced(
|
| 158 |
-
breed1_features.get('exercise', 'Moderate'),
|
| 159 |
-
breed2_features.get('exercise', 'Moderate')
|
| 160 |
-
)
|
| 161 |
-
|
| 162 |
-
# 性格相似度
|
| 163 |
-
temp1_embedding = self._get_cached_embedding(breed1_features.get('temperament', ''))
|
| 164 |
-
temp2_embedding = self._get_cached_embedding(breed2_features.get('temperament', ''))
|
| 165 |
-
temperament_similarity = float(util.pytorch_cos_sim(temp1_embedding, temp2_embedding))
|
| 166 |
-
|
| 167 |
-
# 其他相似度
|
| 168 |
-
grooming_similarity = self._calculate_grooming_similarity(
|
| 169 |
-
breed1_features.get('breed_name', ''),
|
| 170 |
-
breed2_features.get('breed_name', '')
|
| 171 |
-
)
|
| 172 |
-
|
| 173 |
-
health_similarity = self._calculate_health_score_similarity(
|
| 174 |
-
breed1_features.get('breed_name', ''),
|
| 175 |
-
breed2_features.get('breed_name', '')
|
| 176 |
-
)
|
| 177 |
-
|
| 178 |
-
noise_similarity = self._calculate_noise_similarity(
|
| 179 |
-
breed1_features.get('breed_name', ''),
|
| 180 |
-
breed2_features.get('breed_name', '')
|
| 181 |
-
)
|
| 182 |
-
|
| 183 |
-
# 2. 關鍵特徵評分
|
| 184 |
-
feature_scores = {}
|
| 185 |
-
for feature, similarity in {
|
| 186 |
-
'size': size_similarity,
|
| 187 |
-
'exercise': exercise_similarity,
|
| 188 |
-
'temperament': temperament_similarity,
|
| 189 |
-
'grooming': grooming_similarity,
|
| 190 |
-
'health': health_similarity,
|
| 191 |
-
'noise': noise_similarity
|
| 192 |
-
}.items():
|
| 193 |
-
# 根據權重調整每個特徵分數
|
| 194 |
-
importance = weights.get(feature, 0.1)
|
| 195 |
-
if importance > 0.3: # 高權重特徵
|
| 196 |
-
if similarity < 0.5: # 若關鍵特徵匹配度低
|
| 197 |
-
feature_scores[feature] = similarity * 0.5 # 大幅降低分數
|
| 198 |
-
else:
|
| 199 |
-
feature_scores[feature] = similarity * 1.2 # 提高匹配度好的分數
|
| 200 |
-
else: # 一般特徵
|
| 201 |
-
feature_scores[feature] = similarity
|
| 202 |
-
|
| 203 |
-
# 3. 計算最終相似度
|
| 204 |
-
weighted_sum = 0
|
| 205 |
-
weight_sum = 0
|
| 206 |
-
for feature, score in feature_scores.items():
|
| 207 |
-
feature_weight = weights.get(feature, 0.1)
|
| 208 |
-
weighted_sum += score * feature_weight
|
| 209 |
-
weight_sum += feature_weight
|
| 210 |
-
|
| 211 |
-
final_similarity = weighted_sum / weight_sum if weight_sum > 0 else 0.5
|
| 212 |
-
|
| 213 |
-
return min(1.0, max(0.2, final_similarity)) # 設定最低分數為0.2
|
| 214 |
-
|
| 215 |
-
except Exception as e:
|
| 216 |
-
print(f"Error in calculate_breed_similarity: {str(e)}")
|
| 217 |
-
return 0.5
|
| 218 |
-
|
| 219 |
-
def get_breed_characteristics_score(self, breed_features: Dict, description: str) -> float:
|
| 220 |
-
score = 1.0
|
| 221 |
-
description_lower = description.lower()
|
| 222 |
-
breed_score_multipliers = []
|
| 223 |
-
|
| 224 |
-
# 運動需求評估
|
| 225 |
-
exercise_needs = breed_features.get('exercise', 'Moderate')
|
| 226 |
-
exercise_keywords = ['active', 'running', 'energetic', 'athletic']
|
| 227 |
-
if any(keyword in description_lower for keyword in exercise_keywords):
|
| 228 |
-
multipliers = {
|
| 229 |
-
'Very High': 1.5,
|
| 230 |
-
'High': 1.3,
|
| 231 |
-
'Moderate': 0.7,
|
| 232 |
-
'Low': 0.4
|
| 233 |
-
}
|
| 234 |
-
breed_score_multipliers.append(multipliers.get(exercise_needs, 1.0))
|
| 235 |
-
|
| 236 |
-
# 體型評估
|
| 237 |
-
size = breed_features.get('size', 'Medium')
|
| 238 |
-
if 'apartment' in description_lower:
|
| 239 |
-
size_multipliers = {
|
| 240 |
-
'Giant': 0.3,
|
| 241 |
-
'Large': 0.6,
|
| 242 |
-
'Medium-Large': 0.8,
|
| 243 |
-
'Medium': 1.4,
|
| 244 |
-
'Small': 1.0,
|
| 245 |
-
'Tiny': 0.9
|
| 246 |
-
}
|
| 247 |
-
breed_score_multipliers.append(size_multipliers.get(size, 1.0))
|
| 248 |
-
elif 'house' in description_lower:
|
| 249 |
-
size_multipliers = {
|
| 250 |
-
'Giant': 0.8,
