Spaces:
Running
on
Zero
Running
on
Zero
Update scoring_calculation_system.py
Browse files- scoring_calculation_system.py +102 -171
scoring_calculation_system.py
CHANGED
|
@@ -1510,193 +1510,124 @@ def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -
|
|
| 1510 |
|
| 1511 |
def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
| 1512 |
"""
|
| 1513 |
-
|
| 1514 |
-
|
| 1515 |
-
2. 提高品種差異化
|
| 1516 |
-
3. 更精確的條件匹配評估
|
| 1517 |
"""
|
| 1518 |
-
#
|
| 1519 |
-
def
|
| 1520 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1521 |
|
| 1522 |
-
|
| 1523 |
-
|
| 1524 |
-
|
| 1525 |
-
|
| 1526 |
-
if
|
| 1527 |
-
|
| 1528 |
-
|
| 1529 |
-
|
| 1530 |
-
|
| 1531 |
-
|
| 1532 |
-
|
| 1533 |
-
|
| 1534 |
-
|
| 1535 |
-
|
| 1536 |
-
|
| 1537 |
-
|
| 1538 |
-
|
| 1539 |
-
|
| 1540 |
-
|
| 1541 |
-
|
| 1542 |
-
|
| 1543 |
-
|
| 1544 |
-
|
| 1545 |
-
|
| 1546 |
-
|
| 1547 |
-
|
| 1548 |
|
| 1549 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1550 |
|
| 1551 |
-
#
|
| 1552 |
adjusted_scores = {
|
| 1553 |
-
|
| 1554 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1555 |
}
|
| 1556 |
|
| 1557 |
-
#
|
| 1558 |
-
|
| 1559 |
-
|
| 1560 |
-
|
| 1561 |
-
|
| 1562 |
-
|
| 1563 |
-
|
| 1564 |
-
|
| 1565 |
-
|
| 1566 |
-
}
|
| 1567 |
-
|
| 1568 |
-
weight = base_weights[feature]
|
| 1569 |
-
|
| 1570 |
-
# 條件相關的權重調整
|
| 1571 |
-
if feature == 'space' and user_prefs.living_space == 'apartment':
|
| 1572 |
-
weight *= 1.6 # 加強空間限制的影響
|
| 1573 |
-
|
| 1574 |
-
elif feature == 'exercise':
|
| 1575 |
-
if user_prefs.exercise_time > 150:
|
| 1576 |
-
weight *= 1.4
|
| 1577 |
-
elif user_prefs.exercise_time < 60:
|
| 1578 |
-
weight *= 1.3
|
| 1579 |
-
|
| 1580 |
-
elif feature == 'experience':
|
| 1581 |
-
if user_prefs.experience_level in ['beginner', 'advanced']:
|
| 1582 |
-
weight *= 1.3 # 強化極端經驗等級的影響
|
| 1583 |
-
|
| 1584 |
-
return weight
|
| 1585 |
|
| 1586 |
-
#
|
| 1587 |
-
|
| 1588 |
-
|
|
|
|
| 1589 |
|
|
|
|
|
|
|
|
|
|
| 1590 |
# 正規化權重
|
| 1591 |
total_weight = sum(weights.values())
|
| 1592 |
normalized_weights = {k: v/total_weight for k, v in weights.items()}
|
| 1593 |
-
|
| 1594 |
-
#
|
| 1595 |
-
|
| 1596 |
-
|
| 1597 |
-
|
| 1598 |
-
primary_score = sum(adjusted_scores[f] * normalized_weights[f]
|
| 1599 |
-
for f in primary_features)
|
| 1600 |
-
secondary_score = sum(adjusted_scores[f] * normalized_weights[f]
|
| 1601 |
-
for f in secondary_features)
|
| 1602 |
-
|
| 1603 |
-
# 6. 特殊條件評估
|
| 1604 |
-
condition_multiplier = 1.0
|
| 1605 |
-
|
