Spaces:
Sleeping
Sleeping
Commit
·
b0ebb46
1
Parent(s):
45311fe
Upload 4 files
Browse files
models/sequence_classification/causal_prompt_cls.py
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
import os
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import transformers
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
import numpy as np
|
| 8 |
+
from typing import Optional, Tuple, Union
|
| 9 |
+
from torch.nn import CrossEntropyLoss
|
| 10 |
+
from transformers import AutoModelForCausalLM
|
| 11 |
+
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
| 12 |
+
from transformers.models.gpt2.modeling_gpt2 import GPT2PreTrainedModel, GPT2Model, GPT2LMHeadModel
|
| 13 |
+
from transformers.modeling_outputs import ModelOutput
|
| 14 |
+
from tools.runner_utils.log_util import logging
|
| 15 |
+
from tools.model_utils.parameter_freeze import ParameterFreeze
|
| 16 |
+
|
| 17 |
+
logger = logging.getLogger(__name__)
|
| 18 |
+
freezer = ParameterFreeze()
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
"""
|
| 22 |
+
Function: Use Causal LM to prompt for cls
|
| 23 |
+
Notes:
|
| 24 |
+
- For classification, the model only calculate the loss at the position of label, the other position is set as -100
|
| 25 |
+
- During inference, generate result at the last position.
|
| 26 |
+
"""
|
| 27 |
+
class PromptGPT2ForSequenceClassification(GPT2PreTrainedModel):
|
| 28 |
+
_keys_to_ignore_on_load_missing = [r"attn.masked_bias", r"attn.bias", r"lm_head.weight"]
|
| 29 |
+
|
| 30 |
+
def __init__(self, config):
|
| 31 |
+
super().__init__(config)
|
| 32 |
+
self.transformer = GPT2Model(config)
|
| 33 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
| 34 |
+
|
| 35 |
+
if self.config.use_freezing:
|
| 36 |
+
self.transformer = freezer.freeze_lm(self.transformer)
|
| 37 |
+
|
| 38 |
+
# Model parallel
|
| 39 |
+
self.model_parallel = False
|
| 40 |
+
self.device_map = None
|
| 41 |
+
|
| 42 |
+
# These attributes should be assigned once the model is initialized
|
| 43 |
+
self.label_word_list = torch.Tensor(self.config.label_word_list).long().to(self.transformer.device)
|
| 44 |
+
|
| 45 |
+
# Initialize weights and apply final processing
|
| 46 |
+
self.post_init()
|
| 47 |
+
|
| 48 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
| 49 |
+
if use_freezing:
|
| 50 |
+
self.bert = freezer.freeze_lm(self.bert)
|
| 51 |
+
else:
|
| 52 |
+
self.bert = freezer.unfreeze_lm(self.bert)
|
| 53 |
+
|
| 54 |
+
def get_output_embeddings(self):
|
| 55 |
+
return self.lm_head
|
| 56 |
+
|
| 57 |
+
def set_output_embeddings(self, new_embeddings):
|
| 58 |
+
self.lm_head = new_embeddings
|
| 59 |
+
|
| 60 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
| 61 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
| 62 |
+
# only last token for inputs_ids if past is defined in kwargs
|
| 63 |
+
if past:
|
| 64 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
| 65 |
+
if token_type_ids is not None:
|
| 66 |
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
| 67 |
+
|
| 68 |
+
attention_mask = kwargs.get("attention_mask", None)
|
| 69 |
+
position_ids = kwargs.get("position_ids", None)
|
| 70 |
+
|
| 71 |
+
if attention_mask is not None and position_ids is None:
|
| 72 |
+
# create position_ids on the fly for batch generation
|
| 73 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 74 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 75 |
+
if past:
|
| 76 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
| 77 |
+
else:
|
| 78 |
+
position_ids = None
|
| 79 |
+
return {
|
| 80 |
+
"input_ids": input_ids,
|
| 81 |
+
"past_key_values": past,
|
| 82 |
+
"use_cache": kwargs.get("use_cache"),
|
| 83 |
+
"position_ids": position_ids,
|
| 84 |
+
"attention_mask": attention_mask,
|
| 85 |
+
"token_type_ids": token_type_ids,
|
| 86 |
+
}
|
| 87 |
+
|
| 88 |
+
def forward(
|
| 89 |
+
self,
|
| 90 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 91 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 92 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 93 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 94 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 95 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 96 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 97 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 98 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 99 |
+
labels: Optional[torch.LongTensor] = None,
|
| 100 |
+
use_cache: Optional[bool] = None,
|
| 101 |
+
output_attentions: Optional[bool] = None,
|
| 102 |
+
output_hidden_states: Optional[bool] = None,
|
| 103 |
+
return_dict: Optional[bool] = None,
|
| 104 |
+
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
| 105 |
+
r"""
|
| 106 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 107 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
| 108 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
| 109 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
| 110 |
+
"""
|
| 111 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 112 |
+
|
| 113 |
+
transformer_outputs = self.transformer(
|
| 114 |
+
input_ids,
|
| 115 |
+
past_key_values=past_key_values,
|
| 116 |
+
attention_mask=attention_mask,
|
| 117 |
+
token_type_ids=token_type_ids,
|
| 118 |
+
position_ids=position_ids,
|
| 119 |
+
head_mask=head_mask,
|
| 120 |
+
inputs_embeds=inputs_embeds,
|
| 121 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 122 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 123 |
+
use_cache=use_cache,
|
| 124 |
+
output_attentions=output_attentions,
|
| 125 |
+
output_hidden_states=output_hidden_states,
|
| 126 |
+
return_dict=return_dict,
|
| 127 |
+
)
|
| 128 |
+
hidden_states = transformer_outputs[0]
|
| 129 |
+
|
| 130 |
+
# Set device for model parallelism
|
| 131 |
+
if self.model_parallel:
|
| 132 |
+
torch.cuda.set_device(self.transformer.first_device)
|
| 133 |
+
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
| 134 |
+
|
| 135 |
+
lm_logits = self.lm_head(hidden_states)
|
| 136 |
+
|
| 137 |
+
loss = None
|
| 138 |
+
if labels is not None:
|
| 139 |
+
# Shift so that tokens < n predict n
|
| 140 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
| 141 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 142 |
+
# print("shift_labels=", shift_labels)
|
| 143 |
+
# Flatten the tokens
|
| 144 |
+
loss_fct = CrossEntropyLoss()
|
| 145 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
| 146 |
+
|
| 147 |
+
if not return_dict:
|
| 148 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
| 149 |
+
return ((loss,) + output) if loss is not None else output
|
| 150 |
+
|
| 151 |
+
return CausalLMOutputWithCrossAttentions(
|
| 152 |
+
loss=loss,
|
| 153 |
+
logits=lm_logits,
|
| 154 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 155 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 156 |
+
attentions=transformer_outputs.attentions,
|
| 157 |
+
cross_attentions=transformer_outputs.cross_attentions,
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
@staticmethod
|
| 161 |
+
def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
|
| 162 |
+
"""
|
| 163 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
| 164 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
| 165 |
+
beam_idx at every generation step.
|
| 166 |
+
"""
|
| 167 |
+
return tuple(
|
| 168 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
| 169 |
+
for layer_past in past
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
# if __name__ == "__main__":
|
| 176 |
+
# from transformers import GPT2Tokenizer
|
| 177 |
+
# tokenizer = GPT2Tokenizer.from_pretrained("/Users/wangjianing/Desktop/开源代码与数据模型/模型/gpt2")
|
| 178 |
+
# model = GPT2ForInContextLearning.from_pretrained("/Users/wangjianing/Desktop/开源代码与数据模型/模型/gpt2")
|
| 179 |
+
|
| 180 |
+
# # In-Context Learning for classification
|
| 181 |
+
# # input_text = "The capital city of China is Beijing. \n\n The capital city of Japan is Tokyo. \n\n The capital city of America is"
|
| 182 |
+
# input_text = "What are follows emotions? \n\n Input: The book is very nice.\n Output: Great. \n\n Input: I never eat chocolate!\n Output:"
|
| 183 |
+
# # input_text = "This film is wonderful.\n Great."
|
| 184 |
+
# tokenizer.pad_token = tokenizer.eos_token
|
| 185 |
+
# inputs = tokenizer(input_text, return_tensors="pt")
|
| 186 |
+
# input_len = inputs["input_ids"].shape[-1]
|
| 187 |
+
# gen_output = model.generate(**inputs, max_length=input_len + 10)
|
| 188 |
+
# gen_result = tokenizer.decode(gen_output[0])
|
| 189 |
+
# print("classification result:\n", gen_result)
|
| 190 |
+
|
| 191 |
+
# # In-Context Learning for generation
|
| 192 |
+
# input_text = "Please tell me what is the transformer? "
|
| 193 |
+
# # input_text = "This film is wonderful.\n Great."
|
| 194 |
+
# tokenizer.pad_token = tokenizer.eos_token
|
| 195 |
+
# inputs = tokenizer(input_text, return_tensors="pt")
|
| 196 |
+
# input_len = inputs["input_ids"].shape[-1]
|
| 197 |
+
# gen_output = model.generate(**inputs, max_length=input_len + 60)
|
| 198 |
+
# gen_result = tokenizer.decode(gen_output[0])
|
| 199 |
+
# print("generation result:\n", gen_result)
|
models/sequence_classification/classification.py
ADDED
|
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# @Time : 2021/8/19 10:54 上午
|
| 3 |
+
# @Author : JianingWang
|
| 4 |
+
# @File : classification.py
|
| 5 |
+
import torch
|
| 6 |
+
from torch import nn
|
| 7 |
+
from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
|
| 8 |
+
from transformers import RobertaModel
|
| 9 |
+
from transformers.activations import ACT2FN
|
| 10 |
+
from transformers.models.electra import ElectraModel
|
| 11 |
+
from transformers.models.roformer import RoFormerModel
|
| 12 |
+
from transformers.models.albert import AlbertModel
|
| 13 |
+
from transformers.models.bert import BertModel, BertPreTrainedModel
|
| 14 |
+
from transformers.models.deberta_v2 import DebertaV2Model, DebertaV2PreTrainedModel
|
| 15 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
| 16 |
+
from transformers.models.roberta import RobertaPreTrainedModel
|
| 17 |
+
from transformers.models.bert.modeling_bert import BertForSequenceClassification
|
| 18 |
+
from transformers.models.megatron_bert import MegatronBertPreTrainedModel, MegatronBertModel
|
| 19 |
+
|
| 20 |
+
PRETRAINED_MODEL_MAP = {
|
| 21 |
+
"bert": BertPreTrainedModel,
|
| 22 |
+
"deberta-v2": DebertaV2PreTrainedModel,
|
| 23 |
+
"roberta": RobertaPreTrainedModel,
|
| 24 |
+
"erlangshen": MegatronBertPreTrainedModel
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class BertPooler(nn.Module):
|
| 29 |
+
def __init__(self, hidden_size, hidden_act, hidden_dropout_prob):
|
| 30 |
+
super().__init__()
|
| 31 |
+
self.dense = nn.Linear(hidden_size, hidden_size)
|
| 32 |
+
# self.activation = nn.Tanh()
|
| 33 |
+
self.activation = ACT2FN[hidden_act]
|
| 34 |
+
# self.dropout = nn.Dropout(hidden_dropout_prob)
|
| 35 |
+
|
| 36 |
+
def forward(self, features):
|
| 37 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
| 38 |
+
# x = self.dropout(x)
|
| 39 |
+
x = self.dense(x)
|
| 40 |
+
x = self.activation(x)
|
| 41 |
+
return x
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def build_cls_model(config):
|
| 45 |
+
BaseClass = PRETRAINED_MODEL_MAP[config.model_type]
|
| 46 |
+
|
| 47 |
+
class BertForClassification(BaseClass):
|
| 48 |
+
|
| 49 |
+
def __init__(self, config):
|
| 50 |
+
super().__init__(config)
|
| 51 |
+
self.num_labels = config.num_labels
|
| 52 |
+