|
| 251 |
-
'Large': 1.2,
|
| 252 |
-
'Medium-Large': 1.3,
|
| 253 |
-
'Medium': 1.2,
|
| 254 |
-
'Small': 0.9,
|
| 255 |
-
'Tiny': 0.7
|
| 256 |
-
}
|
| 257 |
-
breed_score_multipliers.append(size_multipliers.get(size, 1.0))
|
| 258 |
-
|
| 259 |
-
# 家庭適應性評估
|
| 260 |
-
if any(keyword in description_lower for keyword in ['family', 'children', 'kids']):
|
| 261 |
-
good_with_children = breed_features.get('good_with_children', False)
|
| 262 |
-
breed_score_multipliers.append(1.3 if good_with_children else 0.6)
|
| 263 |
-
|
| 264 |
-
# 噪音評估
|
| 265 |
-
if 'quiet' in description_lower:
|
| 266 |
-
noise_level = breed_features.get('noise_level', 'Moderate')
|
| 267 |
-
noise_multipliers = {
|
| 268 |
-
'Low': 1.3,
|
| 269 |
-
'Moderate': 0.9,
|
| 270 |
-
'High': 0.5
|
| 271 |
-
}
|
| 272 |
-
breed_score_multipliers.append(noise_multipliers.get(noise_level, 1.0))
|
| 273 |
-
|
| 274 |
-
# 應用所有乘數
|
| 275 |
-
for multiplier in breed_score_multipliers:
|
| 276 |
-
score *= multiplier
|
| 277 |
-
|
| 278 |
-
# 確保分數在合理範圍內
|
| 279 |
-
return min(1.5, max(0.3, score))
|
| 280 |
-
|
| 281 |
-
def _calculate_size_similarity_enhanced(self, size1: str, size2: str, description: str) -> float:
|
| 282 |
-
"""
|
| 283 |
-
增強版尺寸相似度計算
|
| 284 |
-
"""
|
| 285 |
-
try:
|
| 286 |
-
# 更細緻的尺寸映射
|
| 287 |
-
size_map = {
|
| 288 |
-
'Tiny': 0,
|
| 289 |
-
'Small': 1,
|
| 290 |
-
'Small-Medium': 2,
|
| 291 |
-
'Medium': 3,
|
| 292 |
-
'Medium-Large': 4,
|
| 293 |
-
'Large': 5,
|
| 294 |
-
'Giant': 6
|
| 295 |
-
}
|
| 296 |
-
|
| 297 |
-
# 標準化並獲取數值
|
| 298 |
-
value1 = size_map.get(self._normalize_size(size1), 3)
|
| 299 |
-
value2 = size_map.get(self._normalize_size(size2), 3)
|
| 300 |
-
|
| 301 |
-
# 基礎相似度計算
|
| 302 |
-
base_similarity = 1.0 - (abs(value1 - value2) / 6.0)
|
| 303 |
-
|
| 304 |
-
# 環境適應性調整
|
| 305 |
-
if 'apartment' in description.lower():
|
| 306 |
-
if size2 in ['Large', 'Giant']:
|
| 307 |
-
base_similarity *= 0.7 # 大型犬在公寓降低相似度
|
| 308 |
-
elif size2 in ['Medium', 'Medium-Large']:
|
| 309 |
-
base_similarity *= 1.2 # 中型犬更適合
|
| 310 |
-
elif size2 in ['Small', 'Tiny']:
|
| 311 |
-
base_similarity *= 0.8 # 過小的狗也不是最佳選擇
|
| 312 |
-
|
| 313 |
-
return min(1.0, base_similarity)
|
| 314 |
-
except Exception as e:
|
| 315 |
-
print(f"Error in calculate_size_similarity_enhanced: {str(e)}")
|
| 316 |
-
return 0.5
|
| 317 |
-
|
| 318 |
-
def _normalize_size(self, size: str) -> str:
|
| 319 |
-
"""
|
| 320 |
-
標準化犬種尺寸分類
|
| 321 |
-
|
| 322 |
-
Args:
|
| 323 |
-
size: 原始尺寸描述
|
| 324 |
-
|
| 325 |
-
Returns:
|
| 326 |
-
str: 標準化後的尺寸類別
|
| 327 |
-
"""
|
| 328 |
-
try:
|
| 329 |
-
size = size.lower()
|
| 330 |
-
if 'tiny' in size:
|
| 331 |
-
return 'Tiny'
|
| 332 |
-
elif 'small' in size and 'medium' in size:
|
| 333 |
-
return 'Small-Medium'
|
| 334 |
-
elif 'small' in size:
|
| 335 |
-
return 'Small'
|
| 336 |
-
elif 'medium' in size and 'large' in size:
|
| 337 |
-
return 'Medium-Large'
|
| 338 |
-
elif 'medium' in size:
|
| 339 |
-
return 'Medium'
|
| 340 |
-
elif 'giant' in size:
|
| 341 |
-
return 'Giant'
|
| 342 |
-
elif 'large' in size:
|
| 343 |
-
return 'Large'
|
| 344 |
-
return 'Medium' # 默認為 Medium
|
| 345 |
-
except Exception as e:
|
| 346 |
-
print(f"Error in normalize_size: {str(e)}")
|
| 347 |
-
return 'Medium'
|
| 348 |
-
|
| 349 |
-
def _calculate_exercise_similarity_enhanced(self, exercise1: str, exercise2: str) -> float:
|
| 350 |
-
try:
|
| 351 |
-
exercise_values = {
|
| 352 |
-
'Very High': 4,
|
| 353 |
-
'High': 3,
|
| 354 |
-
'Moderate': 2,
|
| 355 |
-
'Low': 1
|
| 356 |
-
}
|
| 357 |
-
|
| 358 |
-
value1 = exercise_values.get(exercise1, 2)
|
| 359 |
-
value2 = exercise_values.get(exercise2, 2)
|
| 360 |
-
|
| 361 |
-
# 計算差異
|