| 1606 |
-
# 空間條件
|
| 1607 |
-
if user_prefs.living_space == 'apartment':
|
| 1608 |
-
if breed_info['Size'] in ['Large', 'Giant']:
|
| 1609 |
-
condition_multiplier *= 0.7
|
| 1610 |
-
elif breed_info['Size'] == 'Small':
|
| 1611 |
-
condition_multiplier *= 1.2
|
| 1612 |
-
|
| 1613 |
-
# 運動條件
|
| 1614 |
-
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
| 1615 |
-
if exercise_needs == 'VERY HIGH' and user_prefs.exercise_time < 120:
|
| 1616 |
-
condition_multiplier *= 0.8
|
| 1617 |
-
elif exercise_needs == 'LOW' and user_prefs.exercise_time > 150:
|
| 1618 |
-
condition_multiplier *= 0.85
|
| 1619 |
-
|
| 1620 |
-
# 7. 計算最終分數
|
| 1621 |
-
base_score = (primary_score * 0.7 + secondary_score * 0.3)
|
| 1622 |
breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
|
| 1623 |
|
| 1624 |
-
|
| 1625 |
-
|
| 1626 |
-
return max(0.0, min(1.0, final_score))
|
| 1627 |
|
| 1628 |
|
| 1629 |
def amplify_score_extreme(score: float) -> float:
|
| 1630 |
"""
|
| 1631 |
-
|
| 1632 |
-
|
| 1633 |
-
|
| 1634 |
-
|
| 1635 |
-
|
| 1636 |
-
3.
|
| 1637 |
-
|
| 1638 |
-
|
| 1639 |
-
-
|
| 1640 |
-
- 差匹配 (0.2-0.4): 63-68% - 緩慢的增長
|
| 1641 |
-
- 中等匹配 (0.4-0.6): 68-75% - 穩定的線性增長
|
| 1642 |
-
- 良好匹配 (0.6-0.75): 75-85% - 加速增長
|
| 1643 |
-
- 優秀匹配 (0.75-0.9): 85-92% - 減速增長
|
| 1644 |
-
- 完美匹配 (0.9-1.0): 92-95% - 非常緩慢的增長
|
| 1645 |
"""
|
| 1646 |
-
|
| 1647 |
-
|
| 1648 |
-
|
| 1649 |
-
|
| 1650 |
-
|
| 1651 |
-
|
| 1652 |
-
|
| 1653 |
-
|
| 1654 |
-
|
| 1655 |
-
|
| 1656 |
-
|
| 1657 |
-
|
| 1658 |
-
|
| 1659 |
-
|
| 1660 |
-
|
| 1661 |
-
|
| 1662 |
-
|
| 1663 |
-
|
| 1664 |
-
|
| 1665 |
-
'good': {
|
| 1666 |
-
'range': (0.6, 0.75),
|
| 1667 |
-
'out_min': 0.75,
|
| 1668 |
-
'out_max': 0.85,
|
| 1669 |
-
'curve': 0.8 # 加速增長
|
| 1670 |
-
},
|
| 1671 |
-
'excellent': {
|
| 1672 |
-
'range': (0.75, 0.9),
|
| 1673 |
-
'out_min': 0.85,
|
| 1674 |
-
'out_max': 0.92,
|
| 1675 |
-
'curve': 1.2 # 減速增長
|
| 1676 |
-
},
|
| 1677 |
-
'perfect': {
|
| 1678 |
-
'range': (0.9, 1.0),
|
| 1679 |
-
'out_min': 0.92,
|
| 1680 |
-
'out_max': 0.95,
|
| 1681 |
-
'curve': 1.5 # 強烈的減速
|
| 1682 |
-
}
|
| 1683 |
-
}
|
| 1684 |
-
|
| 1685 |
-
# 找出分數所屬區間並進行映射
|
| 1686 |
-
for config in ranges.values():
|
| 1687 |
-
range_min, range_max = config['range']
|
| 1688 |
-
if range_min <= score <= range_max:
|
| 1689 |
-
# 計算區間內的相對位置(0-1)
|
| 1690 |
-
position = (score - range_min) / (range_max - range_min)
|
| 1691 |
-
|
| 1692 |
-
# 應用非線性曲線來調整增長速度
|
| 1693 |
-
position = pow(position, config['curve'])
|