self.config = config
|
| 53 |
+
self.model_type = config.model_type
|
| 54 |
+
self.problem_type = config.problem_type
|
| 55 |
+
|
| 56 |
+
if self.model_type == "bert":
|
| 57 |
+
self.bert = BertModel(config)
|
| 58 |
+
elif self.model_type == "albert":
|
| 59 |
+
self.albert = AlbertModel(config)
|
| 60 |
+
# elif self.model_type == "chinesebert":
|
| 61 |
+
# self.bert = ChineseBertModel(config)
|
| 62 |
+
elif self.model_type == "roformer":
|
| 63 |
+
self.roformer = RoFormerModel(config)
|
| 64 |
+
elif self.model_type == "electra":
|
| 65 |
+
self.electra = ElectraModel(config)
|
| 66 |
+
elif self.model_type == "deberta-v2":
|
| 67 |
+
self.deberta = DebertaV2Model(config)
|
| 68 |
+
elif self.model_type == "roberta":
|
| 69 |
+
self.roberta = RobertaModel(config)
|
| 70 |
+
elif self.model_type == "erlangshen":
|
| 71 |
+
self.bert = MegatronBertModel(config)
|
| 72 |
+
self.pooler = BertPooler(config.hidden_size, config.hidden_act, config.hidden_dropout_prob)
|
| 73 |
+
if hasattr(config, "cls_dropout_rate"):
|
| 74 |
+
cls_dropout_rate = config.cls_dropout_rate
|
| 75 |
+
else:
|
| 76 |
+
cls_dropout_rate = config.hidden_dropout_prob
|
| 77 |
+
self.dropout = nn.Dropout(cls_dropout_rate)
|
| 78 |
+
add_feature_dims = config.additional_feature_dims if hasattr(config, "additional_feature_dims") else 0
|
| 79 |
+
# self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 80 |
+
cls_hidden = config.hidden_size + add_feature_dims
|
| 81 |
+
if hasattr(config, "is_relation_task"):
|
| 82 |
+
cls_hidden = config.hidden_size * 2
|
| 83 |
+
self.classifier = nn.Linear(cls_hidden, config.num_labels)
|
| 84 |
+
|
| 85 |
+
self.init_weights()
|
| 86 |
+
|
| 87 |
+
def forward(
|
| 88 |
+
self,
|
| 89 |
+
input_ids=None,
|
| 90 |
+
attention_mask=None,
|
| 91 |
+
token_type_ids=None,
|
| 92 |
+
position_ids=None,
|
| 93 |
+
head_mask=None,
|
| 94 |
+
inputs_embeds=None,
|
| 95 |
+
labels=None,
|
| 96 |
+
output_attentions=None,
|
| 97 |
+
output_hidden_states=None,
|
| 98 |
+
return_dict=None,
|
| 99 |
+
pseudo_label=None,
|
| 100 |
+
pinyin_ids=None,
|
| 101 |
+
additional_features=None
|
| 102 |
+
):
|
| 103 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 104 |
+
logits, outputs = None, None
|
| 105 |
+
inputs = {"input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, "position_ids": position_ids,
|
| 106 |
+
"head_mask": head_mask, "inputs_embeds": inputs_embeds, "output_attentions": output_attentions,
|
| 107 |
+
"output_hidden_states": output_hidden_states, "return_dict": return_dict, "pinyin_ids": pinyin_ids}
|
| 108 |
+
inputs = {k: v for k, v in inputs.items() if v is not None}
|
| 109 |
+
if self.model_type == "chinesebert":
|
| 110 |
+
outputs = self.bert(**inputs)
|
| 111 |
+
elif self.model_type == "bert":
|
| 112 |
+
outputs = self.bert(**inputs)
|
| 113 |
+
elif self.model_type == "albert":
|
| 114 |
+
outputs = self.albert(**inputs)
|
| 115 |
+
elif self.model_type == "electra":
|
| 116 |
+
outputs = self.electra(**inputs)
|
| 117 |
+
elif self.model_type == "roformer":
|
| 118 |
+
outputs = self.roformer(**inputs)
|
| 119 |
+
elif self.model_type == "deberta-v2":
|
| 120 |
+
outputs = self.deberta(**inputs)
|
| 121 |
+
elif self.model_type == "roberta":
|
| 122 |
+
outputs = self.roberta(**inputs)
|
| 123 |
+
elif self.model_type == "erlangshen":
|
| 124 |
+
outputs = self.bert(**inputs)
|
| 125 |
+
|
| 126 |
+
if hasattr(self.config, "is_relation_task"):
|
| 127 |
+
w = torch.logical_and(input_ids >= min(self.config.start_token_ids), input_ids <= max(self.config.start_token_ids))
|
| 128 |
+
start_index = w.nonzero()[:, 1].view(-1, 2)
|
| 129 |
+
# <start_entity> + <end_entity> 进分类
|
| 130 |
+
pooler_output = torch.cat([torch.cat([x[y[0], :], x[y[1], :]]).unsqueeze(0) for x, y in zip(outputs.last_hidden_state, start_index)])
|
| 131 |
+
# [CLS] + <start_entity> + <end_entity> 进分类
|
| 132 |
+
# pooler_output = torch.cat([torch.cat([z, x[y[0], :], x[y[1], :]]).unsqueeze(0) for x, y, z in zip(outputs.last_hidden_state, start_index, outputs.last_hidden_state[:, 0])])
|
| 133 |
+
|
| 134 |
+
elif "pooler_output" in outputs:
|
| 135 |
+
pooler_output = outputs.pooler_output
|
| 136 |
+
else:
|
| 137 |
+
pooler_output = self.pooler(outputs[0])
|
| 138 |
+
pooler_output = self.dropout(pooler_output)
|
| 139 |
+
# pooler_output = self.LayerNorm(pooler_output)
|
| 140 |
+
if additional_features is not None:
|
| 141 |
+
pooler_output = torch.cat((pooler_output, additional_features), dim=1)
|
| 142 |
+
logits = self.classifier(pooler_output)
|
| 143 |
+
|
| 144 |
+
loss = None
|
| 145 |
+
if labels is not None:
|
| 146 |
+
if self.problem_type == "regression":
|
| 147 |
+
loss_fct = MSELoss()
|
| 148 |
+
if self.num_labels == 1:
|
| 149 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 150 |
+
else:
|
| 151 |
+
loss = loss_fct(logits, labels)
|
| 152 |
+
elif self.problem_type == "multi_label_classification":
|
| 153 |
+
loss_fct = BCEWithLogitsLoss()
|
| 154 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.float().view(-1, self.num_labels))
|
| 155 |
+
# elif self.problem_type in ["single_label_classification"] or hasattr(self.config, "is_relation_task"):
|
| 156 |
+
else:
|
| 157 |
+
# loss_fct = FocalLoss()
|
| 158 |
+
loss_fct = CrossEntropyLoss()
|
| 159 |
+
# 伪标签
|
| 160 |
+
if pseudo_label is not None:
|
| 161 |
+
train_logits, pseudo_logits = logits[pseudo_label > 0.9], logits[pseudo_label < 0.1]
|
| 162 |
+
train_labels, pseudo_labels = labels[pseudo_label > 0.9], labels[pseudo_label < 0.1]
|
| 163 |
+
train_loss = loss_fct(train_logits.view(-1, self.num_labels), train_labels.view(-1)) if train_labels.nelement() else 0
|
| 164 |
+
pseudo_loss = loss_fct(pseudo_logits.view(-1, self.num_labels), pseudo_labels.view(-1)) if pseudo_labels.nelement() else 0
|
| 165 |
+
loss = 0.9 * train_loss + 0.1 * pseudo_loss
|
| 166 |
+
else:
|
| 167 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 168 |
+
return SequenceClassifierOutput(
|
| 169 |
+
loss=loss,
|
| 170 |
+
logits=logits,
|
| 171 |
+
hidden_states=outputs.hidden_states,
|
| 172 |
+
attentions=outputs.attentions,
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
return BertForClassification
|
models/sequence_classification/head_cls.py
ADDED
|
@@ -0,0 +1,1284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Head Tuning with Prefix / Adapter
|
| 3 |
+
"""
|
| 4 |
+
from typing import Optional, List, Union, Tuple
|
| 5 |
+
import torch
|
| 6 |
+
from torch._C import NoopLogger
|
| 7 |
+
import torch.nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
from torch import Tensor
|
| 10 |
+
from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
|
| 11 |
+
|
| 12 |
+
from transformers import BertModel, BertPreTrainedModel
|
| 13 |
+
from transformers import RobertaModel, RobertaPreTrainedModel
|
| 14 |
+
from transformers.models.deberta.modeling_deberta import DebertaModel, DebertaPreTrainedModel, ContextPooler, StableDropout
|
| 15 |
+
from transformers.models.gpt2.modeling_gpt2 import GPT2Model, GPT2PreTrainedModel
|
| 16 |
+
from transformers.models.bart.modeling_bart import BartPretrainedModel, BartClassificationHead, BartModel
|
| 17 |
+
from transformers.models.roberta.modeling_roberta import RobertaClassificationHead
|
| 18 |
+
from transformers.models.bart.configuration_bart import BartConfig
|
| 19 |
+
from transformers.modeling_outputs import SequenceClassifierOutput, Seq2SeqSequenceClassifierOutput, SequenceClassifierOutputWithPast
|
| 20 |
+
|
| 21 |
+
from models.basic_modules.prefix_encoder import PrefixEncoder
|
| 22 |
+
|
| 23 |
+
from models.basic_modules.adapter import BertAdaModel, RobertaAdaModel, init_adapter
|
| 24 |
+
from tools.model_utils.parameter_freeze import ParameterFreeze
|
| 25 |
+
|
| 26 |
+
from tools.runner_utils.log_util import logging
|
| 27 |
+
logger = logging.getLogger(__name__)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
freezer = ParameterFreeze()
|
| 31 |
+
|
| 32 |
+
## ======== BERT ========
|
| 33 |
+
|
| 34 |
+
# Vanilla Fine-tuning For BERT
|
| 35 |
+
class BertForSequenceClassification(BertPreTrainedModel):
|
| 36 |
+
def __init__(self, config):
|
| 37 |
+
super().__init__(config)
|
| 38 |
+
self.num_labels = config.num_labels
|
| 39 |
+
self.config = config
|
| 40 |
+
|
| 41 |
+
self.bert = BertModel(config)
|
| 42 |
+
if self.config.use_freezing:
|
| 43 |
+
self.bert = freezer.freeze_lm(self.bert)
|
| 44 |
+
|
| 45 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
| 46 |
+
self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
|
| 47 |
+
|
| 48 |
+
self.init_weights()
|
| 49 |
+
|
| 50 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
| 51 |
+
if use_freezing:
|
| 52 |
+
self.bert = freezer.freeze_lm(self.bert)
|
| 53 |
+
else:
|
| 54 |
+
self.bert = freezer.unfreeze_lm(self.bert)
|
| 55 |
+
|
| 56 |
+
def forward(
|
| 57 |
+
self,
|
| 58 |
+
input_ids=None,
|
| 59 |
+
attention_mask=None,
|
| 60 |
+
token_type_ids=None,
|
| 61 |
+
position_ids=None,
|
| 62 |
+
head_mask=None,
|
| 63 |
+
inputs_embeds=None,
|
| 64 |
+
labels=None,
|
| 65 |
+
output_attentions=None,
|
| 66 |
+
output_hidden_states=None,
|
| 67 |
+
return_dict=None,
|
| 68 |
+
):
|
| 69 |
+
r"""
|
| 70 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
| 71 |
+
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
|
| 72 |
+
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
| 73 |
+
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 74 |
+
"""
|
| 75 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 76 |
+
|
| 77 |
+
# print("input_ids.shape=", input_ids.shape) # e.g., [8, 128]
|
| 78 |
+
# print("attention_mask.shape=", attention_mask.shape) # e.g., [8, 128]
|
| 79 |
+
# print("token_type_ids.shape=", token_type_ids.shape) # e.g., [8, 128]
|
| 80 |
+
|
| 81 |
+
outputs = self.bert(
|
| 82 |
+
input_ids,
|
| 83 |
+
attention_mask=attention_mask,
|
| 84 |
+
token_type_ids=token_type_ids,
|
| 85 |
+
position_ids=position_ids,
|
| 86 |
+
head_mask=head_mask,
|
| 87 |
+
inputs_embeds=inputs_embeds,
|
| 88 |
+
output_attentions=output_attentions,
|
| 89 |
+
output_hidden_states=output_hidden_states,
|
| 90 |
+
return_dict=return_dict,
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
pooled_output = outputs[1]
|
| 94 |
+
|
| 95 |
+
pooled_output = self.dropout(pooled_output)
|
| 96 |
+
logits = self.classifier(pooled_output)
|
| 97 |
+
|
| 98 |
+
loss = None
|
| 99 |
+
if labels is not None:
|
| 100 |
+
if self.config.problem_type is None:
|
| 101 |
+
if self.num_labels == 1:
|
| 102 |
+
self.config.problem_type = "regression"
|
| 103 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 104 |
+
self.config.problem_type = "single_label_classification"
|
| 105 |
+
else:
|
| 106 |
+
self.config.problem_type = "multi_label_classification"
|
| 107 |
+
|
| 108 |
+
if self.config.problem_type == "regression":
|
| 109 |
+
loss_fct = MSELoss()
|
| 110 |
+
if self.num_labels == 1:
|
| 111 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 112 |
+
else:
|
| 113 |
+
loss = loss_fct(logits, labels)
|
| 114 |
+
elif self.config.problem_type == "single_label_classification":
|
| 115 |
+
loss_fct = CrossEntropyLoss()
|
| 116 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 117 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 118 |
+
loss_fct = BCEWithLogitsLoss()
|
| 119 |
+
loss = loss_fct(logits, labels)
|
| 120 |
+
if not return_dict:
|
| 121 |
+
output = (logits,) + outputs[2:]
|
| 122 |
+
return ((loss,) + output) if loss is not None else output