| 362 |
-
diff = abs(value1 - value2)
|
| 363 |
-
|
| 364 |
-
if diff == 0:
|
| 365 |
-
return 1.0
|
| 366 |
-
elif diff == 1:
|
| 367 |
-
return 0.7
|
| 368 |
-
elif diff == 2:
|
| 369 |
-
return 0.4
|
| 370 |
-
else:
|
| 371 |
-
return 0.2
|
| 372 |
-
|
| 373 |
-
except Exception as e:
|
| 374 |
-
print(f"Error in calculate_exercise_similarity_enhanced: {str(e)}")
|
| 375 |
-
return 0.5
|
| 376 |
-
|
| 377 |
-
def _calculate_grooming_similarity(self, breed1: str, breed2: str) -> float:
|
| 378 |
-
"""
|
| 379 |
-
計算美容需求相似度
|
| 380 |
-
|
| 381 |
-
Args:
|
| 382 |
-
breed1: 第一個品種名稱
|
| 383 |
-
breed2: 第二個品種名稱
|
| 384 |
-
|
| 385 |
-
Returns:
|
| 386 |
-
float: 相似度分數 (0-1)
|
| 387 |
-
"""
|
| 388 |
-
try:
|
| 389 |
-
grooming_map = {
|
| 390 |
-
'Low': 1,
|
| 391 |
-
'Moderate': 2,
|
| 392 |
-
'High': 3
|
| 393 |
-
}
|
| 394 |
-
|
| 395 |
-
# 從dog_data中獲取美容需求
|
| 396 |
-
breed1_info = next((dog for dog in self.dog_data if dog[1] == breed1), None)
|
| 397 |
-
breed2_info = next((dog for dog in self.dog_data if dog[1] == breed2), None)
|
| 398 |
-
|
| 399 |
-
if not breed1_info or not breed2_info:
|
| 400 |
-
return 0.5 # 數據缺失時返回中等相似度
|
| 401 |
-
|
| 402 |
-
grooming1 = breed1_info[8] # Grooming_Needs index
|
| 403 |
-
grooming2 = breed2_info[8]
|
| 404 |
-
|
| 405 |
-
# 獲取數值,默認為 Moderate
|
| 406 |
-
value1 = grooming_map.get(grooming1, 2)
|
| 407 |
-
value2 = grooming_map.get(grooming2, 2)
|
| 408 |
-
|
| 409 |
-
# 基礎相似度計算
|
| 410 |
-
base_similarity = 1.0 - (abs(value1 - value2) / 2.0)
|
| 411 |
-
|
| 412 |
-
# 美容需求調整
|
| 413 |
-
if grooming2 == 'Moderate':
|
| 414 |
-
base_similarity *= 1.1 # 中等美容需求略微加分
|
| 415 |
-
elif grooming2 == 'High':
|
| 416 |
-
base_similarity *= 0.9 # 高美容需求略微降分
|
| 417 |
-
|
| 418 |
-
return min(1.0, base_similarity)
|
| 419 |
-
except Exception as e:
|
| 420 |
-
print(f"Error in calculate_grooming_similarity: {str(e)}")
|
| 421 |
-
return 0.5
|
| 422 |
-
|
| 423 |
-
def _calculate_health_score_similarity(self, breed1: str, breed2: str) -> float:
|
| 424 |
-
"""
|
| 425 |
-
計算兩個品種的健康評分相似度
|
| 426 |
-
"""
|
| 427 |
-
try:
|
| 428 |
-
score1 = self._calculate_health_score(breed1)
|
| 429 |
-
score2 = self._calculate_health_score(breed2)
|
| 430 |
-
return 1.0 - abs(score1 - score2)
|
| 431 |
-
except Exception as e:
|
| 432 |
-
print(f"Error in calculate_health_score_similarity: {str(e)}")
|
| 433 |
-
return 0.5
|
| 434 |
-
|
| 435 |
-
def _calculate_health_score(self, breed_name: str) -> float:
|
| 436 |
-
"""
|
| 437 |
-
計算品種的健康評分
|
| 438 |
-
|
| 439 |
-
Args:
|
| 440 |
-
breed_name: 品種名稱
|
| 441 |
-
|
| 442 |
-
Returns:
|
| 443 |
-
float: 健康評分 (0-1)
|
| 444 |
-
"""
|
| 445 |
-
try:
|
| 446 |
-
if breed_name not in breed_health_info:
|
| 447 |
-
return 0.5
|
| 448 |
-
|
| 449 |
-
health_notes = breed_health_info[breed_name]['health_notes'].lower()
|
| 450 |
-
|
| 451 |
-
# 嚴重健康問題
|
| 452 |
-
severe_conditions = [
|
| 453 |
-
'cancer', 'cardiomyopathy', 'epilepsy', 'dysplasia',
|
| 454 |
-
'bloat', 'progressive', 'syndrome'
|
| 455 |
-
]
|
| 456 |
-
|
| 457 |
-
# 中等健康問題
|
| 458 |
-
moderate_conditions = [
|
| 459 |
-
'allergies', 'infections', 'thyroid', 'luxation',
|
| 460 |
-
'skin problems', 'ear'
|
| 461 |
-
]
|
| 462 |
-
|
| 463 |
-
# 計算問題數量
|
| 464 |
-
severe_count = sum(1 for condition in severe_conditions if condition in health_notes)
|
| 465 |
-
moderate_count = sum(1 for condition in moderate_conditions if condition in health_notes)
|
| 466 |
-
|
| 467 |
-
# 基礎健康評分
|
| 468 |
-
health_score = 1.0
|
| 469 |
-
health_score -= (severe_count * 0.15) # 嚴重問題扣分更多
|
| 470 |
-
health_score -= (moderate_count * 0.05) # 中等問題扣分較少
|
| 471 |
-
|
| 472 |
-
# 確保評分在合理範圍內
|
| 473 |
-
return max(0.3, min(1.0, health_score))