| 1694 |
-
|
| 1695 |
-
# 映射到輸出範圍
|
| 1696 |
-
result = config['out_min'] + (config['out_max'] - config['out_min']) * position
|
| 1697 |
-
|
| 1698 |
-
# 確保結果精確到小數點後三位
|
| 1699 |
-
return round(result, 3)
|
| 1700 |
-
|
| 1701 |
-
# 處理超出範圍的情況
|
| 1702 |
-
return 0.60 if score < 0.0 else 0.95
|
|
|
|
| 1510 |
|
| 1511 |
def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
| 1512 |
"""
|
| 1513 |
+
改進的品種相容性評分系統
|
| 1514 |
+
通過更細緻的特徵評估和動態權重調整,自然產生分數差異
|
|
|
|
|
|
|
| 1515 |
"""
|
| 1516 |
+
# 評估關鍵特徵的匹配度,使用更極端的調整係數
|
| 1517 |
+
def evaluate_key_features():
|
| 1518 |
+
# 空間適配性評估
|
| 1519 |
+
space_multiplier = 1.0
|
| 1520 |
+
if user_prefs.living_space == 'apartment':
|
| 1521 |
+
if breed_info['Size'] == 'Giant':
|
| 1522 |
+
space_multiplier = 0.3 # 嚴重不適合
|
| 1523 |
+
elif breed_info['Size'] == 'Large':
|
| 1524 |
+
space_multiplier = 0.4 # 明顯不適合
|
| 1525 |
+
elif breed_info['Size'] == 'Small':
|
| 1526 |
+
space_multiplier = 1.4 # 明顯優勢
|
| 1527 |
|
| 1528 |
+
# 運動需求評估
|
| 1529 |
+
exercise_multiplier = 1.0
|
| 1530 |
+
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
| 1531 |
+
if exercise_needs == 'VERY HIGH':
|
| 1532 |
+
if user_prefs.exercise_time < 60:
|
| 1533 |
+
exercise_multiplier = 0.3 # 嚴重不足
|
| 1534 |
+
elif user_prefs.exercise_time > 150:
|
| 1535 |
+
exercise_multiplier = 1.5 # 完美匹配
|
| 1536 |
+
elif exercise_needs == 'LOW' and user_prefs.exercise_time > 150:
|
| 1537 |
+
exercise_multiplier = 0.5 # 運動過度
|
| 1538 |
+
|
| 1539 |
+
return space_multiplier, exercise_multiplier
|
| 1540 |
+
|
| 1541 |
+
# 計算經驗匹配度
|
| 1542 |
+
def evaluate_experience():
|
| 1543 |
+
exp_multiplier = 1.0
|
| 1544 |
+
care_level = breed_info.get('Care Level', 'MODERATE')
|
| 1545 |
+
|
| 1546 |
+
if care_level == 'High':
|
| 1547 |
+
if user_prefs.experience_level == 'beginner':
|
| 1548 |
+
exp_multiplier = 0.4
|
| 1549 |
+
elif user_prefs.experience_level == 'advanced':
|
| 1550 |
+
exp_multiplier = 1.3
|
| 1551 |
+
elif care_level == 'Low':
|
| 1552 |
+
if user_prefs.experience_level == 'advanced':
|
| 1553 |
+
exp_multiplier = 0.9 # 略微降低評分,因為可能不夠有挑戰性
|
| 1554 |
|
| 1555 |
+
return exp_multiplier
|
| 1556 |
+
|
| 1557 |
+
# 取得特徵調整係數
|
| 1558 |
+
space_mult, exercise_mult = evaluate_key_features()
|
| 1559 |
+
exp_mult = evaluate_experience()
|
| 1560 |
|
| 1561 |
+
# 調整基礎分數
|
| 1562 |
adjusted_scores = {
|
| 1563 |
+
'space': scores['space'] * space_mult,
|
| 1564 |
+
'exercise': scores['exercise'] * exercise_mult,
|
| 1565 |
+
'experience': scores['experience'] * exp_mult,