|
| 123 |
+
|
| 124 |
+
return SequenceClassifierOutput(
|
| 125 |
+
loss=loss,
|
| 126 |
+
logits=logits,
|
| 127 |
+
hidden_states=outputs.hidden_states,
|
| 128 |
+
attentions=outputs.attentions,
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
# Prefix-tuning For BERT
|
| 132 |
+
class BertPrefixForSequenceClassification(BertPreTrainedModel):
|
| 133 |
+
def __init__(self, config):
|
| 134 |
+
super().__init__(config)
|
| 135 |
+
self.num_labels = config.num_labels
|
| 136 |
+
self.config = config
|
| 137 |
+
self.bert = BertModel(config)
|
| 138 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
| 139 |
+
self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
|
| 140 |
+
|
| 141 |
+
# for param in self.bert.parameters():
|
| 142 |
+
# param.requires_grad = False
|
| 143 |
+
|
| 144 |
+
if self.config.use_freezing:
|
| 145 |
+
self.bert = freezer.freeze_lm(self.bert)
|
| 146 |
+
|
| 147 |
+
self.pre_seq_len = config.pre_seq_len
|
| 148 |
+
self.n_layer = config.num_hidden_layers
|
| 149 |
+
self.n_head = config.num_attention_heads
|
| 150 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
| 151 |
+
|
| 152 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
| 153 |
+
|
| 154 |
+
self.prefix_encoder = PrefixEncoder(config)
|
| 155 |
+
|
| 156 |
+
bert_param = 0
|
| 157 |
+
for name, param in self.bert.named_parameters():
|
| 158 |
+
bert_param += param.numel()
|
| 159 |
+
all_param = 0
|
| 160 |
+
for name, param in self.named_parameters():
|
| 161 |
+
all_param += param.numel()
|
| 162 |
+
total_param = all_param - bert_param
|
| 163 |
+
print("total param is {}".format(total_param)) # 9860105
|
| 164 |
+
|
| 165 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
| 166 |
+
if use_freezing:
|
| 167 |
+
self.bert = freezer.freeze_lm(self.bert)
|
| 168 |
+
else:
|
| 169 |
+
self.bert = freezer.unfreeze_lm(self.bert)
|
| 170 |
+
|
| 171 |
+
def get_prompt(self, batch_size):
|
| 172 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.bert.device)
|
| 173 |
+
past_key_values = self.prefix_encoder(prefix_tokens)
|
| 174 |
+
# bsz, seqlen, _ = past_key_values.shape
|
| 175 |
+
past_key_values = past_key_values.view(
|
| 176 |
+
batch_size,
|
| 177 |
+
self.pre_seq_len,
|
| 178 |
+
self.n_layer * 2,
|
| 179 |
+
self.n_head,
|
| 180 |
+
self.n_embd
|
| 181 |
+
)
|
| 182 |
+
past_key_values = self.dropout(past_key_values)
|
| 183 |
+
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
|
| 184 |
+
return past_key_values
|
| 185 |
+
|
| 186 |
+
def forward(
|
| 187 |
+
self,
|
| 188 |
+
input_ids=None,
|
| 189 |
+
attention_mask=None,
|
| 190 |
+
token_type_ids=None,
|
| 191 |
+
position_ids=None,
|
| 192 |
+
head_mask=None,
|
| 193 |
+
inputs_embeds=None,
|
| 194 |
+
labels=None,
|
| 195 |
+
output_attentions=None,
|
| 196 |
+
output_hidden_states=None,
|
| 197 |
+
return_dict=None,
|
| 198 |
+
):
|
| 199 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 200 |
+
|
| 201 |
+
# print("input_ids.shape=", input_ids.shape) # e.g., [8, 128]
|
| 202 |
+
# print("attention_mask.shape=", attention_mask.shape) # e.g., [8, 128]
|
| 203 |
+
# print("token_type_ids.shape=", token_type_ids.shape) # e.g., [8, 128]
|
| 204 |
+
|
| 205 |
+
batch_size = input_ids.shape[0]
|
| 206 |
+
past_key_values = self.get_prompt(batch_size=batch_size)
|
| 207 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.bert.device)
|
| 208 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
| 209 |
+
|
| 210 |
+
if position_ids is None:
|
| 211 |
+
position_ids = torch.tensor([i for i in range(input_ids.shape[-1])]).expand(batch_size, -1).to(self.bert.device)
|
| 212 |
+
|
| 213 |
+
outputs = self.bert(
|
| 214 |
+
input_ids,
|
| 215 |
+
attention_mask=attention_mask,
|
| 216 |
+
token_type_ids=token_type_ids,
|
| 217 |
+
position_ids=position_ids,
|
| 218 |
+
head_mask=head_mask,
|
| 219 |
+
inputs_embeds=inputs_embeds,
|
| 220 |
+
output_attentions=output_attentions,
|
| 221 |
+
output_hidden_states=output_hidden_states,
|
| 222 |
+
return_dict=return_dict,
|
| 223 |
+
past_key_values=past_key_values,
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
pooled_output = outputs[1]
|
| 227 |
+
|
| 228 |
+
pooled_output = self.dropout(pooled_output)
|
| 229 |
+
logits = self.classifier(pooled_output)
|
| 230 |
+
|
| 231 |
+
loss = None
|
| 232 |
+
if labels is not None:
|
| 233 |
+
if self.config.problem_type is None:
|
| 234 |
+
if self.num_labels == 1:
|
| 235 |
+
self.config.problem_type = "regression"
|
| 236 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 237 |
+
self.config.problem_type = "single_label_classification"
|
| 238 |
+
else:
|
| 239 |
+
self.config.problem_type = "multi_label_classification"
|
| 240 |
+
|
| 241 |
+
if self.config.problem_type == "regression":
|
| 242 |
+
loss_fct = MSELoss()
|
| 243 |
+
if self.num_labels == 1:
|
| 244 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 245 |
+
else:
|
| 246 |
+
loss = loss_fct(logits, labels)
|
| 247 |
+
elif self.config.problem_type == "single_label_classification":
|
| 248 |
+
loss_fct = CrossEntropyLoss()
|
| 249 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 250 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 251 |
+
loss_fct = BCEWithLogitsLoss()
|
| 252 |
+
loss = loss_fct(logits, labels)
|
| 253 |
+
if not return_dict:
|
| 254 |
+
output = (logits,) + outputs[2:]
|
| 255 |
+
return ((loss,) + output) if loss is not None else output
|
| 256 |
+
|
| 257 |
+
return SequenceClassifierOutput(
|
| 258 |
+
loss=loss,
|
| 259 |
+
logits=logits,
|
| 260 |
+
hidden_states=outputs.hidden_states,
|
| 261 |
+
attentions=outputs.attentions,
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
# Prompt-tuning For BERT
|
| 266 |
+
class BertPtuningForSequenceClassification(BertPreTrainedModel):
|
| 267 |
+
def __init__(self, config):
|
| 268 |
+
super().__init__(config)
|
| 269 |
+
self.num_labels = config.num_labels
|
| 270 |
+
self.bert = BertModel(config)
|
| 271 |
+
self.embeddings = self.bert.embeddings
|
| 272 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
| 273 |
+
self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
|
| 274 |
+
|
| 275 |
+
# for param in self.bert.parameters():
|
| 276 |
+
# param.requires_grad = False
|
| 277 |
+
|
| 278 |
+
if self.config.use_freezing:
|
| 279 |
+
self.bert = freezer.freeze_lm(self.bert)
|
| 280 |
+
|
| 281 |
+
self.pre_seq_len = config.pre_seq_len
|
| 282 |
+
self.n_layer = config.num_hidden_layers
|
| 283 |
+
self.n_head = config.num_attention_heads
|
| 284 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
| 285 |
+
|
| 286 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
| 287 |
+
self.prefix_encoder = torch.nn.Embedding(self.pre_seq_len, config.hidden_size)
|
| 288 |
+
|
| 289 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
| 290 |
+
if use_freezing:
|
| 291 |
+
self.bert = freezer.freeze_lm(self.bert)
|
| 292 |
+
else:
|
| 293 |
+
self.bert = freezer.unfreeze_lm(self.bert)
|
| 294 |
+
|
| 295 |
+
def get_prompt(self, batch_size):
|
| 296 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.bert.device)
|
| 297 |
+
prompts = self.prefix_encoder(prefix_tokens)
|
| 298 |
+
return prompts
|
| 299 |
+
|
| 300 |
+
def forward(
|
| 301 |
+
self,
|
| 302 |
+
input_ids=None,
|
| 303 |
+
attention_mask=None,
|
| 304 |
+
token_type_ids=None,
|
| 305 |
+
position_ids=None,
|
| 306 |
+
head_mask=None,
|
| 307 |
+
inputs_embeds=None,
|
| 308 |
+
labels=None,
|
| 309 |
+
output_attentions=None,
|
| 310 |
+
output_hidden_states=None,
|
| 311 |
+
return_dict=None,
|
| 312 |
+
):
|
| 313 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 314 |
+
|
| 315 |
+
batch_size = input_ids.shape[0]
|
| 316 |
+
raw_embedding = self.embeddings(
|
| 317 |
+
input_ids=input_ids,
|
| 318 |
+
position_ids=position_ids,
|
| 319 |
+
token_type_ids=token_type_ids,
|
| 320 |
+
)
|
| 321 |
+
prompts = self.get_prompt(batch_size=batch_size)
|
| 322 |
+
inputs_embeds = torch.cat((prompts, raw_embedding), dim=1)
|
| 323 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.bert.device)
|
| 324 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
| 325 |
+
|
| 326 |
+
outputs = self.bert(
|
| 327 |
+
# input_ids,
|
| 328 |
+
attention_mask=attention_mask,
|
| 329 |
+
# token_type_ids=token_type_ids,
|
| 330 |
+
# position_ids=position_ids,
|
| 331 |
+
head_mask=head_mask,
|
| 332 |
+
inputs_embeds=inputs_embeds,
|
| 333 |
+
output_attentions=output_attentions,
|
| 334 |
+
output_hidden_states=output_hidden_states,
|
| 335 |
+
return_dict=return_dict,
|
| 336 |
+
# past_key_values=past_key_values,
|
| 337 |
+
)
|
| 338 |
+
|
| 339 |
+
# pooled_output = outputs[1]
|
| 340 |
+
sequence_output = outputs[0]
|
| 341 |
+
sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
|
| 342 |
+
first_token_tensor = sequence_output[:, 0]
|
| 343 |
+
pooled_output = self.bert.pooler.dense(first_token_tensor)
|
| 344 |
+
pooled_output = self.bert.pooler.activation(pooled_output)
|
| 345 |
+
|
| 346 |
+
pooled_output = self.dropout(pooled_output)
|
| 347 |
+
logits = self.classifier(pooled_output)
|
| 348 |
+
|
| 349 |
+
loss = None
|
| 350 |
+
if labels is not None:
|
| 351 |
+
if self.config.problem_type is None:
|
| 352 |
+
if self.num_labels == 1:
|
| 353 |
+
self.config.problem_type = "regression"
|
| 354 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 355 |
+
self.config.problem_type = "single_label_classification"
|
| 356 |
+
else:
|
| 357 |
+
self.config.problem_type = "multi_label_classification"
|
| 358 |
+
|
| 359 |
+
if self.config.problem_type == "regression":
|
| 360 |
+
loss_fct = MSELoss()
|
| 361 |
+
if self.num_labels == 1:
|
| 362 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 363 |
+
else:
|
| 364 |
+
loss = loss_fct(logits, labels)
|
| 365 |
+
elif self.config.problem_type == "single_label_classification":
|
| 366 |
+
loss_fct = CrossEntropyLoss()
|
| 367 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 368 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 369 |
+
loss_fct = BCEWithLogitsLoss()
|
| 370 |
+
loss = loss_fct(logits, labels)
|
| 371 |
+
if not return_dict:
|
| 372 |
+
output = (logits,) + outputs[2:]
|
| 373 |
+
return ((loss,) + output) if loss is not None else output
|
| 374 |
+
|
| 375 |
+
return SequenceClassifierOutput(
|
| 376 |
+
loss=loss,
|
| 377 |
+
logits=logits,
|
| 378 |
+
hidden_states=outputs.hidden_states,
|
| 379 |
+
attentions=outputs.attentions,
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
# Adapter-tuning For BERT
|
| 383 |
+
class BertAdapterForSequenceClassification(BertPreTrainedModel):
|
| 384 |
+
def __init__(self, config):
|
| 385 |
+
super().__init__(config)
|
| 386 |
+
self.num_labels = config.num_labels
|
| 387 |
+
self.bert = BertAdaModel(config)
|
| 388 |
+
self.embeddings = self.bert.embeddings
|
| 389 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
| 390 |
+
self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
|
| 391 |
+
|
| 392 |
+
# for param in self.bert.parameters():
|
| 393 |
+
# param.requires_grad = False
|
| 394 |
+
if self.config.use_freezing:
|
| 395 |
+
self.bert = freezer.freeze_lm_component(self.bert, "adapter")
|
| 396 |
+
|
| 397 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
| 398 |
+
if use_freezing:
|
| 399 |
+
self.bert = freezer.freeze_lm_component(self.bert, "adapter")
|
| 400 |
+
else:
|
| 401 |
+
self.bert = freezer.unfreeze_lm(self.bert)
|
| 402 |
+
|
| 403 |
+
|
| 404 |
+
def forward(
|
| 405 |
+
self,
|
| 406 |
+
input_ids=None,
|
| 407 |
+
attention_mask=None,
