Update app.py
Browse files
app.py
CHANGED
|
@@ -1,68 +1,126 @@
|
|
| 1 |
-
import subprocess
|
| 2 |
import os
|
| 3 |
import logging
|
| 4 |
import time
|
| 5 |
from fastapi import FastAPI, Request
|
| 6 |
-
from transformers import pipeline
|
| 7 |
from huggingface_hub import InferenceClient, login
|
| 8 |
import langid
|
| 9 |
-
import asyncio
|
| 10 |
|
| 11 |
-
# Environment variables
|
| 12 |
-
HF_HUB_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
if not HF_HUB_TOKEN:
|
| 15 |
raise ValueError("Missing Hugging Face API token. Please set HUGGINGFACEHUB_API_TOKEN.")
|
| 16 |
|
|
|
|
|
|
|
| 17 |
login(token=HF_HUB_TOKEN)
|
| 18 |
client = InferenceClient(api_key=HF_HUB_TOKEN)
|
| 19 |
|
|
|
|
|
|
|
| 20 |
app = FastAPI()
|
| 21 |
|
| 22 |
|
| 23 |
-
# Function to detect language
|
| 24 |
-
def detect_language(user_input):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
try:
|
| 26 |
lang, _ = langid.classify(user_input)
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
except Exception as e:
|
| 29 |
-
|
| 30 |
return "unsupported"
|
| 31 |
|
| 32 |
|
| 33 |
-
# Function to generate response
|
| 34 |
-
def generate_response(text):
|
| 35 |
-
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
if language == "hebrew":
|
| 38 |
-
|
| 39 |
model = "microsoft/Phi-3.5-mini-instruct"
|
| 40 |
elif language == "english":
|
| 41 |
-
|
| 42 |
model = "mistralai/Mistral-Nemo-Instruct-2407"
|
| 43 |
else:
|
| 44 |
return "Sorry, I only support Hebrew and English."
|
| 45 |
-
|
| 46 |
-
messages = [{"role": "user", "content": content}]
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
|
| 58 |
@app.post("/generate_response")
|
| 59 |
async def generate_text(request: Request):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
try:
|
| 61 |
data = await request.json()
|
| 62 |
text = data.get("text", "").strip()
|
| 63 |
if not text:
|
| 64 |
return {"error": "No text provided"}
|
| 65 |
-
|
| 66 |
response = generate_response(text)
|
| 67 |
return {"response": response}
|
| 68 |
except Exception as e:
|
|
@@ -72,6 +130,9 @@ async def generate_text(request: Request):
|
|
| 72 |
|
| 73 |
@app.get("/")
|
| 74 |
async def root():
|
|
|
|
|
|
|
|
|
|
| 75 |
return {"message": "Decision Helper API is running!"}
|
| 76 |
|
| 77 |
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import logging
|
| 3 |
import time
|
| 4 |
from fastapi import FastAPI, Request
|
| 5 |
+
# from transformers import pipeline
|
| 6 |
from huggingface_hub import InferenceClient, login
|
| 7 |
import langid
|
| 8 |
+
# import asyncio
|
| 9 |
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
# Configure logging
|
| 12 |
+
logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO)
|
| 13 |
+
logger = logging.getLogger(__name__)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
# Get Hugging Face API token from environment variable
|
| 17 |
+
HF_HUB_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
| 18 |
if not HF_HUB_TOKEN:
|
| 19 |
raise ValueError("Missing Hugging Face API token. Please set HUGGINGFACEHUB_API_TOKEN.")
|
| 20 |
|
| 21 |
+
|
| 22 |
+
# Login and initialize the client
|
| 23 |
login(token=HF_HUB_TOKEN)
|
| 24 |
client = InferenceClient(api_key=HF_HUB_TOKEN)
|
| 25 |
|
| 26 |
+
|
| 27 |
+
# Create FastAPI app
|
| 28 |
app = FastAPI()
|
| 29 |
|
| 30 |
|
| 31 |
+
# # Function to detect language
|
| 32 |
+
# def detect_language(user_input):
|
| 33 |
+
# try:
|
| 34 |
+
# lang, _ = langid.classify(user_input)
|
| 35 |
+
# return "hebrew" if lang == "he" else "english" if lang == "en" else "unsupported"
|
| 36 |
+
# except Exception as e:
|
| 37 |
+
# logging.error(f"Language detection error: {e}")
|
| 38 |
+
# return "unsupported"
|
| 39 |
+
|
| 40 |
+
def detect_language(user_input: str) -> str:
|
| 41 |
+
"""
|
| 42 |
+
Detects the language of the input text.
|
| 43 |
+
Returns "hebrew" for Hebrew, "english" for English, and "unsupported" otherwise.