|
| 474 |
-
except Exception as e:
|
| 475 |
-
print(f"Error in calculate_health_score: {str(e)}")
|
| 476 |
-
return 0.5
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
def _calculate_noise_similarity(self, breed1: str, breed2: str) -> float:
|
| 480 |
-
"""計算兩個品種的噪音相似度"""
|
| 481 |
-
noise_levels = {
|
| 482 |
-
'Low': 1,
|
| 483 |
-
'Moderate': 2,
|
| 484 |
-
'High': 3,
|
| 485 |
-
'Unknown': 2 # 默認為中等
|
| 486 |
-
}
|
| 487 |
-
|
| 488 |
-
noise1 = breed_noise_info.get(breed1, {}).get('noise_level', 'Unknown')
|
| 489 |
-
noise2 = breed_noise_info.get(breed2, {}).get('noise_level', 'Unknown')
|
| 490 |
-
|
| 491 |
-
# 獲取數值級別
|
| 492 |
-
level1 = noise_levels.get(noise1, 2)
|
| 493 |
-
level2 = noise_levels.get(noise2, 2)
|
| 494 |
-
|
| 495 |
-
# 計算差異並歸一化
|
| 496 |
-
difference = abs(level1 - level2)
|
| 497 |
-
similarity = 1.0 - (difference / 2) # 最大差異是2,所以除以2來歸一化
|
| 498 |
-
|
| 499 |
-
return similarity
|
| 500 |
-
|
| 501 |
-
# bonus score zone
|
| 502 |
-
def _calculate_size_bonus(self, size: str, living_space: str) -> float:
|
| 503 |
-
"""
|
| 504 |
-
計算尺寸匹配的獎勵分數
|
| 505 |
-
|
| 506 |
-
Args:
|
| 507 |
-
size: 品種尺寸
|
| 508 |
-
living_space: 居住空間類型
|
| 509 |
-
|
| 510 |
-
Returns:
|
| 511 |
-
float: 獎勵分數 (-0.25 到 0.15)
|
| 512 |
-
"""
|
| 513 |
-
try:
|
| 514 |
-
if living_space == "apartment":
|
| 515 |
-
size_scores = {
|
| 516 |
-
'Tiny': -0.15,
|
| 517 |
-
'Small': 0.10,
|
| 518 |
-
'Medium': 0.15,
|
| 519 |
-
'Large': 0.10,
|
| 520 |
-
'Giant': -0.30
|
| 521 |
-
}
|
| 522 |
-
else: # house
|
| 523 |
-
size_scores = {
|
| 524 |
-
'Tiny': -0.10,
|
| 525 |
-
'Small': 0.05,
|
| 526 |
-
'Medium': 0.15,
|
| 527 |
-
'Large': 0.15,
|
| 528 |
-
'Giant': -0.15
|
| 529 |
-
}
|
| 530 |
-
return size_scores.get(size, 0.0)
|
| 531 |
-
except Exception as e:
|
| 532 |
-
print(f"Error in calculate_size_bonus: {str(e)}")
|
| 533 |
-
return 0.0
|
| 534 |
-
|
| 535 |
-
def _calculate_exercise_bonus(self, exercise_needs: str, exercise_time: int) -> float:
|
| 536 |
-
"""
|
| 537 |
-
計算運動需求匹配的獎勵分數
|
| 538 |
-
|
| 539 |
-
Args:
|
| 540 |
-
exercise_needs: 品種運動需求
|
| 541 |
-
exercise_time: 用戶可提供的運動時間(分鐘)
|
| 542 |
-
|
| 543 |
-
Returns:
|
| 544 |
-
float: 獎勵分數 (-0.20 到 0.20)
|
| 545 |
-
"""
|
| 546 |
-
try:
|
| 547 |
-
if exercise_time >= 120: # 高運動量需求
|
| 548 |
-
exercise_scores = {
|
| 549 |
-
'Low': -0.30,
|
| 550 |
-
'Moderate': -0.10,
|
| 551 |
-
'High': 0.15,
|
| 552 |
-
'Very High': 0.30
|
| 553 |
-
}
|
| 554 |
-
elif exercise_time >= 60: # 中等運動量需求
|
| 555 |
-
exercise_scores = {
|
| 556 |
-
'Low': -0.05,
|
| 557 |
-
'Moderate': 0.15,
|
| 558 |
-
'High': 0.05,
|
| 559 |
-
'Very High': -0.10
|
| 560 |
-
}
|
| 561 |
-
else: # 低運動量需求
|
| 562 |
-
exercise_scores = {
|
| 563 |
-
'Low': 0.15,
|
| 564 |
-
'Moderate': 0.05,
|
| 565 |
-
'High': -0.15,
|
| 566 |
-
'Very High': -0.20
|
| 567 |
-
}
|
| 568 |
-
return exercise_scores.get(exercise_needs, 0.0)
|
| 569 |
-
except Exception as e:
|
| 570 |
-
print(f"Error in calculate_exercise_bonus: {str(e)}")
|
| 571 |
-
return 0.0
|
| 572 |
-
|
| 573 |
-
def _calculate_grooming_bonus(self, grooming: str, commitment: str) -> float:
|
| 574 |
-
"""
|
| 575 |
-
計算美容需求匹配的獎勵分數
|
| 576 |
-
|
| 577 |
-
Args:
|
| 578 |
-
grooming: 品種美容需求
|
| 579 |
-
commitment: 用戶美容投入程度
|
| 580 |
-
|
| 581 |
-
Returns:
|
| 582 |
-
float: 獎勵分數 (-0.15 到 0.10)
|
| 583 |
-
"""
|
| 584 |
-
try:
|
| 585 |
-
if commitment == "high":
|
| 586 |
-
grooming_scores = {
|
| 587 |
-
'Low': -0.05,
|
| 588 |
-
'Moderate': 0.05,
|
| 589 |
-
'High': 0.10
|
| 590 |
-
}
|
| 591 |
-
else: # medium or low commitment
|
| 592 |
-
grooming_scores = {
|
| 593 |
-
'Low': 0.10,
|
| 594 |
-
'Moderate': 0.05,
|
| 595 |
-
'High': -0.20
|
| 596 |
-
}
|