|
| 408 |
+
token_type_ids=None,
|
| 409 |
+
position_ids=None,
|
| 410 |
+
head_mask=None,
|
| 411 |
+
inputs_embeds=None,
|
| 412 |
+
labels=None,
|
| 413 |
+
output_attentions=None,
|
| 414 |
+
output_hidden_states=None,
|
| 415 |
+
return_dict=None,
|
| 416 |
+
):
|
| 417 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 418 |
+
|
| 419 |
+
batch_size = input_ids.shape[0]
|
| 420 |
+
inputs_embeds = self.embeddings(
|
| 421 |
+
input_ids=input_ids,
|
| 422 |
+
position_ids=position_ids,
|
| 423 |
+
token_type_ids=token_type_ids,
|
| 424 |
+
)
|
| 425 |
+
outputs = self.bert(
|
| 426 |
+
# input_ids,
|
| 427 |
+
attention_mask=attention_mask,
|
| 428 |
+
# token_type_ids=token_type_ids,
|
| 429 |
+
# position_ids=position_ids,
|
| 430 |
+
head_mask=head_mask,
|
| 431 |
+
inputs_embeds=inputs_embeds,
|
| 432 |
+
output_attentions=output_attentions,
|
| 433 |
+
output_hidden_states=output_hidden_states,
|
| 434 |
+
return_dict=return_dict,
|
| 435 |
+
# past_key_values=past_key_values,
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
# pooled_output = outputs[1]
|
| 439 |
+
sequence_output = outputs[0]
|
| 440 |
+
# sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
|
| 441 |
+
first_token_tensor = sequence_output[:, 0]
|
| 442 |
+
pooled_output = self.bert.pooler.dense(first_token_tensor)
|
| 443 |
+
pooled_output = self.bert.pooler.activation(pooled_output)
|
| 444 |
+
|
| 445 |
+
pooled_output = self.dropout(pooled_output)
|
| 446 |
+
logits = self.classifier(pooled_output)
|
| 447 |
+
|
| 448 |
+
loss = None
|
| 449 |
+
if labels is not None:
|
| 450 |
+
if self.config.problem_type is None:
|
| 451 |
+
if self.num_labels == 1:
|
| 452 |
+
self.config.problem_type = "regression"
|
| 453 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 454 |
+
self.config.problem_type = "single_label_classification"
|
| 455 |
+
else:
|
| 456 |
+
self.config.problem_type = "multi_label_classification"
|
| 457 |
+
|
| 458 |
+
if self.config.problem_type == "regression":
|
| 459 |
+
loss_fct = MSELoss()
|
| 460 |
+
if self.num_labels == 1:
|
| 461 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 462 |
+
else:
|
| 463 |
+
loss = loss_fct(logits, labels)
|
| 464 |
+
elif self.config.problem_type == "single_label_classification":
|
| 465 |
+
loss_fct = CrossEntropyLoss()
|
| 466 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 467 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 468 |
+
loss_fct = BCEWithLogitsLoss()
|
| 469 |
+
loss = loss_fct(logits, labels)
|
| 470 |
+
if not return_dict:
|
| 471 |
+
output = (logits,) + outputs[2:]
|
| 472 |
+
return ((loss,) + output) if loss is not None else output
|
| 473 |
+
|
| 474 |
+
return SequenceClassifierOutput(
|
| 475 |
+
loss=loss,
|
| 476 |
+
logits=logits,
|
| 477 |
+
hidden_states=outputs.hidden_states,
|
| 478 |
+
attentions=outputs.attentions,
|
| 479 |
+
)
|
| 480 |
+
|
| 481 |
+
|
| 482 |
+
|
| 483 |
+
# ========= RoBERTa =========
|
| 484 |
+
|
| 485 |
+
# Vanilla Fine-tuning For RoBERTa
|
| 486 |
+
class RobertaForSequenceClassification(RobertaPreTrainedModel):
|
| 487 |
+
def __init__(self, config):
|
| 488 |
+
super().__init__(config)
|
| 489 |
+
self.num_labels = config.num_labels
|
| 490 |
+
self.config = config
|
| 491 |
+
self.roberta = RobertaModel(config)
|
| 492 |
+
if self.config.use_freezing:
|
| 493 |
+
self.roberta = freezer.freeze_lm(self.roberta)
|
| 494 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
| 495 |
+
# self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
|
| 496 |
+
self.classifier = RobertaClassificationHead(config)
|
| 497 |
+
self.init_weights()
|
| 498 |
+
|
| 499 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
| 500 |
+
if use_freezing:
|
| 501 |
+
self.roberta = freezer.freeze_lm(self.roberta)
|
| 502 |
+
else:
|
| 503 |
+
self.roberta = freezer.unfreeze_lm(self.roberta)
|
| 504 |
+
|
| 505 |
+
def forward(
|
| 506 |
+
self,
|
| 507 |
+
input_ids=None,
|
| 508 |
+
attention_mask=None,
|
| 509 |
+
token_type_ids=None,
|
| 510 |
+
position_ids=None,
|
| 511 |
+
head_mask=None,
|
| 512 |
+
inputs_embeds=None,
|
| 513 |
+
labels=None,
|
| 514 |
+
output_attentions=None,
|
| 515 |
+
output_hidden_states=None,
|
| 516 |
+
return_dict=None,
|
| 517 |
+
):
|
| 518 |
+
r"""
|
| 519 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
| 520 |
+
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
|
| 521 |
+
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
| 522 |
+
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 523 |
+
"""
|
| 524 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 525 |
+
|
| 526 |
+
outputs = self.roberta(
|
| 527 |
+
input_ids,
|
| 528 |
+
attention_mask=attention_mask,
|
| 529 |
+
token_type_ids=token_type_ids,
|
| 530 |
+
position_ids=position_ids,
|
| 531 |
+
head_mask=head_mask,
|
| 532 |
+
inputs_embeds=inputs_embeds,
|
| 533 |
+
output_attentions=output_attentions,
|
| 534 |
+
output_hidden_states=output_hidden_states,
|
| 535 |
+
return_dict=return_dict,
|
| 536 |
+
)
|
| 537 |
+
|
| 538 |
+
pooled_output = outputs[1]
|
| 539 |
+
|
| 540 |
+
pooled_output = self.dropout(pooled_output)
|
| 541 |
+
logits = self.classifier(pooled_output)
|
| 542 |
+
|
| 543 |
+
loss = None
|
| 544 |
+
if labels is not None:
|
| 545 |
+
if self.config.problem_type is None:
|
| 546 |
+
if self.num_labels == 1:
|
| 547 |
+
self.config.problem_type = "regression"
|
| 548 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 549 |
+
self.config.problem_type = "single_label_classification"
|
| 550 |
+
else:
|
| 551 |
+
self.config.problem_type = "multi_label_classification"
|
| 552 |
+
|
| 553 |
+
if self.config.problem_type == "regression":
|
| 554 |
+
loss_fct = MSELoss()
|
| 555 |
+
if self.num_labels == 1:
|
| 556 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 557 |
+
else:
|
| 558 |
+
loss = loss_fct(logits, labels)
|
| 559 |
+
elif self.config.problem_type == "single_label_classification":
|
| 560 |
+
loss_fct = CrossEntropyLoss()
|
| 561 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 562 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 563 |
+
loss_fct = BCEWithLogitsLoss()
|
| 564 |
+
loss = loss_fct(logits, labels)
|
| 565 |
+
if not return_dict:
|
| 566 |
+
output = (logits,) + outputs[2:]
|
| 567 |
+
return ((loss,) + output) if loss is not None else output
|
| 568 |
+
|
| 569 |
+
return SequenceClassifierOutput(
|
| 570 |
+
loss=loss,
|
| 571 |
+
logits=logits,
|
| 572 |
+
hidden_states=outputs.hidden_states,
|
| 573 |
+
attentions=outputs.attentions,
|
| 574 |
+
)
|
| 575 |
+
|
| 576 |
+
# Prefix-tuning For RoBERTa
|
| 577 |
+
class RobertaPrefixForSequenceClassification(RobertaPreTrainedModel):
|
| 578 |
+
def __init__(self, config):
|
| 579 |
+
super().__init__(config)
|
| 580 |
+
self.num_labels = config.num_labels
|
| 581 |
+
self.config = config
|
| 582 |
+
self.roberta = RobertaModel(config)
|
| 583 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
| 584 |
+
# self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
|
| 585 |
+
self.classifier = RobertaClassificationHead(config)
|
| 586 |
+
self.init_weights()
|
| 587 |
+
|
| 588 |
+
for param in self.roberta.parameters():
|
| 589 |
+
param.requires_grad = False
|
| 590 |
+
|
| 591 |
+
self.pre_seq_len = config.pre_seq_len
|
| 592 |
+
self.n_layer = config.num_hidden_layers
|
| 593 |
+
self.n_head = config.num_attention_heads
|
| 594 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
| 595 |
+
|
| 596 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
| 597 |
+
self.prefix_encoder = PrefixEncoder(config)
|
| 598 |
+
|
| 599 |
+
bert_param = 0
|
| 600 |
+
for name, param in self.roberta.named_parameters():
|
| 601 |
+
bert_param += param.numel()
|
| 602 |
+
all_param = 0
|
| 603 |
+
for name, param in self.named_parameters():
|
| 604 |
+
all_param += param.numel()
|
| 605 |
+
total_param = all_param - bert_param
|
| 606 |
+
print("total param is {}".format(total_param)) # 9860105
|
| 607 |
+
|
| 608 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
| 609 |
+
if use_freezing:
|
| 610 |
+
self.roberta = freezer.freeze_lm(self.roberta)
|
| 611 |
+
else:
|
| 612 |
+
self.roberta = freezer.unfreeze_lm(self.roberta)
|
| 613 |
+
|
| 614 |
+
|
| 615 |
+
def get_prompt(self, batch_size):
|
| 616 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.roberta.device)
|
| 617 |
+
# print("prefix_tokens.shape=", prefix_tokens.shape)
|
| 618 |
+
past_key_values = self.prefix_encoder(prefix_tokens)
|
| 619 |
+
# print("past_key_values[0].shape=", past_key_values[0].shape)
|
| 620 |
+
past_key_values = past_key_values.view(
|
| 621 |
+
batch_size,
|
| 622 |
+
self.pre_seq_len,
|
| 623 |
+
self.n_layer * 2,
|
| 624 |
+
self.n_head,
|
| 625 |
+
self.n_embd
|
| 626 |
+
)
|
| 627 |
+
# print("past_key_values[0].shape=", past_key_values[0].shape)
|
| 628 |
+
past_key_values = self.dropout(past_key_values)
|
| 629 |
+
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
|
| 630 |
+
# print("past_key_values[0].shape=", past_key_values[0].shape)
|
| 631 |
+
return past_key_values
|
| 632 |
+
|
| 633 |
+
def forward(
|
| 634 |
+
self,
|
| 635 |
+
input_ids=None,
|
| 636 |
+
attention_mask=None,
|
| 637 |
+
token_type_ids=None,
|
| 638 |
+
position_ids=None,
|
| 639 |
+
head_mask=None,
|
| 640 |
+
inputs_embeds=None,
|
| 641 |
+
labels=None,
|
| 642 |
+
output_attentions=None,
|
| 643 |
+
output_hidden_states=None,
|
| 644 |
+
return_dict=None,
|
| 645 |
+
):
|
| 646 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 647 |
+
|
| 648 |
+
batch_size = input_ids.shape[0]
|
| 649 |
+
past_key_values = self.get_prompt(batch_size=batch_size)
|
| 650 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.roberta.device)
|
| 651 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
| 652 |
+
|
| 653 |
+
if position_ids is None:
|
| 654 |
+
position_ids = torch.tensor([i for i in range(input_ids.shape[-1])]).expand(batch_size, -1).to(self.roberta.device)
|
| 655 |
+
|
| 656 |
+
outputs = self.roberta(
|
| 657 |
+
input_ids,
|
| 658 |
+
attention_mask=attention_mask,
|
| 659 |
+
token_type_ids=token_type_ids,
|
| 660 |
+
position_ids=position_ids,
|
| 661 |
+
head_mask=head_mask,
|
| 662 |
+
inputs_embeds=inputs_embeds,
|
| 663 |
+
output_attentions=output_attentions,
|
| 664 |
+
output_hidden_states=output_hidden_states,
|
| 665 |
+
return_dict=return_dict,
|
| 666 |
+
past_key_values=past_key_values,
|
| 667 |
+
)
|
| 668 |
+
|
| 669 |
+
pooled_output = outputs[1]
|
| 670 |
+
|
| 671 |
+
pooled_output = self.dropout(pooled_output)
|
| 672 |
+
logits = self.classifier(pooled_output)
|
| 673 |
+
|
| 674 |
+
loss = None
|
| 675 |
+
if labels is not None:
|
| 676 |
+
labels = (labels < 0).long().to(labels.device) + labels
|
| 677 |
+
|
| 678 |
+
if self.config.problem_type is None:
|
| 679 |
+
if self.num_labels == 1:
|
| 680 |
+
self.config.problem_type = "regression"
|
| 681 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 682 |
+
self.config.problem_type = "single_label_classification"
|
| 683 |
+
else:
|
| 684 |
+
self.config.problem_type = "multi_label_classification"
|
| 685 |
+
|
| 686 |
+
if self.config.problem_type == "regression":
|
| 687 |
+
loss_fct = MSELoss()
|
| 688 |
+
if self.num_labels == 1:
|
| 689 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 690 |
+
else:
|
| 691 |
+
loss = loss_fct(logits, labels)
|
| 692 |
+
elif self.config.problem_type == "single_label_classification":
|
| 693 |
+
loss_fct = CrossEntropyLoss()
|
