Spaces:
Sleeping
Sleeping
Commit
·
4cda815
1
Parent(s):
a2fef5f
Upload fusion_siamese.py
Browse files
models/sequence_matching/fusion_siamese.py
ADDED
|
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# @Time : 2022/4/21 5:30 下午
|
| 3 |
+
# @Author : JianingWang
|
| 4 |
+
# @File : fusion_siamese.py
|
| 5 |
+
from typing import Optional
|
| 6 |
+
import torch
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
from dataclasses import dataclass
|
| 10 |
+
from torch.nn import BCEWithLogitsLoss
|
| 11 |
+
from transformers import MegatronBertModel, MegatronBertPreTrainedModel
|
| 12 |
+
from transformers.file_utils import ModelOutput
|
| 13 |
+
from transformers.models.bert import BertPreTrainedModel, BertModel
|
| 14 |
+
from transformers.activations import ACT2FN
|
| 15 |
+
from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
|
| 16 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
| 17 |
+
from loss.focal_loss import FocalLoss
|
| 18 |
+
# from roformer import RoFormerPreTrainedModel, RoFormerModel
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class BertPooler(nn.Module):
|
| 22 |
+
def __init__(self, hidden_size, hidden_act):
|
| 23 |
+
super().__init__()
|
| 24 |
+
self.dense = nn.Linear(hidden_size, hidden_size)
|
| 25 |
+
# self.activation = nn.Tanh()
|
| 26 |
+
self.activation = ACT2FN[hidden_act]
|
| 27 |
+
# self.dropout = nn.Dropout(hidden_dropout_prob)
|
| 28 |
+
|
| 29 |
+
def forward(self, features):
|
| 30 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
| 31 |
+
# x = self.dropout(x)
|
| 32 |
+
x = self.dense(x)
|
| 33 |
+
x = self.activation(x)
|
| 34 |
+
return x
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class BertForFusionSiamese(BertPreTrainedModel):
|
| 38 |
+
def __init__(self, config):
|
| 39 |
+
super().__init__(config)
|
| 40 |
+
self.num_labels = config.num_labels
|
| 41 |
+
self.bert = BertModel(config)
|
| 42 |
+
self.hidden_size = config.hidden_size
|
| 43 |
+
self.hidden_act = config.hidden_act
|
| 44 |
+
self.bert_poor = BertPooler(self.hidden_size, self.hidden_act)
|
| 45 |
+
self.dense_1 = nn.Linear(self.hidden_size, self.hidden_size)
|
| 46 |
+
self.dense_2 = nn.Linear(self.hidden_size, self.hidden_size)
|
| 47 |
+
|
| 48 |
+
if hasattr(config, "cls_dropout_rate"):
|
| 49 |
+
cls_dropout_rate = config.cls_dropout_rate
|
| 50 |
+
else:
|
| 51 |
+
cls_dropout_rate = config.hidden_dropout_prob
|
| 52 |
+
self.dropout = nn.Dropout(cls_dropout_rate)
|
| 53 |
+
self.classifier = nn.Linear(3 * self.hidden_size, config.num_labels)
|
| 54 |
+
self.init_weights()
|
| 55 |
+
|
| 56 |
+
def forward(
|
| 57 |
+
self,
|
| 58 |
+
input_ids=None,
|
| 59 |
+
attention_mask=None,
|
| 60 |
+
token_type_ids=None,
|
| 61 |
+
position_ids=None,
|
| 62 |
+
head_mask=None,
|
| 63 |
+
inputs_embeds=None,
|
| 64 |
+
labels=None,
|
| 65 |
+
output_attentions=None,
|
| 66 |
+
output_hidden_states=None,
|
| 67 |
+
return_dict=None,
|
| 68 |
+
pseudo_label=None,
|
| 69 |
+
segment_spans=None,
|
| 70 |
+
pseuso_proba=None
|
| 71 |
+
):
|
| 72 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 73 |
+
logits, outputs = None, None
|
| 74 |
+
inputs = {"input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids,
|
| 75 |
+
"position_ids": position_ids,
|
| 76 |
+
"head_mask": head_mask, "inputs_embeds": inputs_embeds, "output_attentions": output_attentions,
|
| 77 |
+
"output_hidden_states": output_hidden_states, "return_dict": return_dict}
|
| 78 |
+
inputs = {k: v for k, v in inputs.items() if v is not None}
|
| 79 |
+
outputs = self.bert(**inputs)
|
| 80 |
+
if "sequence_output" in outputs:
|
| 81 |
+
sequence_output = outputs.sequence_output # [bz, seq_len, dim]
|
| 82 |
+
else:
|
| 83 |
+
sequence_output = outputs[0] # [bz, seq_len, dim]