|
| 44 |
+
"""
|
| 45 |
try:
|
| 46 |
lang, _ = langid.classify(user_input)
|
| 47 |
+
if lang == "he":
|
| 48 |
+
return "hebrew"
|
| 49 |
+
elif lang == "en":
|
| 50 |
+
return "english"
|
| 51 |
+
else:
|
| 52 |
+
return "unsupported"
|
| 53 |
except Exception as e:
|
| 54 |
+
logger.error(f"Language detection error: {e}")
|
| 55 |
return "unsupported"
|
| 56 |
|
| 57 |
|
| 58 |
+
# # Function to generate response
|
| 59 |
+
# def generate_response(text):
|
| 60 |
+
# language = detect_language(text)
|
| 61 |
|
| 62 |
+
# if language == "hebrew":
|
| 63 |
+
# content = "转注谞讛 讘拽爪专讛 讗讘诇 转砖转祝 讗转 转讛诇讬讱 拽讘诇转 讛讛讞诇讟讜转 砖诇讱, " + text
|
| 64 |
+
# model = "microsoft/Phi-3.5-mini-instruct"
|
| 65 |
+
# elif language == "english":
|
| 66 |
+
# content = "keep it short but tell your decision making process, " + text
|
| 67 |
+
# model = "mistralai/Mistral-Nemo-Instruct-2407"
|
| 68 |
+
# else:
|
| 69 |
+
# return "Sorry, I only support Hebrew and English."
|
| 70 |
+
|
| 71 |
+
# messages = [{"role": "user", "content": content}]
|
| 72 |
+
|
| 73 |
+
# completion = client.chat.completions.create(
|
| 74 |
+
# model=model,
|
| 75 |
+
# messages=messages,
|
| 76 |
+
# max_tokens=2048,
|
| 77 |
+
# temperature=0.5,
|
| 78 |
+
# top_p=0.7
|
| 79 |
+
# )
|
| 80 |
+
# return completion.choices[0].message.content
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def generate_response(text: str) -> str:
|
| 84 |
+
"""
|
| 85 |
+
Generates a response by selecting a prompt and model based on the language.
|
| 86 |
+
Uses the Hugging Face Inference API to get a chat completion.
|
| 87 |
+
"""
|
| 88 |
+
language = detect_language(text)
|
| 89 |
if language == "hebrew":
|
| 90 |
+
prompt = "转注谞讛 讘拽爪专讛 讗讘诇 转砖转祝 讗转 转讛诇讬讱 拽讘诇转 讛讛讞诇讟讜转 砖诇讱, " + text
|
| 91 |
model = "microsoft/Phi-3.5-mini-instruct"
|
| 92 |
elif language == "english":
|
| 93 |
+
prompt = "keep it short but tell your decision making process, " + text
|
| 94 |
model = "mistralai/Mistral-Nemo-Instruct-2407"
|
| 95 |
else:
|
| 96 |
return "Sorry, I only support Hebrew and English."
|
|
|
|
|
|
|
| 97 |
|
| 98 |
+
messages = [{"role": "user", "content": prompt}]
|
| 99 |
+
try:
|
| 100 |
+
completion = client.chat.completions.create(
|
| 101 |
+
model=model,
|
| 102 |
+
messages=messages,
|
| 103 |
+
max_tokens=2048,
|
| 104 |
+
temperature=0.5,
|
| 105 |
+
top_p=0.7
|
| 106 |
+
)
|
| 107 |
+
return completion.choices[0].message.content
|
| 108 |
+
except Exception as e:
|
| 109 |
+
logger.error(f"Error generating response: {e}")
|
| 110 |
+
return "Error: Could not generate response."
|
| 111 |
|
| 112 |
|
| 113 |
@app.post("/generate_response")
|
| 114 |
async def generate_text(request: Request):
|
| 115 |
+
"""
|
| 116 |
+
Endpoint to generate a response from the chat model.
|
| 117 |
+
Expects a JSON with a "text" field.
|
| 118 |
+
"""
|
| 119 |
try:
|
| 120 |
data = await request.json()
|
| 121 |
text = data.get("text", "").strip()
|
| 122 |
if not text:
|
| 123 |
return {"error": "No text provided"}
|
|
|
|
| 124 |
response = generate_response(text)
|
| 125 |
return {"response": response}
|
| 126 |
except Exception as e:
|
|
|
|
| 130 |
|
| 131 |
@app.get("/")
|
| 132 |
async def root():
|
| 133 |
+
"""
|
| 134 |
+
Root endpoint to check that the API is running.
|
| 135 |
+
"""
|
| 136 |
return {"message": "Decision Helper API is running!"}
|
| 137 |
|
| 138 |
|