| 694 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 695 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 696 |
+
loss_fct = BCEWithLogitsLoss()
|
| 697 |
+
loss = loss_fct(logits, labels)
|
| 698 |
+
if not return_dict:
|
| 699 |
+
output = (logits,) + outputs[2:]
|
| 700 |
+
return ((loss,) + output) if loss is not None else output
|
| 701 |
+
|
| 702 |
+
return SequenceClassifierOutput(
|
| 703 |
+
loss=loss,
|
| 704 |
+
logits=logits,
|
| 705 |
+
hidden_states=outputs.hidden_states,
|
| 706 |
+
attentions=outputs.attentions,
|
| 707 |
+
)
|
| 708 |
+
|
| 709 |
+
# Prompt-tuning For RoBERTa
|
| 710 |
+
class RobertaPtuningForSequenceClassification(RobertaPreTrainedModel):
|
| 711 |
+
def __init__(self, config):
|
| 712 |
+
super().__init__(config)
|
| 713 |
+
self.num_labels = config.num_labels
|
| 714 |
+
self.roberta = RobertaModel(config)
|
| 715 |
+
self.embeddings = self.roberta.embeddings
|
| 716 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
| 717 |
+
# self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
|
| 718 |
+
self.classifier = RobertaClassificationHead(config)
|
| 719 |
+
|
| 720 |
+
# for param in self.roberta.parameters():
|
| 721 |
+
# param.requires_grad = False
|
| 722 |
+
|
| 723 |
+
if self.config.use_freezing:
|
| 724 |
+
self.roberta = freezer.freeze_lm(self.roberta)
|
| 725 |
+
|
| 726 |
+
self.pre_seq_len = config.pre_seq_len
|
| 727 |
+
self.n_layer = config.num_hidden_layers
|
| 728 |
+
self.n_head = config.num_attention_heads
|
| 729 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
| 730 |
+
|
| 731 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
| 732 |
+
self.prefix_encoder = torch.nn.Embedding(self.pre_seq_len, config.hidden_size)
|
| 733 |
+
|
| 734 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
| 735 |
+
if use_freezing:
|
| 736 |
+
self.roberta = freezer.freeze_lm(self.roberta)
|
| 737 |
+
else:
|
| 738 |
+
self.roberta = freezer.unfreeze_lm(self.roberta)
|
| 739 |
+
|
| 740 |
+
def get_prompt(self, batch_size):
|
| 741 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.roberta.device)
|
| 742 |
+
prompts = self.prefix_encoder(prefix_tokens)
|
| 743 |
+
return prompts
|
| 744 |
+
|
| 745 |
+
def forward(
|
| 746 |
+
self,
|
| 747 |
+
input_ids=None,
|
| 748 |
+
attention_mask=None,
|
| 749 |
+
token_type_ids=None,
|
| 750 |
+
position_ids=None,
|
| 751 |
+
head_mask=None,
|
| 752 |
+
inputs_embeds=None,
|
| 753 |
+
labels=None,
|
| 754 |
+
output_attentions=None,
|
| 755 |
+
output_hidden_states=None,
|
| 756 |
+
return_dict=None,
|
| 757 |
+
):
|
| 758 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 759 |
+
|
| 760 |
+
batch_size = input_ids.shape[0]
|
| 761 |
+
raw_embedding = self.embeddings(
|
| 762 |
+
input_ids=input_ids,
|
| 763 |
+
position_ids=position_ids,
|
| 764 |
+
token_type_ids=token_type_ids,
|
| 765 |
+
)
|
| 766 |
+
prompts = self.get_prompt(batch_size=batch_size)
|
| 767 |
+
inputs_embeds = torch.cat((prompts, raw_embedding), dim=1)
|
| 768 |
+
# print(input_embeddings.shape)
|
| 769 |
+
# exit()
|
| 770 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.roberta.device)
|
| 771 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
| 772 |
+
|
| 773 |
+
outputs = self.roberta(
|
| 774 |
+
# input_ids,
|
| 775 |
+
attention_mask=attention_mask,
|
| 776 |
+
# token_type_ids=token_type_ids,
|
| 777 |
+
# position_ids=position_ids,
|
| 778 |
+
head_mask=head_mask,
|
| 779 |
+
inputs_embeds=inputs_embeds,
|
| 780 |
+
output_attentions=output_attentions,
|
| 781 |
+
output_hidden_states=output_hidden_states,
|
| 782 |
+
return_dict=return_dict,
|
| 783 |
+
# past_key_values=past_key_values,
|
| 784 |
+
)
|
| 785 |
+
|
| 786 |
+
# pooled_output = outputs[1]
|
| 787 |
+
sequence_output = outputs[0]
|
| 788 |
+
sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
|
| 789 |
+
first_token_tensor = sequence_output[:, 0]
|
| 790 |
+
pooled_output = self.roberta.pooler.dense(first_token_tensor)
|
| 791 |
+
pooled_output = self.roberta.pooler.activation(pooled_output)
|
| 792 |
+
|
| 793 |
+
pooled_output = self.dropout(pooled_output)
|
| 794 |
+
logits = self.classifier(pooled_output)
|
| 795 |
+
|
| 796 |
+
loss = None
|
| 797 |
+
if labels is not None:
|
| 798 |
+
if self.config.problem_type is None:
|
| 799 |
+
if self.num_labels == 1:
|
| 800 |
+
self.config.problem_type = "regression"
|
| 801 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 802 |
+
self.config.problem_type = "single_label_classification"
|
| 803 |
+
else:
|
| 804 |
+
self.config.problem_type = "multi_label_classification"
|
| 805 |
+
|
| 806 |
+
if self.config.problem_type == "regression":
|
| 807 |
+
loss_fct = MSELoss()
|
| 808 |
+
if self.num_labels == 1:
|
| 809 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 810 |
+
else:
|
| 811 |
+
loss = loss_fct(logits, labels)
|
| 812 |
+
elif self.config.problem_type == "single_label_classification":
|
| 813 |
+
loss_fct = CrossEntropyLoss()
|
| 814 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 815 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 816 |
+
loss_fct = BCEWithLogitsLoss()
|
| 817 |
+
loss = loss_fct(logits, labels)
|
| 818 |
+
if not return_dict:
|
| 819 |
+
output = (logits,) + outputs[2:]
|
| 820 |
+
return ((loss,) + output) if loss is not None else output
|
| 821 |
+
|
| 822 |
+
return SequenceClassifierOutput(
|
| 823 |
+
loss=loss,
|
| 824 |
+
logits=logits,
|
| 825 |
+
hidden_states=outputs.hidden_states,
|
| 826 |
+
attentions=outputs.attentions,
|
| 827 |
+
)
|
| 828 |
+
|
| 829 |
+
# Adapter-tuning For RoBERTa
|
| 830 |
+
class RobertaAdapterForSequenceClassification(RobertaPreTrainedModel):
|
| 831 |
+
def __init__(self, config):
|
| 832 |
+
super().__init__(config)
|
| 833 |
+
self.num_labels = config.num_labels
|
| 834 |
+
self.roberta = RobertaAdaModel(config)
|
| 835 |
+
self.embeddings = self.roberta.embeddings
|
| 836 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
| 837 |
+
# self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
|
| 838 |
+
self.classifier = RobertaClassificationHead(config)
|
| 839 |
+
|
| 840 |
+
self.init_weights()
|
| 841 |
+
# for param in self.roberta.parameters():
|
| 842 |
+
# param.requires_grad = False
|
| 843 |
+
self.roberta = init_adapter(self.roberta)
|
| 844 |
+
if self.config.use_freezing:
|
| 845 |
+
self.roberta = freezer.freeze_lm_component(self.roberta, "adapter")
|
| 846 |
+
|
| 847 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
| 848 |
+
if use_freezing:
|
| 849 |
+
self.roberta = freezer.freeze_lm_component(self.roberta, "adapter")
|
| 850 |
+
else:
|
| 851 |
+
self.roberta = freezer.unfreeze_lm(self.roberta)
|
| 852 |
+
|
| 853 |
+
def forward(
|
| 854 |
+
self,
|
| 855 |
+
input_ids=None,
|
| 856 |
+
attention_mask=None,
|
| 857 |
+
token_type_ids=None,
|
| 858 |
+
position_ids=None,
|
| 859 |
+
head_mask=None,
|
| 860 |
+
inputs_embeds=None,
|
| 861 |
+
labels=None,
|
| 862 |
+
output_attentions=None,
|
| 863 |
+
output_hidden_states=None,
|
| 864 |
+
return_dict=None,
|
| 865 |
+
):
|
| 866 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 867 |
+
|
| 868 |
+
batch_size = input_ids.shape[0]
|
| 869 |
+
inputs_embeds = self.embeddings(
|
| 870 |
+
input_ids=input_ids,
|
| 871 |
+
position_ids=position_ids,
|
| 872 |
+
token_type_ids=token_type_ids,
|
| 873 |
+
)
|
| 874 |
+
|
| 875 |
+
outputs = self.roberta(
|
| 876 |
+
# input_ids,
|
| 877 |
+
attention_mask=attention_mask,
|
| 878 |
+
# token_type_ids=token_type_ids,
|
| 879 |
+
# position_ids=position_ids,
|
| 880 |
+
head_mask=head_mask,
|
| 881 |
+
inputs_embeds=inputs_embeds,
|
| 882 |
+
output_attentions=output_attentions,
|
| 883 |
+
output_hidden_states=output_hidden_states,
|
| 884 |
+
return_dict=return_dict,
|
| 885 |
+
# past_key_values=past_key_values,
|
| 886 |
+
)
|
| 887 |
+
|
| 888 |
+
# pooled_output = outputs[1]
|
| 889 |
+
sequence_output = outputs[0]
|
| 890 |
+
# sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
|
| 891 |
+
first_token_tensor = sequence_output[:, 0]
|
| 892 |
+
pooled_output = self.roberta.pooler.dense(first_token_tensor)
|
| 893 |
+
pooled_output = self.roberta.pooler.activation(pooled_output)
|
| 894 |
+
|
| 895 |
+
pooled_output = self.dropout(pooled_output)
|
| 896 |
+
logits = self.classifier(pooled_output)
|
| 897 |
+
|
| 898 |
+
loss = None
|
| 899 |
+
if labels is not None:
|
| 900 |
+
if self.config.problem_type is None:
|
| 901 |
+
if self.num_labels == 1:
|
| 902 |
+
self.config.problem_type = "regression"
|
| 903 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 904 |
+
self.config.problem_type = "single_label_classification"
|
| 905 |
+
else:
|
| 906 |
+
self.config.problem_type = "multi_label_classification"
|
| 907 |
+
|
| 908 |
+
if self.config.problem_type == "regression":
|
| 909 |
+
loss_fct = MSELoss()
|
| 910 |
+
if self.num_labels == 1:
|
| 911 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 912 |
+
else:
|
| 913 |
+
loss = loss_fct(logits, labels)
|
| 914 |
+
elif self.config.problem_type == "single_label_classification":
|
| 915 |
+
loss_fct = CrossEntropyLoss()
|
| 916 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 917 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 918 |
+
loss_fct = BCEWithLogitsLoss()
|
| 919 |
+
loss = loss_fct(logits, labels)
|
| 920 |
+
if not return_dict:
|
| 921 |
+
output = (logits,) + outputs[2:]
|
| 922 |
+
return ((loss,) + output) if loss is not None else output
|
| 923 |
+
|
| 924 |
+
return SequenceClassifierOutput(
|
| 925 |
+
loss=loss,
|
| 926 |
+
logits=logits,
|
| 927 |
+
hidden_states=outputs.hidden_states,
|
| 928 |
+
attentions=outputs.attentions,
|
| 929 |
+
)
|
| 930 |
+
|
| 931 |
+
|
| 932 |
+
# ========= DeBERTa =========
|
| 933 |
+
|
| 934 |
+
# Prefix-tuning For DeBERTa
|
| 935 |
+
class DebertaPrefixForSequenceClassification(DebertaPreTrainedModel):
|
| 936 |
+
def __init__(self, config):
|
| 937 |
+
super().__init__(config)
|
| 938 |
+
self.num_labels = config.num_labels
|
| 939 |
+
self.config = config
|
| 940 |
+
self.deberta = DebertaModel(config)
|
| 941 |
+
self.pooler = ContextPooler(config)
|
| 942 |
+
output_dim = self.pooler.output_dim
|
| 943 |
+
self.classifier = torch.nn.Linear(output_dim, self.num_labels)
|
| 944 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
| 945 |
+
self.init_weights()
|
| 946 |
+
|
| 947 |
+
# for param in self.deberta.parameters():
|
| 948 |
+
# param.requires_grad = False
|
| 949 |
+
|
| 950 |
+
if self.config.use_freezing:
|
| 951 |
+
self.deberta = freezer.freeze_lm(self.deberta)
|
| 952 |
+
|
| 953 |
+
self.pre_seq_len = config.pre_seq_len
|
| 954 |
+
self.n_layer = config.num_hidden_layers
|
| 955 |
+
self.n_head = config.num_attention_heads
|
| 956 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
| 957 |
+
|
| 958 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
| 959 |
+
self.prefix_encoder = PrefixEncoder(config)
|
| 960 |
+
|
| 961 |
+
deberta_param = 0
|
| 962 |
+
for name, param in self.deberta.named_parameters():
|
| 963 |
+
deberta_param += param.numel()
|
| 964 |
+
all_param = 0
|
| 965 |
+
for name, param in self.named_parameters():
|
| 966 |
+
all_param += param.numel()
|
| 967 |
+
total_param = all_param - deberta_param
|
| 968 |
+
print("total param is {}".format(total_param)) # 9860105
|
| 969 |
+
|
| 970 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
| 971 |
+
if use_freezing:
|
| 972 |
+
self.deberta = freezer.freeze_lm(self.deberta)
|
| 973 |
+
else:
|
| 974 |
+
self.deberta = freezer.unfreeze_lm(self.deberta)