| 597 |
-
return grooming_scores.get(grooming, 0.0)
|
| 598 |
-
except Exception as e:
|
| 599 |
-
print(f"Error in calculate_grooming_bonus: {str(e)}")
|
| 600 |
-
return 0.0
|
| 601 |
-
|
| 602 |
-
def _calculate_family_bonus(self, breed_info: Dict) -> float:
|
| 603 |
-
"""
|
| 604 |
-
計算家庭適應性的獎勵分數
|
| 605 |
-
|
| 606 |
-
Args:
|
| 607 |
-
breed_info: 品種信息字典
|
| 608 |
-
|
| 609 |
-
Returns:
|
| 610 |
-
float: 獎勵分數 (0 到 0.20)
|
| 611 |
-
"""
|
| 612 |
-
try:
|
| 613 |
-
bonus = 0.0
|
| 614 |
-
temperament = breed_info.get('Temperament', '').lower()
|
| 615 |
-
good_with_children = breed_info.get('Good_With_Children', False)
|
| 616 |
-
|
| 617 |
-
if good_with_children:
|
| 618 |
-
bonus += 0.20
|
| 619 |
-
if any(trait in temperament for trait in ['gentle', 'patient', 'friendly']):
|
| 620 |
-
bonus += 0.10
|
| 621 |
-
|
| 622 |
-
return min(0.20, bonus)
|
| 623 |
-
except Exception as e:
|
| 624 |
-
print(f"Error in calculate_family_bonus: {str(e)}")
|
| 625 |
-
return 0.0
|
| 626 |
-
|
| 627 |
-
|
| 628 |
-
def _detect_scenario(self, description: str) -> Dict[str, float]:
|
| 629 |
-
"""
|
| 630 |
-
檢測場景並返回對應權重
|
| 631 |
-
"""
|
| 632 |
-
# 基礎場景定義
|
| 633 |
-
scenarios = {
|
| 634 |
-
'athletic': {
|
| 635 |
-
'keywords': ['active', 'exercise', 'running', 'athletic', 'energetic', 'sports'],
|
| 636 |
-
'weights': {
|
| 637 |
-
'exercise': 0.40,
|
| 638 |
-
'size': 0.25,
|
| 639 |
-
'temperament': 0.20,
|
| 640 |
-
'health': 0.15
|
| 641 |
-
}
|
| 642 |
-
},
|
| 643 |
-
'apartment': {
|
| 644 |
-
'keywords': ['apartment', 'flat', 'condo'],
|
| 645 |
-
'weights': {
|
| 646 |
-
'size': 0.35,
|
| 647 |
-
'noise': 0.30,
|
| 648 |
-
'exercise': 0.20,
|
| 649 |
-
'temperament': 0.15
|
| 650 |
-
}
|
| 651 |
-
},
|
| 652 |
-
'family': {
|
| 653 |
-
'keywords': ['family', 'children', 'kids', 'friendly'],
|
| 654 |
-
'weights': {
|
| 655 |
-
'temperament': 0.35,
|
| 656 |
-
'safety': 0.30,
|
| 657 |
-
'noise': 0.20,
|
| 658 |
-
'exercise': 0.15
|
| 659 |
-
}
|
| 660 |
-
},
|
| 661 |
-
'novice': {
|
| 662 |
-
'keywords': ['first time', 'beginner', 'new owner', 'inexperienced'],
|
| 663 |
-
'weights': {
|
| 664 |
-
'trainability': 0.35,
|
| 665 |
-
'temperament': 0.30,
|
| 666 |
-
'care_level': 0.20,
|
| 667 |
-
'health': 0.15
|
| 668 |
-
}
|
| 669 |
-
}
|
| 670 |
-
}
|
| 671 |
-
|
| 672 |
-
# 檢測匹配的場景
|
| 673 |
-
matched_scenarios = []
|
| 674 |
-
for scenario, config in scenarios.items():
|
| 675 |
-
if any(keyword in description.lower() for keyword in config['keywords']):
|
| 676 |
-
matched_scenarios.append(scenario)
|
| 677 |
-
|
| 678 |
-
# 默認權重
|
| 679 |
-
default_weights = {
|
| 680 |
-
'exercise': 0.20,
|
| 681 |
-
'size': 0.20,
|
| 682 |
-
'temperament': 0.20,
|
| 683 |
-
'health': 0.15,
|
| 684 |
-
'noise': 0.10,
|
| 685 |
-
'grooming': 0.10,
|
| 686 |
-
'trainability': 0.05
|
| 687 |
-
}
|
| 688 |
-
|
| 689 |
-
# 如果沒有匹配場景,返回默認權重
|
| 690 |
-
if not matched_scenarios:
|
| 691 |
-
return default_weights
|
| 692 |
-
|
| 693 |
-
# 合併匹配場景的權重
|
| 694 |
-
final_weights = default_weights.copy()
|
| 695 |
-
for scenario in matched_scenarios:
|
| 696 |
-
scenario_weights = scenarios[scenario]['weights']
|
| 697 |
-
for feature, weight in scenario_weights.items():
|
| 698 |
-
if feature in final_weights:
|
| 699 |
-
final_weights[feature] = max(final_weights[feature], weight)
|
| 700 |
-
|
| 701 |
-
return final_weights
|
| 702 |
-
|
| 703 |
-
|
| 704 |
-
def _calculate_final_scores(self, breed_name: str, base_scores: Dict,
|
| 705 |
-
smart_score: float, is_preferred: bool,
|
| 706 |
-
similarity_score: float = 0.0,
|
| 707 |
-
characteristics_score: float = 1.0,
|
| 708 |
-
weights: Dict[str, float] = None) -> Dict:
|
| 709 |
-
try:
|
| 710 |
-