|
| 1566 |
+
'grooming': scores['grooming'],
|
| 1567 |
+
'health': scores['health'],
|
| 1568 |
+
'noise': scores['noise']
|
| 1569 |
}
|
| 1570 |
|
| 1571 |
+
# 計算加權平均,關鍵特徵佔更大權重
|
| 1572 |
+
weights = {
|
| 1573 |
+
'space': 0.35,
|
| 1574 |
+
'exercise': 0.30,
|
| 1575 |
+
'experience': 0.20,
|
| 1576 |
+
'grooming': 0.15,
|
| 1577 |
+
'health': 0.10,
|
| 1578 |
+
'noise': 0.10
|
| 1579 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1580 |
|
| 1581 |
+
# 動態調整權重
|
| 1582 |
+
if user_prefs.living_space == 'apartment':
|
| 1583 |
+
weights['space'] *= 1.5
|
| 1584 |
+
weights['noise'] *= 1.3
|
| 1585 |
|
| 1586 |
+
if abs(user_prefs.exercise_time - 120) > 60: # 運動時間極端情況
|
| 1587 |
+
weights['exercise'] *= 1.4
|
| 1588 |
+
|
| 1589 |
# 正規化權重
|
| 1590 |
total_weight = sum(weights.values())
|
| 1591 |
normalized_weights = {k: v/total_weight for k, v in weights.items()}
|
| 1592 |
+
|
| 1593 |
+
# 計算最終分數
|
| 1594 |
+
final_score = sum(adjusted_scores[k] * normalized_weights[k] for k in scores.keys())
|
| 1595 |
+
|
| 1596 |
+
# 品種特性加成
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1597 |
breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
|
| 1598 |
|
| 1599 |
+
# 整合最終分數,保持在0-1範圍內
|
| 1600 |
+
return min(1.0, max(0.0, (final_score * 0.85) + (breed_bonus * 0.15)))
|
|
|
|
| 1601 |
|
| 1602 |
|
| 1603 |
def amplify_score_extreme(score: float) -> float:
|
| 1604 |
"""
|
| 1605 |
+
改進的分數轉換函數
|
| 1606 |
+
提供更大的分數範圍和更明顯的差異
|
| 1607 |
+
|
| 1608 |
+
轉換邏輯:
|
| 1609 |
+
- 極差匹配 (0.0-0.3) -> 60-68%
|
| 1610 |
+
- 較差匹配 (0.3-0.5) -> 68-75%
|
| 1611 |
+
- 中等匹配 (0.5-0.7) -> 75-85%
|
| 1612 |
+
- 良好匹配 (0.7-0.85) -> 85-92%
|
| 1613 |
+
- 優秀匹配 (0.85-1.0) -> 92-95%
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1614 |
"""
|
| 1615 |
+
if score < 0.3:
|
| 1616 |
+
# 極差匹配:快速線性增長
|
| 1617 |
+
return 0.60 + (score / 0.3) * 0.08
|
| 1618 |
+
elif score < 0.5:
|
| 1619 |
+
# 較差匹配:緩慢增長
|
| 1620 |
+
position = (score - 0.3) / 0.2
|
| 1621 |
+
return 0.68 + position * 0.07
|
| 1622 |
+
elif score < 0.7:
|
| 1623 |
+
# 中等匹配:穩定線性增長
|
| 1624 |
+
position = (score - 0.5) / 0.2
|
| 1625 |
+
return 0.75 + position * 0.10
|
| 1626 |
+
elif score < 0.85:
|
| 1627 |
+
# 良好匹配:加速增長
|
| 1628 |
+
position = (score - 0.7) / 0.15
|
| 1629 |
+
return 0.85 + position * 0.07
|
| 1630 |
+
else:
|
| 1631 |
+
# 優秀匹配:最後衝刺
|
| 1632 |
+
position = (score - 0.85) / 0.15
|
| 1633 |
+
return 0.92 + position * 0.03
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|