|
| 975 |
+
|
| 976 |
+
def get_prompt(self, batch_size):
|
| 977 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.deberta.device)
|
| 978 |
+
past_key_values = self.prefix_encoder(prefix_tokens)
|
| 979 |
+
# bsz, seqlen, _ = past_key_values.shape
|
| 980 |
+
past_key_values = past_key_values.view(
|
| 981 |
+
batch_size,
|
| 982 |
+
self.pre_seq_len,
|
| 983 |
+
self.n_layer * 2,
|
| 984 |
+
self.n_head,
|
| 985 |
+
self.n_embd
|
| 986 |
+
)
|
| 987 |
+
past_key_values = self.dropout(past_key_values)
|
| 988 |
+
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
|
| 989 |
+
return past_key_values
|
| 990 |
+
|
| 991 |
+
def forward(
|
| 992 |
+
self,
|
| 993 |
+
input_ids=None,
|
| 994 |
+
attention_mask=None,
|
| 995 |
+
token_type_ids=None,
|
| 996 |
+
position_ids=None,
|
| 997 |
+
head_mask=None,
|
| 998 |
+
inputs_embeds=None,
|
| 999 |
+
labels=None,
|
| 1000 |
+
output_attentions=None,
|
| 1001 |
+
output_hidden_states=None,
|
| 1002 |
+
return_dict=None,
|
| 1003 |
+
):
|
| 1004 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1005 |
+
|
| 1006 |
+
batch_size = input_ids.shape[0]
|
| 1007 |
+
past_key_values = self.get_prompt(batch_size=batch_size)
|
| 1008 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.deberta.device)
|
| 1009 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
| 1010 |
+
|
| 1011 |
+
outputs = self.deberta(
|
| 1012 |
+
input_ids,
|
| 1013 |
+
attention_mask=attention_mask,
|
| 1014 |
+
token_type_ids=token_type_ids,
|
| 1015 |
+
position_ids=position_ids,
|
| 1016 |
+
inputs_embeds=inputs_embeds,
|
| 1017 |
+
output_attentions=output_attentions,
|
| 1018 |
+
output_hidden_states=output_hidden_states,
|
| 1019 |
+
return_dict=return_dict,
|
| 1020 |
+
past_key_values=past_key_values,
|
| 1021 |
+
)
|
| 1022 |
+
|
| 1023 |
+
encoder_layer = outputs[0]
|
| 1024 |
+
pooled_output = self.pooler(encoder_layer)
|
| 1025 |
+
pooled_output = self.dropout(pooled_output)
|
| 1026 |
+
logits = self.classifier(pooled_output)
|
| 1027 |
+
|
| 1028 |
+
loss = None
|
| 1029 |
+
if labels is not None:
|
| 1030 |
+
if self.num_labels == 1:
|
| 1031 |
+
# regression task
|
| 1032 |
+
loss_fn = torch.nn.MSELoss()
|
| 1033 |
+
logits = logits.view(-1).to(labels.dtype)
|
| 1034 |
+
loss = loss_fn(logits, labels.view(-1))
|
| 1035 |
+
elif labels.dim() == 1 or labels.size(-1) == 1:
|
| 1036 |
+
label_index = (labels >= 0).nonzero()
|
| 1037 |
+
labels = labels.long()
|
| 1038 |
+
if label_index.size(0) > 0:
|
| 1039 |
+
labeled_logits = torch.gather(logits, 0, label_index.expand(label_index.size(0), logits.size(1)))
|
| 1040 |
+
labels = torch.gather(labels, 0, label_index.view(-1))
|
| 1041 |
+
loss_fct = CrossEntropyLoss()
|
| 1042 |
+
loss = loss_fct(labeled_logits.view(-1, self.num_labels).float(), labels.view(-1))
|
| 1043 |
+
else:
|
| 1044 |
+
loss = torch.tensor(0).to(logits)
|
| 1045 |
+
else:
|
| 1046 |
+
log_softmax = torch.nn.LogSoftmax(-1)
|
| 1047 |
+
loss = -((log_softmax(logits) * labels).sum(-1)).mean()
|
| 1048 |
+
if not return_dict:
|
| 1049 |
+
output = (logits,) + outputs[1:]
|
| 1050 |
+
return ((loss,) + output) if loss is not None else output
|
| 1051 |
+
else:
|
| 1052 |
+
return SequenceClassifierOutput(
|
| 1053 |
+
loss=loss,
|
| 1054 |
+
logits=logits,
|
| 1055 |
+
hidden_states=outputs.hidden_states,
|
| 1056 |
+
attentions=outputs.attentions,
|
| 1057 |
+
)
|
| 1058 |
+
|
| 1059 |
+
|
| 1060 |
+
# GPT2 for classification
|
| 1061 |
+
class GPT2ForSequenceClassification(GPT2PreTrainedModel):
|
| 1062 |
+
|
| 1063 |
+
def __init__(self, config):
|
| 1064 |
+
super().__init__(config)
|
| 1065 |
+
self.num_labels = config.num_labels
|
| 1066 |
+
self.transformer = GPT2Model(config)
|
| 1067 |
+
self.score = torch.nn.Linear(config.n_embd, self.num_labels, bias=False)
|
| 1068 |
+
|
| 1069 |
+
# Model parallel
|
| 1070 |
+
self.model_parallel = False
|
| 1071 |
+
self.device_map = None
|
| 1072 |
+
|
| 1073 |
+
# Initialize weights and apply final processing
|
| 1074 |
+
self.post_init()
|
| 1075 |
+
|
| 1076 |
+
def forward(
|
| 1077 |
+
self,
|
| 1078 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1079 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 1080 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1081 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 1082 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1083 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 1084 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1085 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1086 |
+
use_cache: Optional[bool] = None,
|
| 1087 |
+
output_attentions: Optional[bool] = None,
|
| 1088 |
+
output_hidden_states: Optional[bool] = None,
|
| 1089 |
+
return_dict: Optional[bool] = None,
|
| 1090 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 1091 |
+
r"""
|
| 1092 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1093 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1094 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1095 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1096 |
+
"""
|
| 1097 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1098 |
+
|
| 1099 |
+
transformer_outputs = self.transformer(
|
| 1100 |
+
input_ids,
|
| 1101 |
+
past_key_values=past_key_values,
|
| 1102 |
+
attention_mask=attention_mask,
|
| 1103 |
+
token_type_ids=token_type_ids,
|
| 1104 |
+
position_ids=position_ids,
|
| 1105 |
+
head_mask=head_mask,
|
| 1106 |
+
inputs_embeds=inputs_embeds,
|
| 1107 |
+
use_cache=use_cache,
|
| 1108 |
+
output_attentions=output_attentions,
|
| 1109 |
+
output_hidden_states=output_hidden_states,
|
| 1110 |
+
return_dict=return_dict,
|
| 1111 |
+
)
|
| 1112 |
+
hidden_states = transformer_outputs[0]
|
| 1113 |
+
logits = self.score(hidden_states)
|
| 1114 |
+
|
| 1115 |
+
if input_ids is not None:
|
| 1116 |
+
batch_size, sequence_length = input_ids.shape[:2]
|
| 1117 |
+
else:
|
| 1118 |
+
batch_size, sequence_length = inputs_embeds.shape[:2]
|
| 1119 |
+
|
| 1120 |
+
assert (
|
| 1121 |
+
self.config.pad_token_id is not None or batch_size == 1
|
| 1122 |
+
), "Cannot handle batch sizes > 1 if no padding token is defined."
|
| 1123 |
+
if self.config.pad_token_id is None:
|
| 1124 |
+
sequence_lengths = -1
|
| 1125 |
+
else:
|
| 1126 |
+
if input_ids is not None:
|
| 1127 |
+
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
|
| 1128 |
+
else:
|
| 1129 |
+
sequence_lengths = -1
|
| 1130 |
+
logger.warning(
|
| 1131 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
| 1132 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
| 1133 |
+
)
|
| 1134 |
+
|
| 1135 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
| 1136 |
+
|
| 1137 |
+
loss = None
|
| 1138 |
+
if labels is not None:
|
| 1139 |
+
if self.config.problem_type is None:
|
| 1140 |
+
if self.num_labels == 1:
|
| 1141 |
+
self.config.problem_type = "regression"
|
| 1142 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 1143 |
+
self.config.problem_type = "single_label_classification"
|
| 1144 |
+
else:
|
| 1145 |
+
self.config.problem_type = "multi_label_classification"
|
| 1146 |
+
|
| 1147 |
+
if self.config.problem_type == "regression":
|
| 1148 |
+
loss_fct = MSELoss()
|
| 1149 |
+
if self.num_labels == 1:
|
| 1150 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
| 1151 |
+
else:
|
| 1152 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1153 |
+
elif self.config.problem_type == "single_label_classification":
|
| 1154 |
+
loss_fct = CrossEntropyLoss()
|
| 1155 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
| 1156 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 1157 |
+
loss_fct = BCEWithLogitsLoss()
|
| 1158 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1159 |
+
if not return_dict:
|
| 1160 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
| 1161 |
+
return ((loss,) + output) if loss is not None else output
|
| 1162 |
+
|
| 1163 |
+
return SequenceClassifierOutputWithPast(
|
| 1164 |
+
loss=loss,
|
| 1165 |
+
logits=pooled_logits,
|
| 1166 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 1167 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 1168 |
+
attentions=transformer_outputs.attentions,
|
| 1169 |
+
)
|
| 1170 |
+
|
| 1171 |
+
|
| 1172 |
+
|
| 1173 |
+
|
| 1174 |
+
# Bart for classification
|
| 1175 |
+
class BartForSequenceClassification(BartPretrainedModel):
|
| 1176 |
+
def __init__(self, config: BartConfig, **kwargs):
|
| 1177 |
+
super().__init__(config, **kwargs)
|
| 1178 |
+
self.model = BartModel(config)
|
| 1179 |
+
self.classification_head = BartClassificationHead(
|
| 1180 |
+
config.d_model,
|
| 1181 |
+
config.d_model,
|
| 1182 |
+
config.num_labels,
|
| 1183 |
+
config.classifier_dropout,
|
| 1184 |
+
)
|
| 1185 |
+
self.model._init_weights(self.classification_head.dense)
|
| 1186 |
+
self.model._init_weights(self.classification_head.out_proj)
|
| 1187 |
+
|
| 1188 |
+
def forward(
|
| 1189 |
+
self,
|
| 1190 |
+
input_ids: torch.LongTensor = None,
|
| 1191 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1192 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
| 1193 |
+
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
| 1194 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 1195 |
+
decoder_head_mask: Optional[torch.Tensor] = None,
|
| 1196 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
| 1197 |
+
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
|
| 1198 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1199 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1200 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1201 |
+
use_cache: Optional[bool] = None,
|
| 1202 |
+
output_attentions: Optional[bool] = None,
|
| 1203 |
+
output_hidden_states: Optional[bool] = None,
|
| 1204 |
+
return_dict: Optional[bool] = None,
|
| 1205 |
+
) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]:
|
| 1206 |
+
r"""
|
| 1207 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1208 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1209 |
+
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1210 |
+
"""
|
| 1211 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1212 |
+
if labels is not None:
|
| 1213 |
+
use_cache = False
|
| 1214 |
+
|
| 1215 |
+
if input_ids is None and inputs_embeds is not None:
|
| 1216 |
+
raise NotImplementedError(
|
| 1217 |
+
f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
|
| 1218 |
+
)
|
| 1219 |
+
|
| 1220 |
+
outputs = self.model(
|
| 1221 |
+
input_ids,
|
| 1222 |
+
attention_mask=attention_mask,
|
| 1223 |
+
decoder_input_ids=decoder_input_ids,
|
| 1224 |
+
decoder_attention_mask=decoder_attention_mask,
|
| 1225 |
+
head_mask=head_mask,
|
| 1226 |
+
decoder_head_mask=decoder_head_mask,
|
| 1227 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
| 1228 |
+
encoder_outputs=encoder_outputs,
|
| 1229 |
+
inputs_embeds=inputs_embeds,
|
| 1230 |
+
decoder_inputs_embeds=decoder_inputs_embeds,
|
| 1231 |
+
use_cache=use_cache,
|
| 1232 |
+
output_attentions=output_attentions,
|
| 1233 |
+
output_hidden_states=output_hidden_states,
|
| 1234 |
+
return_dict=return_dict,
|
| 1235 |
+
)
|
| 1236 |
+
hidden_states = outputs[0] # last hidden state
|
| 1237 |
+
# print("hidden_states.shape=", hidden_states.shape) # [bz, seq_len, dim]
|
| 1238 |
+
|
| 1239 |
+
eos_mask = input_ids.eq(self.config.eos_token_id)
|
| 1240 |
+
|
| 1241 |
+
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
|
| 1242 |
+
raise ValueError("All examples must have the same number of <eos> tokens.")