# 使用傳入的權重或默認權重
|
| 711 |
-
if weights is None:
|
| 712 |
-
weights = {
|
| 713 |
-
'base': 0.35,
|
| 714 |
-
'smart': 0.35,
|
| 715 |
-
'bonus': 0.15,
|
| 716 |
-
'characteristics': 0.15
|
| 717 |
-
}
|
| 718 |
-
|
| 719 |
-
# 確保 base_scores 包含所有必要的鍵
|
| 720 |
-
base_scores = {
|
| 721 |
-
'overall': base_scores.get('overall', smart_score),
|
| 722 |
-
'size': base_scores.get('size', 0.0),
|
| 723 |
-
'exercise': base_scores.get('exercise', 0.0),
|
| 724 |
-
'temperament': base_scores.get('temperament', 0.0),
|
| 725 |
-
'grooming': base_scores.get('grooming', 0.0),
|
| 726 |
-
'health': base_scores.get('health', 0.0),
|
| 727 |
-
'noise': base_scores.get('noise', 0.0)
|
| 728 |
-
}
|
| 729 |
-
|
| 730 |
-
# 計算基礎分數
|
| 731 |
-
base_score = base_scores['overall']
|
| 732 |
-
|
| 733 |
-
# 計算獎勵分數
|
| 734 |
-
bonus_score = 0.0
|
| 735 |
-
if is_preferred:
|
| 736 |
-
bonus_score = 0.95
|
| 737 |
-
elif similarity_score > 0:
|
| 738 |
-
bonus_score = min(0.8, similarity_score) * 0.95
|
| 739 |
-
|
| 740 |
-
# 特徵匹配度調整
|
| 741 |
-
if characteristics_score < 0.5:
|
| 742 |
-
base_score *= 0.7 # 降低基礎分數
|
| 743 |
-
smart_score *= 0.7 # 降低智能匹配分數
|
| 744 |
-
|
| 745 |
-
# 計算最終分數
|
| 746 |
-
final_score = (
|
| 747 |
-
base_score * weights.get('base', 0.35) +
|
| 748 |
-
smart_score * weights.get('smart', 0.35) +
|
| 749 |
-
bonus_score * weights.get('bonus', 0.15) +
|
| 750 |
-
characteristics_score * weights.get('characteristics', 0.15)
|
| 751 |
-
)
|
| 752 |
-
|
| 753 |
-
# 確保分數在合理範圍內
|
| 754 |
-
final_score = min(1.0, max(0.3, final_score))
|
| 755 |
-
|
| 756 |
-
return {
|
| 757 |
-
'final_score': round(final_score, 4),
|
| 758 |
-
'base_score': round(base_score, 4),
|
| 759 |
-
'smart_score': round(smart_score, 4),
|
| 760 |
-
'bonus_score': round(bonus_score, 4),
|
| 761 |
-
'characteristics_score': round(characteristics_score, 4),
|
| 762 |
-
'detailed_scores': base_scores
|
| 763 |
-
}
|
| 764 |
-
|
| 765 |
-
except Exception as e:
|
| 766 |
-
print(f"Error in calculate_final_scores: {str(e)}")
|
| 767 |
-
return {
|
| 768 |
-
'final_score': 0.5,
|
| 769 |
-
'base_score': 0.5,
|
| 770 |
-
'smart_score': 0.5,
|
| 771 |
-
'bonus_score': 0.0,
|
| 772 |
-
'characteristics_score': 0.5,
|
| 773 |
-
'detailed_scores': {
|
| 774 |
-
'overall': 0.5,
|
| 775 |
-
'size': 0.5,
|
| 776 |
-
'exercise': 0.5,
|
| 777 |
-
'temperament': 0.5,
|
| 778 |
-
'grooming': 0.5,
|
| 779 |
-
'health': 0.5,
|
| 780 |
-
'noise': 0.5
|
| 781 |
-
}
|
| 782 |
-
}
|
| 783 |
-
|
| 784 |
-
def _general_matching(self, description: str, weights: Dict[str, float], top_n: int = 10) -> List[Dict]:
|
| 785 |
-
"""基本的品種匹配邏輯,考慮描述、性格、噪音和健康因素"""
|
| 786 |
-
try:
|
| 787 |
-
matches = []
|
| 788 |
-
desc_embedding = self._get_cached_embedding(description)
|
| 789 |
-
|
| 790 |
-
for breed in self.dog_data:
|
| 791 |
-
breed_name = breed[1]
|
| 792 |
-
breed_features = self._extract_breed_features(breed)
|
| 793 |
-
breed_description = breed[9]
|
| 794 |
-
temperament = breed[4]
|
| 795 |
-
|
| 796 |
-
breed_desc_embedding = self._get_cached_embedding(breed_description)
|
| 797 |
-
breed_temp_embedding = self._get_cached_embedding(temperament)
|
| 798 |
-
|
| 799 |
-
desc_similarity = float(util.pytorch_cos_sim(desc_embedding, breed_desc_embedding))
|
| 800 |
-
temp_similarity = float(util.pytorch_cos_sim(desc_embedding, breed_temp_embedding))
|
| 801 |
-
|
| 802 |
-
noise_similarity = self._calculate_noise_similarity(breed_name, breed_name)
|
| 803 |
-
health_score = self._calculate_health_score(breed_name)
|
| 804 |
-
health_similarity = 1.0 - abs(health_score - 0.8)
|
| 805 |
-
|
| 806 |
-
# 使用傳入的權重
|
| 807 |
-
final_score = (
|
| 808 |
-
desc_similarity * weights.get('description', 0.35) +
