Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -143,6 +143,67 @@ def preprocess_image(image):
|
|
| 143 |
def get_akc_breeds_link():
|
| 144 |
return "https://www.akc.org/dog-breeds/"
|
| 145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
def predict(image):
|
| 147 |
try:
|
| 148 |
image_tensor = preprocess_image(image)
|
|
@@ -160,8 +221,16 @@ def predict(image):
|
|
| 160 |
# 檢查最高的預測機率
|
| 161 |
top1_prob = topk_probs[0][0].item()
|
| 162 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
if top1_prob >= 0.5:
|
| 164 |
-
# 正確辨識時,返回該品種資訊
|
| 165 |
predicted = topk_indices[0][0]
|
| 166 |
breed = dog_breeds[predicted.item()]
|
| 167 |
description = get_dog_description(breed)
|
|
@@ -185,12 +254,15 @@ def predict(image):
|
|
| 185 |
return description_str
|
| 186 |
|
| 187 |
else:
|
| 188 |
-
#
|
| 189 |
topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
|
| 190 |
topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
|
| 191 |
|
| 192 |
-
#
|
| 193 |
-
topk_results = "\n\n".join(
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
# 提���說明
|
| 196 |
explanation = (
|
|
|
|
| 143 |
def get_akc_breeds_link():
|
| 144 |
return "https://www.akc.org/dog-breeds/"
|
| 145 |
|
| 146 |
+
# def predict(image):
|
| 147 |
+
# try:
|
| 148 |
+
# image_tensor = preprocess_image(image)
|
| 149 |
+
# with torch.no_grad():
|
| 150 |
+
# output = model(image_tensor)
|
| 151 |
+
# if isinstance(output, tuple):
|
| 152 |
+
# logits = output[0]
|
| 153 |
+
# else:
|
| 154 |
+
# logits = output
|
| 155 |
+
|
| 156 |
+
# # 取得預測的top k結果
|
| 157 |
+
# probabilities = F.softmax(logits, dim=1)
|
| 158 |
+
# topk_probs, topk_indices = torch.topk(probabilities, k=3)
|
| 159 |
+
|
| 160 |
+
# # 檢查最高的預測機率
|
| 161 |
+
# top1_prob = topk_probs[0][0].item()
|
| 162 |
+
|
| 163 |
+
# if top1_prob >= 0.5:
|
| 164 |
+
# # 正確辨識時,返回該品種資訊
|
| 165 |
+
# predicted = topk_indices[0][0]
|
| 166 |
+
# breed = dog_breeds[predicted.item()]
|
| 167 |
+
# description = get_dog_description(breed)
|
| 168 |
+
# akc_link = get_akc_breeds_link()
|
| 169 |
+
|
| 170 |
+
# if isinstance(description, dict):
|
| 171 |
+
# description_str = "\n\n".join([f"**{key}**: {value}" for key, value in description.items()])
|
| 172 |
+
# else:
|
| 173 |
+
# description_str = description
|
| 174 |
+
|
| 175 |
+
# # 添加AKC連結
|
| 176 |
+
# description_str += f"\n\n**Want to learn more about dog breeds?** [Visit the AKC dog breeds page]({akc_link}) and search for {breed} to find detailed information."
|
| 177 |
+
|
| 178 |
+
# # 添加免責聲明
|
| 179 |
+
# disclaimer = ("\n\n*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page. "
|
| 180 |
+
# "You may need to search for the specific breed on that page. "
|
| 181 |
+
# "I am not responsible for the content on external sites. "
|
| 182 |
+
# "Please refer to the AKC's terms of use and privacy policy.*")
|
| 183 |
+
# description_str += disclaimer
|
| 184 |
+
|
| 185 |
+
# return description_str
|
| 186 |
+
|
| 187 |
+
# else:
|
| 188 |
+
# # 不確定時,返回top 3的預測結果
|
| 189 |
+
# topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
|
| 190 |
+
# topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
|
| 191 |
+
|
| 192 |
+
# # 用粗體返回品種和機率
|
| 193 |
+
# topk_results = "\n\n".join([f"**{i+1}. {breed}** ({prob} confidence)" for i, (breed, prob) in enumerate(zip(topk_breeds, topk_probs_percent))])
|
| 194 |
+
|
| 195 |
+
# # 提供說明
|
| 196 |
+
# explanation = (
|
| 197 |
+
# f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n{topk_results}\n\n"
|
| 198 |
+
# "This can happen if the image quality is low or the breed is rare in the dataset. "
|
| 199 |
+
# "Please try uploading a clearer image or a different angle of the dog. "
|
| 200 |
+
# "For more accurate results, ensure the dog is the main subject of the photo."
|
| 201 |
+
# )
|
| 202 |
+
|
| 203 |
+
# return explanation
|
| 204 |
+
# except Exception as e:
|
| 205 |
+
# return f"An error occurred: {e}"
|
| 206 |
+
|
| 207 |
def predict(image):
|
| 208 |
try:
|
| 209 |
image_tensor = preprocess_image(image)
|
|
|
|
| 221 |
# 檢查最高的預測機率
|
| 222 |
top1_prob = topk_probs[0][0].item()
|
| 223 |
|
| 224 |
+
# 假設低於 20% 機率為非狗或不確定的圖片
|
| 225 |
+
if top1_prob < 0.2:
|
| 226 |
+
return (
|
| 227 |
+
"The model couldn't confidently identify a dog breed. "
|
| 228 |
+
"It seems like the image may not contain a dog, or the image quality is too low. "
|
| 229 |
+
"Please upload a clearer picture or ensure the subject is a dog."
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
# 當信心高於 50% 時,直接返回該品種資訊
|
| 233 |
if top1_prob >= 0.5:
|
|
|
|
| 234 |
predicted = topk_indices[0][0]
|
| 235 |
breed = dog_breeds[predicted.item()]
|
| 236 |
description = get_dog_description(breed)
|
|
|
|
| 254 |
return description_str
|
| 255 |
|
| 256 |
else:
|
| 257 |
+
# 信心不足50%,返回top 3的預測結果並附加連結
|
| 258 |
topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
|
| 259 |
topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
|
| 260 |
|
| 261 |
+
# 構建每個品種的連結和預測機率
|
| 262 |
+
topk_results = "\n\n".join(
|
| 263 |
+
[f"**{i+1}. [{breed}](https://www.akc.org/dog-breeds/{quote(breed)})** ({prob} confidence)"
|
| 264 |
+
for i, (breed, prob) in enumerate(zip(topk_breeds, topk_probs_percent))]
|
| 265 |
+
)
|
| 266 |
|
| 267 |
# 提���說明
|
| 268 |
explanation = (
|