|
| 1243 |
+
sentence_representation = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, hidden_states.size(-1))[
|
| 1244 |
+
:, -1, :
|
| 1245 |
+
]
|
| 1246 |
+
logits = self.classification_head(sentence_representation)
|
| 1247 |
+
|
| 1248 |
+
loss = None
|
| 1249 |
+
if labels is not None:
|
| 1250 |
+
if self.config.problem_type is None:
|
| 1251 |
+
if self.config.num_labels == 1:
|
| 1252 |
+
self.config.problem_type = "regression"
|
| 1253 |
+
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 1254 |
+
self.config.problem_type = "single_label_classification"
|
| 1255 |
+
else:
|
| 1256 |
+
self.config.problem_type = "multi_label_classification"
|
| 1257 |
+
|
| 1258 |
+
if self.config.problem_type == "regression":
|
| 1259 |
+
loss_fct = MSELoss()
|
| 1260 |
+
if self.config.num_labels == 1:
|
| 1261 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 1262 |
+
else:
|
| 1263 |
+
loss = loss_fct(logits, labels)
|
| 1264 |
+
elif self.config.problem_type == "single_label_classification":
|
| 1265 |
+
loss_fct = CrossEntropyLoss()
|
| 1266 |
+
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
|
| 1267 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 1268 |
+
loss_fct = BCEWithLogitsLoss()
|
| 1269 |
+
loss = loss_fct(logits, labels)
|
| 1270 |
+
if not return_dict:
|
| 1271 |
+
output = (logits,) + outputs[1:]
|
| 1272 |
+
return ((loss,) + output) if loss is not None else output
|
| 1273 |
+
|
| 1274 |
+
return Seq2SeqSequenceClassifierOutput(
|
| 1275 |
+
loss=loss,
|
| 1276 |
+
logits=logits,
|
| 1277 |
+
past_key_values=outputs.past_key_values,
|
| 1278 |
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
| 1279 |
+
decoder_attentions=outputs.decoder_attentions,
|
| 1280 |
+
cross_attentions=outputs.cross_attentions,
|
| 1281 |
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
| 1282 |
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
| 1283 |
+
encoder_attentions=outputs.encoder_attentions,
|
| 1284 |
+
)
|
models/sequence_classification/masked_prompt_cls.py
ADDED
|
@@ -0,0 +1,2016 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Custom models for few-shot learning specific operations."""
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import transformers
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
from transformers import AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, EvalPrediction
|
| 8 |
+
from transformers.models.t5.modeling_t5 import T5ForConditionalGeneration
|
| 9 |
+
from transformers.models.bert.modeling_bert import BertPreTrainedModel, BertForSequenceClassification, BertModel, BertOnlyMLMHead
|
| 10 |
+
from transformers.models.roberta.modeling_roberta import RobertaForSequenceClassification, RobertaModel, RobertaLMHead, RobertaClassificationHead, RobertaPreTrainedModel
|
| 11 |
+
from transformers.models.deberta_v2.modeling_deberta_v2 import DebertaV2PreTrainedModel, DebertaV2Model, StableDropout, ContextPooler, DebertaV2OnlyMLMHead
|
| 12 |
+
from transformers.models.deberta.modeling_deberta import DebertaPreTrainedModel, DebertaModel, StableDropout, ContextPooler, DebertaOnlyMLMHead
|
| 13 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
| 14 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 15 |
+
from transformers.models.bert.configuration_bert import BertConfig
|
| 16 |
+
import logging
|
| 17 |
+
from models.basic_modules.adapter import RobertaAdaModel, BertAdaModel
|
| 18 |
+
import os
|
| 19 |
+
from models.basic_modules.prefix_encoder import PrefixEncoder
|
| 20 |
+
from tools.model_utils.parameter_freeze import ParameterFreeze
|
| 21 |
+
|
| 22 |
+
freezer = ParameterFreeze()
|
| 23 |
+
|
| 24 |
+
logger = logging.getLogger(__name__)
|
| 25 |
+
|
| 26 |
+
# Note: 如果mask_pos为None,请检查输入的模板是否有<mask>标记,是否修改data_collator文件
|
| 27 |
+
|
| 28 |
+
"""
|
| 29 |
+
Vanilla Prompt-tuning BERT
|
| 30 |
+
"""
|
| 31 |
+
class PromptBertForSequenceClassification(BertPreTrainedModel):
|
| 32 |
+
|
| 33 |
+
def __init__(self, config):
|
| 34 |
+
super().__init__(config)
|
| 35 |
+
self.num_labels = config.num_labels
|
| 36 |
+
self.pre_seq_len = self.config.pre_seq_len
|
| 37 |
+
self.hidden_size = self.config.hidden_size
|
| 38 |
+
# backbone
|
| 39 |
+
self.bert = BertModel(config)
|
| 40 |
+
if self.config.use_freezing:
|
| 41 |
+
self.bert = freezer.freeze_lm(self.bert)
|
| 42 |
+
# mlm head
|
| 43 |
+
self.cls = BertOnlyMLMHead(config)
|
| 44 |
+
|
| 45 |
+
self.init_weights()
|
| 46 |
+
|
| 47 |
+
# These attributes should be assigned once the model is initialized
|
| 48 |
+
self.label_word_list = torch.Tensor(self.config.label_word_list).long().to(self.bert.device)
|
| 49 |
+
|
| 50 |
+
# For regression
|
| 51 |
+
self.lb = None
|
| 52 |
+
self.ub = None
|
| 53 |
+
|
| 54 |
+
# For label search.
|
| 55 |
+
self.return_full_softmax = None
|
| 56 |
+
|
| 57 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
| 58 |
+
if use_freezing:
|
| 59 |
+
self.bert = freezer.freeze_lm(self.bert)
|
| 60 |
+
else:
|
| 61 |
+
self.bert = freezer.unfreeze_lm(self.bert)
|
| 62 |
+
|
| 63 |
+
def encode(self, input_ids=None, attention_mask=None, token_type_ids=None, mask_pos=None, inputs_embeds=None, return_full_softmax=False):
|
| 64 |
+
"""
|
| 65 |
+
Encoding and obtain logits at masked position
|
| 66 |
+
"""
|
| 67 |
+
if mask_pos is not None:
|
| 68 |
+
mask_pos = mask_pos.squeeze()
|
| 69 |
+
# Encode everything
|
| 70 |
+
if inputs_embeds is None:
|
| 71 |
+
outputs = self.bert(
|
| 72 |
+
input_ids,
|
| 73 |
+
attention_mask=attention_mask,
|
| 74 |
+
token_type_ids=token_type_ids
|
| 75 |
+
)
|
| 76 |
+
else:
|
| 77 |
+
outputs = self.bert(
|
| 78 |
+
None,
|
| 79 |
+
attention_mask=attention_mask,
|
| 80 |
+
token_type_ids=token_type_ids,
|
| 81 |
+
inputs_embeds=inputs_embeds
|
| 82 |
+
)
|
| 83 |
+
# Get <mask> token representation
|
| 84 |
+
sequence_output, pooled_output = outputs[:2]
|
| 85 |
+
sequence_mask_output = sequence_output[torch.arange(sequence_output.size(0)), mask_pos]
|
| 86 |
+
# Logits over vocabulary tokens
|
| 87 |
+
prediction_mask_scores = self.cls(sequence_mask_output)
|
| 88 |
+
|
| 89 |
+
# Exit early and only return mask logits.
|
| 90 |
+
if return_full_softmax:
|
| 91 |
+
return prediction_mask_scores
|
| 92 |
+
|
| 93 |
+
# Return logits for each label
|
| 94 |
+
logits = []
|
| 95 |
+
for label_id in range(len(self.label_word_list)):
|
| 96 |
+
logits.append(prediction_mask_scores[:, self.label_word_list[label_id]].unsqueeze(-1))
|
| 97 |
+
logits = torch.cat(logits, -1)
|
| 98 |
+
|
| 99 |
+
# Regression task
|
| 100 |
+
if self.config.num_labels == 1:
|
| 101 |
+
logsoftmax = nn.LogSoftmax(-1)
|
| 102 |
+
logits = logsoftmax(logits) # Log prob of right polarity
|
| 103 |
+
|
| 104 |
+
return logits, sequence_mask_output
|
| 105 |
+
|
| 106 |
+
def forward(
|
| 107 |
+
self,
|
| 108 |
+
input_ids=None,
|
| 109 |
+
attention_mask=None,
|
| 110 |
+
token_type_ids=None,
|
| 111 |
+
mask_pos=None,
|
| 112 |
+
labels=None,
|
| 113 |
+
inputs_embeds=None,
|
| 114 |
+
block_flag=None,
|
| 115 |
+
return_dict=None,
|
| 116 |
+
):
|
| 117 |
+
|
| 118 |
+
logits, sequence_mask_output = self.encode(input_ids, attention_mask, token_type_ids, mask_pos, inputs_embeds)
|
| 119 |
+
loss = None
|
| 120 |
+
if labels is not None:
|
| 121 |
+
if self.num_labels == 1:
|
| 122 |
+
# Regression task
|
| 123 |
+
loss_fct = nn.KLDivLoss(log_target=True)
|
| 124 |
+
labels = torch.stack([1 - (labels.view(-1) - self.lb) / (self.ub - self.lb), (labels.view(-1) - self.lb) / (self.ub - self.lb)], -1)
|
| 125 |
+
loss = loss_fct(logits.view(-1, 2), labels)
|
| 126 |
+
else:
|
| 127 |
+
|
| 128 |
+
if labels.shape == logits.shape:
|
| 129 |
+
loss = F.kl_div(F.log_softmax(logits, dim=-1, dtype=torch.float32),
|
| 130 |
+
labels, reduction="batchmean")
|
| 131 |
+
else:
|
| 132 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 133 |
+
|
| 134 |
+
loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
| 135 |
+
|
| 136 |
+
output = (logits,)
|
| 137 |
+
if self.num_labels == 1:
|
| 138 |
+
# Regression output
|
| 139 |
+
output = (torch.exp(logits[..., 1].unsqueeze(-1)) * (self.ub - self.lb) + self.lb,)
|
| 140 |
+
|
| 141 |
+
if not return_dict:
|
| 142 |
+
return ((loss,) + output) if loss is not None else output
|
| 143 |
+
|
| 144 |
+
return SequenceClassifierOutput(
|
| 145 |
+
loss=loss,
|
| 146 |
+
logits=logits,
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
"""
|
| 152 |
+
P-tuning BERT
|
| 153 |
+
"""
|
| 154 |
+
class PromptBertPtuningForSequenceClassification(BertPreTrainedModel):
|
| 155 |
+
|
| 156 |
+
def __init__(self, config):
|
| 157 |
+
super().__init__(config)
|
| 158 |
+
self.num_labels = config.num_labels
|
| 159 |
+
self.pre_seq_len = self.config.pre_seq_len
|
| 160 |
+
self.hidden_size = self.config.hidden_size
|
| 161 |
+
# backbone
|
| 162 |
+
self.bert = BertModel(config)
|
| 163 |
+
if self.config.use_freezing:
|
| 164 |
+
self.bert = freezer.freeze_lm(self.bert)
|
| 165 |
+
# mlm head
|
| 166 |
+
self.cls = BertOnlyMLMHead(config)
|
| 167 |
+
# prompt encoder
|
| 168 |
+
self.prompt_encoder = None
|
| 169 |
+
# plm embedding layer
|
| 170 |
+
self.backbone_embeddings = self.bert.embeddings.word_embeddings
|
| 171 |
+
# prompt embedding layer
|
| 172 |
+
self.prompt_embeddings = torch.nn.Embedding(self.pre_seq_len, self.hidden_size)
|
| 173 |
+
|
| 174 |
+
self.init_weights()
|
| 175 |
+
|
| 176 |
+
# These attributes should be assigned once the model is initialized
|
| 177 |
+
self.label_word_list = torch.Tensor(self.config.label_word_list).long().to(self.bert.device)