|
| 809 |
-
temp_similarity * weights.get('temperament', 0.25) +
|
| 810 |
-
noise_similarity * weights.get('noise', 0.2) +
|
| 811 |
-
health_similarity * weights.get('health', 0.2)
|
| 812 |
-
)
|
| 813 |
-
|
| 814 |
-
# 計算特徵分數
|
| 815 |
-
characteristics_score = self.get_breed_characteristics_score(breed_features, description)
|
| 816 |
-
|
| 817 |
-
# 構建完整的 scores 字典
|
| 818 |
-
scores = {
|
| 819 |
-
'overall': final_score,
|
| 820 |
-
'size': breed_features.get('size_score', 0.0),
|
| 821 |
-
'exercise': breed_features.get('exercise_score', 0.0),
|
| 822 |
-
'temperament': temp_similarity,
|
| 823 |
-
'grooming': breed_features.get('grooming_score', 0.0),
|
| 824 |
-
'health': health_score,
|
| 825 |
-
'noise': noise_similarity
|
| 826 |
-
}
|
| 827 |
-
|
| 828 |
-
matches.append({
|
| 829 |
-
'breed': breed_name,
|
| 830 |
-
'scores': scores,
|
| 831 |
-
'final_score': final_score,
|
| 832 |
-
'base_score': final_score,
|
| 833 |
-
'characteristics_score': characteristics_score,
|
| 834 |
-
'bonus_score': 0.0,
|
| 835 |
-
'is_preferred': False,
|
| 836 |
-
'similarity': final_score,
|
| 837 |
-
'health_score': health_score,
|
| 838 |
-
'reason': "Matched based on description and characteristics"
|
| 839 |
-
})
|
| 840 |
-
|
| 841 |
-
return sorted(matches, key=lambda x: (-x['characteristics_score'], -x['final_score']))[:top_n]
|
| 842 |
-
|
| 843 |
-
except Exception as e:
|
| 844 |
-
print(f"Error in _general_matching: {str(e)}")
|
| 845 |
-
return []
|
| 846 |
-
|
| 847 |
-
|
| 848 |
-
def _detect_breed_preference(self, description: str) -> Optional[str]:
|
| 849 |
-
"""檢測用戶是否提到特定品種"""
|
| 850 |
-
description_lower = f" {description.lower()} "
|
| 851 |
-
|
| 852 |
-
for breed_info in self.dog_data:
|
| 853 |
-
breed_name = breed_info[1]
|
| 854 |
-
normalized_breed = breed_name.lower().replace('_', ' ')
|
| 855 |
-
|
| 856 |
-
pattern = rf"\b{re.escape(normalized_breed)}\b"
|
| 857 |
-
|
| 858 |
-
if re.search(pattern, description_lower):
|
| 859 |
-
return breed_name
|
| 860 |
-
|
| 861 |
-
return None
|
| 862 |
-
|
| 863 |
-
def _extract_breed_features(self, breed_info: Tuple) -> Dict:
|
| 864 |
-
"""
|
| 865 |
-
從品種信息中提取特徵
|
| 866 |
-
|
| 867 |
-
Args:
|
| 868 |
-
breed_info: 品種信息元組
|
| 869 |
-
|
| 870 |
-
Returns:
|
| 871 |
-
Dict: 包含品種特徵的字典
|
| 872 |
-
"""
|
| 873 |
-
try:
|
| 874 |
-
return {
|
| 875 |
-
'breed_name': breed_info[1],
|
| 876 |
-
'size': breed_info[2],
|
| 877 |
-
'temperament': breed_info[4],
|
| 878 |
-
'exercise': breed_info[7],
|
| 879 |
-
'grooming': breed_info[8],
|
| 880 |
-
'description': breed_info[9],
|
| 881 |
-
'good_with_children': breed_info[6]
|
| 882 |
-
}
|
| 883 |
-
except Exception as e:
|
| 884 |
-
print(f"Error in extract_breed_features: {str(e)}")
|
| 885 |
-
return {
|
| 886 |
-
'breed_name': '',
|
| 887 |
-
'size': 'Medium',
|
| 888 |
-
'temperament': '',
|
| 889 |
-
'exercise': 'Moderate',
|
| 890 |
-
'grooming': 'Moderate',
|
| 891 |
-
'description': '',
|
| 892 |
-
'good_with_children': False
|
| 893 |
-
}
|
| 894 |
-
|
| 895 |
-
@gpu_init_wrapper
|
| 896 |
-
@safe_prediction
|
| 897 |
-
def match_user_preference(self, description: str, top_n: int = 10) -> List[Dict]:
|
| 898 |
-
try:
|
| 899 |
-
if self.model is None:
|
| 900 |
-
self._initialize_model()
|
| 901 |
-
# 獲取場景權重
|
| 902 |
-
weights = self._detect_scenario(description)
|
| 903 |
-
matches = []
|
| 904 |
-
preferred_breed = self._detect_breed_preference(description)
|
| 905 |
-
|
| 906 |
-
# 處理用戶明確提到的品種
|
| 907 |
-
if preferred_breed:
|
| 908 |
-
breed_info = next((breed for breed in self.dog_data if breed[1] == preferred_breed), None)
|
| 909 |
-
if breed_info:
|
| 910 |
-
breed_features = self._extract_breed_features(breed_info)