|
| 84 |
+
|
| 85 |
+
cls_output = self.bert_poor(sequence_output) # [bz, dim]
|
| 86 |
+
|
| 87 |
+
if segment_spans is not None:
|
| 88 |
+
# 如果输入的是两个segment,则分别进行平均池化
|
| 89 |
+
seg1_embeddings, seg2_embeddings = list(), list()
|
| 90 |
+
for ei, sentence_embeddings in enumerate(sequence_output):
|
| 91 |
+
# sentence_embedding: [seq_len, dim]
|
| 92 |
+
seg1_start, seg1_end, seg2_start, seg2_end = segment_spans[ei]
|
| 93 |
+
# print("sentence_embeddings[seg1_start, seg1_end].shape=", sentence_embeddings[seg1_start, seg1_end].shape)
|
| 94 |
+
# print("torch.mean(sentence_embeddings[seg1_start, seg1_end], 0).shape=", torch.mean(sentence_embeddings[seg1_start, seg1_end], 0).shape)
|
| 95 |
+
seg1_embeddings.append(torch.mean(sentence_embeddings[seg1_start: seg1_end], 0)) # [dim]
|
| 96 |
+
seg2_embeddings.append(torch.mean(sentence_embeddings[seg2_start: seg2_end], 0)) # [dim]
|
| 97 |
+
seg1_embeddings, seg2_embeddings = torch.stack(seg1_embeddings), torch.stack(seg2_embeddings) # [bz, dim]
|
| 98 |
+
# print("seg1_embeddings.shape=", seg1_embeddings.shape)
|
| 99 |
+
seg1_embeddings = self.bert_poor.activation(self.dense_1(seg1_embeddings))
|
| 100 |
+
seg2_embeddings = self.bert_poor.activation(self.dense_1(seg2_embeddings))
|
| 101 |
+
cls_output = torch.cat([cls_output, seg1_embeddings, seg2_embeddings], dim=-1) # [bz, 3*dim]
|
| 102 |
+
# cls_output = cls_output + seg1_embeddings + seg2_embeddings # [bz, dim]
|
| 103 |
+
|
| 104 |
+
pooler_output = self.dropout(cls_output)
|
| 105 |
+
# pooler_output = self.LayerNorm(pooler_output)
|
| 106 |
+
logits = self.classifier(pooler_output)
|
| 107 |
+
|
| 108 |
+
loss = None
|
| 109 |
+
if labels is not None:
|
| 110 |
+
|
| 111 |
+
# loss_fct = FocalLoss()
|
| 112 |
+
loss_fct = CrossEntropyLoss()
|
| 113 |
+
# 伪标签
|
| 114 |
+
if pseudo_label is not None:
|
| 115 |
+
train_logits, pseudo_logits = logits[pseudo_label > 0.9], logits[pseudo_label < 0.1]
|
| 116 |
+
train_labels, pseudo_labels = labels[pseudo_label > 0.9], labels[pseudo_label < 0.1]
|
| 117 |
+
train_loss = loss_fct(train_logits.view(-1, self.num_labels),
|
| 118 |
+
train_labels.view(-1)) if train_labels.nelement() else 0
|
| 119 |
+
pseudo_loss = loss_fct(pseudo_logits.view(-1, self.num_labels),
|
| 120 |
+
pseudo_labels.view(-1)) if pseudo_labels.nelement() else 0
|
| 121 |
+
loss = 0.9 * train_loss + 0.1 * pseudo_loss
|
| 122 |
+
else:
|
| 123 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 124 |
+
return SequenceClassifierOutput(
|
| 125 |
+
loss=loss,
|
| 126 |
+
logits=logits,
|
| 127 |
+
hidden_states=outputs.hidden_states,
|
| 128 |
+
attentions=outputs.attentions,
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
class BertForWSC(BertPreTrainedModel):
|
| 134 |
+
def __init__(self, config):
|
| 135 |
+
super().__init__(config)
|
| 136 |
+
self.num_labels = config.num_labels
|
| 137 |
+
self.bert = BertModel(config)
|
| 138 |
+
self.hidden_size = config.hidden_size
|
| 139 |
+
self.hidden_act = config.hidden_act
|
| 140 |
+
self.bert_poor = BertPooler(self.hidden_size, self.hidden_act)
|
| 141 |
+
self.dense_1 = nn.Linear(self.hidden_size, self.hidden_size)
|
| 142 |
+
self.dense_2 = nn.Linear(self.hidden_size, self.hidden_size)
|
| 143 |
+
|
| 144 |
+
if hasattr(config, "cls_dropout_rate"):
|
| 145 |
+
cls_dropout_rate = config.cls_dropout_rate
|
| 146 |
+
else:
|
| 147 |
+
cls_dropout_rate = config.hidden_dropout_prob
|
| 148 |
+
self.dropout = nn.Dropout(cls_dropout_rate)
|
| 149 |
+
self.classifier = nn.Linear(2 * self.hidden_size, config.num_labels)
|
| 150 |
+
self.init_weights()
|
| 151 |
+
|
| 152 |
+
def forward(
|
| 153 |
+
self,
|
| 154 |
+
input_ids=None,
|
| 155 |
+
attention_mask=None,
|
| 156 |