|
| 911 |
-
base_similarity = self._calculate_breed_similarity(breed_features, breed_features, weights)
|
| 912 |
-
|
| 913 |
-
# 計算特徵分數
|
| 914 |
-
characteristics_score = self.get_breed_characteristics_score(breed_features, description)
|
| 915 |
-
|
| 916 |
-
# 計算最終分數
|
| 917 |
-
scores = self._calculate_final_scores(
|
| 918 |
-
preferred_breed,
|
| 919 |
-
{'overall': base_similarity},
|
| 920 |
-
smart_score=base_similarity,
|
| 921 |
-
is_preferred=True,
|
| 922 |
-
similarity_score=1.0,
|
| 923 |
-
characteristics_score=characteristics_score,
|
| 924 |
-
weights=weights
|
| 925 |
-
)
|
| 926 |
-
|
| 927 |
-
matches.append({
|
| 928 |
-
'breed': preferred_breed,
|
| 929 |
-
'scores': scores['detailed_scores'],
|
| 930 |
-
'final_score': scores['final_score'],
|
| 931 |
-
'base_score': scores['base_score'],
|
| 932 |
-
'bonus_score': scores['bonus_score'],
|
| 933 |
-
'characteristics_score': characteristics_score,
|
| 934 |
-
'is_preferred': True,
|
| 935 |
-
'priority': 1,
|
| 936 |
-
'health_score': self._calculate_health_score(preferred_breed),
|
| 937 |
-
'reason': "Directly matched your preferred breed"
|
| 938 |
-
})
|
| 939 |
-
|
| 940 |
-
# 尋找相似品種
|
| 941 |
-
similar_breeds = self.find_similar_breeds(preferred_breed, top_n=top_n-1)
|
| 942 |
-
for breed_name, similarity in similar_breeds:
|
| 943 |
-
if breed_name != preferred_breed:
|
| 944 |
-
breed_info = next((breed for breed in self.dog_data if breed[1] == breed_name), None)
|
| 945 |
-
if breed_info:
|
| 946 |
-
breed_features = self._extract_breed_features(breed_info)
|
| 947 |
-
characteristics_score = self.get_breed_characteristics_score(breed_features, description)
|
| 948 |
-
|
| 949 |
-
scores = self._calculate_final_scores(
|
| 950 |
-
breed_name,
|
| 951 |
-
{'overall': similarity},
|
| 952 |
-
smart_score=similarity,
|
| 953 |
-
is_preferred=False,
|
| 954 |
-
similarity_score=similarity,
|
| 955 |
-
characteristics_score=characteristics_score,
|
| 956 |
-
weights=weights
|
| 957 |
-
)
|
| 958 |
-
|
| 959 |
-
if scores['final_score'] >= 0.4: # 設定最低分數門檻
|
| 960 |
-
matches.append({
|
| 961 |
-
'breed': breed_name,
|
| 962 |
-
'scores': scores['detailed_scores'],
|
| 963 |
-
'final_score': scores['final_score'],
|
| 964 |
-
'base_score': scores['base_score'],
|
| 965 |
-
'bonus_score': scores['bonus_score'],
|
| 966 |
-
'characteristics_score': characteristics_score,
|
| 967 |
-
'is_preferred': False,
|
| 968 |
-
'priority': 2,
|
| 969 |
-
'health_score': self._calculate_health_score(breed_name),
|
| 970 |
-
'reason': f"Similar to {preferred_breed}"
|
| 971 |
-
})
|
| 972 |
-
|
| 973 |
-
# 如果沒有找到偏好品種或需要更多匹配
|
| 974 |
-
if len(matches) < top_n:
|
| 975 |
-
general_matches = self._general_matching(description, weights, top_n - len(matches))
|
| 976 |
-
for match in general_matches:
|
| 977 |
-
if match['breed'] not in [m['breed'] for m in matches]:
|
| 978 |
-
match['priority'] = 3
|
| 979 |
-
if match['final_score'] >= 0.4: # 分數門檻
|
| 980 |
-
matches.append(match)
|
| 981 |
-
|
| 982 |
-
# 最終排序
|
| 983 |
-
matches.sort(key=lambda x: (
|
| 984 |
-
-x.get('characteristics_score', 0), # 首先考慮特徵匹配度
|
| 985 |
-
-x.get('final_score', 0), # 然後是總分
|
| 986 |
-
-x.get('base_score', 0), # 最後是基礎分數
|
| 987 |
-
x.get('breed', '') # 字母順序
|
| 988 |
-
))
|
| 989 |
-
|
| 990 |
-
# 取前N個結果
|
| 991 |
-
final_matches = matches[:top_n]
|
| 992 |
-
|
| 993 |
-
# 更新排名
|
| 994 |
-
for i, match in enumerate(final_matches, 1):
|
| 995 |
-
match['rank'] = i
|
| 996 |
-
|
| 997 |
-
return final_matches
|
| 998 |
-
|
| 999 |
-
except Exception as e:
|
| 1000 |
-
print(f"Error in match_user_preference: {str(e)}")
|
| 1001 |
-
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|