+
token_type_ids=None,
|
| 157 |
+
position_ids=None,
|
| 158 |
+
head_mask=None,
|
| 159 |
+
inputs_embeds=None,
|
| 160 |
+
labels=None,
|
| 161 |
+
output_attentions=None,
|
| 162 |
+
output_hidden_states=None,
|
| 163 |
+
return_dict=None,
|
| 164 |
+
pseudo_label=None,
|
| 165 |
+
span=None,
|
| 166 |
+
pseuso_proba=None
|
| 167 |
+
):
|
| 168 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 169 |
+
logits, outputs = None, None
|
| 170 |
+
inputs = {"input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids,
|
| 171 |
+
"position_ids": position_ids,
|
| 172 |
+
"head_mask": head_mask, "inputs_embeds": inputs_embeds, "output_attentions": output_attentions,
|
| 173 |
+
"output_hidden_states": output_hidden_states, "return_dict": return_dict}
|
| 174 |
+
inputs = {k: v for k, v in inputs.items() if v is not None}
|
| 175 |
+
outputs = self.bert(**inputs)
|
| 176 |
+
if "sequence_output" in outputs:
|
| 177 |
+
sequence_output = outputs.sequence_output # [bz, seq_len, dim]
|
| 178 |
+
else:
|
| 179 |
+
sequence_output = outputs[0] # [bz, seq_len, dim]
|
| 180 |
+
|
| 181 |
+
# cls_output = self.bert_poor(sequence_output) # [bz, dim]
|
| 182 |
+
|
| 183 |
+
# 如果输入的是两个span,则分别进行平均池化
|
| 184 |
+
seg1_embeddings, seg2_embeddings = list(), list()
|
| 185 |
+
# print("span=", span)
|
| 186 |
+
for ei, sentence_embeddings in enumerate(sequence_output):
|
| 187 |
+
# sentence_embedding: [seq_len, dim]
|
| 188 |
+
seg1_start, seg1_end, seg2_start, seg2_end = span[ei]
|
| 189 |
+
# print("sentence_embeddings[seg1_start, seg1_end].shape=", sentence_embeddings[seg1_start, seg1_end].shape)
|
| 190 |
+
# print("torch.mean(sentence_embeddings[seg1_start, seg1_end], 0).shape=", torch.mean(sentence_embeddings[seg1_start, seg1_end], 0).shape)
|
| 191 |
+
seg1_embeddings.append(torch.mean(sentence_embeddings[seg1_start+1: seg1_end], 0)) # [dim]
|
| 192 |
+
seg2_embeddings.append(torch.mean(sentence_embeddings[seg2_start+1: seg2_end], 0)) # [dim]
|
| 193 |
+
seg1_embeddings, seg2_embeddings = torch.stack(seg1_embeddings), torch.stack(seg2_embeddings) # [bz, dim]
|
| 194 |
+
# print("seg1_embeddings.shape=", seg1_embeddings.shape)
|
| 195 |
+
# seg1_embeddings = self.bert_poor.activation(self.dense_1(seg1_embeddings))
|
| 196 |
+
# seg2_embeddings = self.bert_poor.activation(self.dense_1(seg2_embeddings))
|
| 197 |
+
cls_output = torch.cat([seg1_embeddings, seg2_embeddings], dim=-1) # [bz, 3*dim]
|
| 198 |
+
# cls_output = cls_output + seg1_embeddings + seg2_embeddings # [bz, dim]
|
| 199 |
+
|
| 200 |
+
pooler_output = self.dropout(cls_output)
|
| 201 |
+
# pooler_output = self.LayerNorm(pooler_output)
|
| 202 |
+
logits = self.classifier(pooler_output)
|
| 203 |
+
|
| 204 |
+
loss = None
|
| 205 |
+
if labels is not None:
|
| 206 |
+
|
| 207 |
+
# loss_fct = FocalLoss()
|
| 208 |
+
loss_fct = CrossEntropyLoss()
|
| 209 |
+
# 伪标签
|
| 210 |
+
if pseudo_label is not None:
|
| 211 |
+
train_logits, pseudo_logits = logits[pseudo_label > 0.9], logits[pseudo_label < 0.1]
|
| 212 |
+
train_labels, pseudo_labels = labels[pseudo_label > 0.9], labels[pseudo_label < 0.1]
|
| 213 |
+
train_loss = loss_fct(train_logits.view(-1, self.num_labels),
|
| 214 |
+
train_labels.view(-1)) if train_labels.nelement() else 0
|
| 215 |
+
pseudo_loss = loss_fct(pseudo_logits.view(-1, self.num_labels),
|
| 216 |
+
pseudo_labels.view(-1)) if pseudo_labels.nelement() else 0
|
| 217 |
+
loss = 0.9 * train_loss + 0.1 * pseudo_loss
|
| 218 |
+
else:
|
| 219 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 220 |
+
return SequenceClassifierOutput(
|
| 221 |
+
loss=loss,
|
| 222 |
+
logits=logits,
|
| 223 |
+
hidden_states=outputs.hidden_states,
|
| 224 |
+
attentions=outputs.attentions,
|
| 225 |
+
)
|