|
| 178 |
+
|
| 179 |
+
# For regression
|
| 180 |
+
self.lb = None
|
| 181 |
+
self.ub = None
|
| 182 |
+
|
| 183 |
+
# For label search.
|
| 184 |
+
self.return_full_softmax = None
|
| 185 |
+
|
| 186 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
| 187 |
+
if use_freezing:
|
| 188 |
+
self.bert = freezer.freeze_lm(self.bert)
|
| 189 |
+
else:
|
| 190 |
+
self.bert = freezer.unfreeze_lm(self.bert)
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
def generate_continuous_prompt_inputs(self, input_ids, block_flag=None, reparameterization=False):
|
| 194 |
+
"""
|
| 195 |
+
Generate continuous prompt embedding
|
| 196 |
+
"""
|
| 197 |
+
inputs_embeds = self.backbone_embeddings(input_ids)
|
| 198 |
+
|
| 199 |
+
batch_size = inputs_embeds.shape[0]
|
| 200 |
+
if block_flag is None:
|
| 201 |
+
# the first token is set 1, others are set 0
|
| 202 |
+
block_flag = torch.zeros_like(input_ids).long().to(inputs_embeds.device)
|
| 203 |
+
block_flag[:, 0] = 1
|
| 204 |
+
try:
|
| 205 |
+
replace_embeds = self.prompt_embeddings(
|
| 206 |
+
torch.LongTensor(list(range(self.pre_seq_len))).to(inputs_embeds.device))
|
| 207 |
+
except:
|
| 208 |
+
import pdb
|
| 209 |
+
pdb.set_trace()
|
| 210 |
+
replace_embeds = self.prompt_embeddings(
|
| 211 |
+
torch.LongTensor(list(range(self.pre_seq_len))))
|
| 212 |
+
replace_embeds = replace_embeds.unsqueeze(0) # [batch_size, prompt_length, embed_size]
|
| 213 |
+
|
| 214 |
+
if self.prompt_encoder is not None:
|
| 215 |
+
replace_embeds = self.prompt_encoder(replace_embeds)
|
| 216 |
+
|
| 217 |
+
# edit by wjn
|
| 218 |
+
if reparameterization:
|
| 219 |
+
# blocked_indices = (block_flag == 1).nonzero(as_tuple=False).reshape((batch_size, self.pre_seq_len, 2))[:, :, 1]
|
| 220 |
+
blocked_indices = (block_flag == 1).nonzero()
|
| 221 |
+
# reparameterization
|
| 222 |
+
for bidx in range(batch_size):
|
| 223 |
+
for i in range(blocked_indices.shape[1]):
|
| 224 |
+
inputs_embeds[bidx, blocked_indices[bidx, i], :] = replace_embeds[:, i, :].squeeze()
|
| 225 |
+
else:
|
| 226 |
+
replace_embeds = replace_embeds.expand(batch_size, self.pre_seq_len, -1).to(inputs_embeds.device)
|
| 227 |
+
inputs_embeds = torch.cat((replace_embeds, inputs_embeds), dim=1)
|
| 228 |
+
return inputs_embeds
|
| 229 |
+
|
| 230 |
+
def encode(self, input_ids=None, attention_mask=None, token_type_ids=None, mask_pos=None, inputs_embeds=None, return_full_softmax=False):
|
| 231 |
+
"""
|
| 232 |
+
Encoding and obtain logits at masked position
|
| 233 |
+
"""
|
| 234 |
+
batch_size = inputs_embeds.shape[0]
|
| 235 |
+
if mask_pos is not None:
|
| 236 |
+
mask_pos = mask_pos.squeeze()
|
| 237 |
+
# Encode everything
|
| 238 |
+
if inputs_embeds is None:
|
| 239 |
+
outputs = self.bert(
|
| 240 |
+
input_ids,
|
| 241 |
+
attention_mask=attention_mask,
|
| 242 |
+
token_type_ids=token_type_ids
|
| 243 |
+
)
|
| 244 |
+
else:
|
| 245 |
+
|
| 246 |
+
if inputs_embeds.shape[1] == attention_mask.shape[1]:
|
| 247 |
+
outputs = self.bert(
|
| 248 |
+
None,
|
| 249 |
+
attention_mask=attention_mask,
|
| 250 |
+
token_type_ids=token_type_ids,
|
| 251 |
+
inputs_embeds=inputs_embeds
|
| 252 |
+
)
|
| 253 |
+
# Get <mask> token representation
|
| 254 |
+
sequence_output, pooled_output = outputs[:2]
|
| 255 |
+
# sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
|
| 256 |
+
else:
|
| 257 |
+
if attention_mask is not None:
|
| 258 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).long().to(self.bert.device)
|
| 259 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
| 260 |
+
if token_type_ids is not None:
|
| 261 |
+
prefix_token_type_ids = torch.zeros(batch_size, self.pre_seq_len).long().to(self.bert.device)
|
| 262 |
+
token_type_ids = torch.cat((prefix_token_type_ids, token_type_ids), dim=1)
|
| 263 |
+
outputs = self.bert(
|
| 264 |
+
None,
|
| 265 |
+
attention_mask=attention_mask,
|
| 266 |
+
token_type_ids=token_type_ids,
|
| 267 |
+
inputs_embeds=inputs_embeds
|
| 268 |
+
)
|
| 269 |
+
# Get <mask> token representation
|
| 270 |
+
sequence_output, pooled_output = outputs[:2]
|
| 271 |
+
sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
|
| 272 |
+
|
| 273 |
+
sequence_mask_output = sequence_output[torch.arange(sequence_output.size(0)), mask_pos]
|
| 274 |
+
# Logits over vocabulary tokens
|
| 275 |
+
prediction_mask_scores = self.cls(sequence_mask_output)
|
| 276 |
+
|
| 277 |
+
# Exit early and only return mask logits.
|
| 278 |
+
if return_full_softmax:
|
| 279 |
+
return prediction_mask_scores
|
| 280 |
+
|
| 281 |
+
# Return logits for each label
|
| 282 |
+
logits = []
|
| 283 |
+
for label_id in range(len(self.label_word_list)):
|
| 284 |
+
logits.append(prediction_mask_scores[:, self.label_word_list[label_id]].unsqueeze(-1))
|
| 285 |
+
logits = torch.cat(logits, -1)
|
| 286 |
+
|
| 287 |
+
# Regression task
|
| 288 |
+
if self.config.num_labels == 1:
|
| 289 |
+
logsoftmax = nn.LogSoftmax(-1)
|
| 290 |
+
logits = logsoftmax(logits) # Log prob of right polarity
|
| 291 |
+
|
| 292 |
+
return logits, sequence_mask_output
|
| 293 |
+
|
| 294 |
+
def forward(
|
| 295 |
+
self,
|
| 296 |
+
input_ids=None,
|
| 297 |
+
attention_mask=None,
|
| 298 |
+
token_type_ids=None,
|
| 299 |
+
mask_pos=None,
|
| 300 |
+
labels=None,
|
| 301 |
+
inputs_embeds=None,
|
| 302 |
+
block_flag=None,
|
| 303 |
+
return_dict=None,
|
| 304 |
+
):
|
| 305 |
+
|
| 306 |
+
inputs_embeds = self.generate_continuous_prompt_inputs(input_ids, block_flag)
|
| 307 |
+
logits, sequence_mask_output = self.encode(input_ids, attention_mask, token_type_ids, mask_pos, inputs_embeds)
|
| 308 |
+
loss = None
|
| 309 |
+
if labels is not None:
|
| 310 |
+
if self.num_labels == 1:
|
| 311 |
+
# Regression task
|
| 312 |
+
loss_fct = nn.KLDivLoss(log_target=True)
|
| 313 |
+
labels = torch.stack([1 - (labels.view(-1) - self.lb) / (self.ub - self.lb), (labels.view(-1) - self.lb) / (self.ub - self.lb)], -1)
|
| 314 |
+
loss = loss_fct(logits.view(-1, 2), labels)
|
| 315 |
+
else:
|
| 316 |
+
|
| 317 |
+
if labels.shape == logits.shape:
|
| 318 |
+
loss = F.kl_div(F.log_softmax(logits, dim=-1, dtype=torch.float32),
|
| 319 |
+
labels, reduction="batchmean")
|
| 320 |
+
else:
|
| 321 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 322 |
+
|
| 323 |
+
loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
| 324 |
+
|
| 325 |
+
output = (logits,)
|
| 326 |
+
if self.num_labels == 1:
|
| 327 |
+
# Regression output
|
| 328 |
+
output = (torch.exp(logits[..., 1].unsqueeze(-1)) * (self.ub - self.lb) + self.lb,)
|
| 329 |
+
|
| 330 |
+
if not return_dict:
|
| 331 |
+
return ((loss,) + output) if loss is not None else output
|
| 332 |
+
|
| 333 |
+
return SequenceClassifierOutput(
|
| 334 |
+
loss=loss,
|
| 335 |
+
logits=logits,
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
|
| 340 |
+
"""
|
| 341 |
+
Prefix-tuning BERT
|
| 342 |
+
"""
|
| 343 |
+
class PromptBertPrefixForSequenceClassification(BertPreTrainedModel):
|
| 344 |
+
|
| 345 |
+
def __init__(self, config):
|
| 346 |
+
super().__init__(config)
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
self.num_labels = config.num_labels
|
| 350 |
+
self.pre_seq_len = self.config.pre_seq_len
|
| 351 |
+
self.hidden_size = self.config.hidden_size
|
| 352 |
+
|
| 353 |
+
self.n_layer = config.num_hidden_layers
|
| 354 |
+
self.n_head = config.num_attention_heads
|
| 355 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
| 356 |
+
|
| 357 |
+
# backbone
|
| 358 |
+
self.bert = BertModel(config)
|
| 359 |
+
if self.config.use_freezing:
|
| 360 |
+
self.bert = freezer.freeze_lm(self.bert)
|
| 361 |
+
# mlm head
|
| 362 |
+
self.cls = BertOnlyMLMHead(config)
|
| 363 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
| 364 |
+
# plm embedding layer
|
| 365 |
+
self.backbone_embeddings = self.bert.embeddings.word_embeddings
|
| 366 |
+
# prompt embedding layer
|
| 367 |
+
self.prompt_embeddings = torch.nn.Embedding(self.pre_seq_len, self.hidden_size)
|
| 368 |
+
# prefix encoder
|
| 369 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
| 370 |
+
self.prefix_encoder = PrefixEncoder(config)
|
| 371 |
+
|
| 372 |
+
self.init_weights()
|
| 373 |
+
|
| 374 |
+
# These attributes should be assigned once the model is initialized
|
| 375 |
+
self.label_word_list = torch.Tensor(self.config.label_word_list).long().to(self.bert.device)
|
| 376 |
+
|
| 377 |
+
# For regression
|
| 378 |
+
self.lb = None
|
| 379 |
+
self.ub = None
|
| 380 |
+
|
| 381 |
+
# For label search.
|
| 382 |
+
self.return_full_softmax = None
|
| 383 |
+
|
| 384 |
+
# For regression
|
| 385 |
+
self.lb = None
|
| 386 |
+
self.ub = None
|
| 387 |
+
|
| 388 |
+
# For label search.
|
| 389 |
+
self.return_full_softmax = None
|
| 390 |
+
|
| 391 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
| 392 |
+
if use_freezing:
|
| 393 |
+
self.bert = freezer.freeze_lm(self.bert)
|
| 394 |
+
else:
|
| 395 |
+
self.bert = freezer.unfreeze_lm(self.bert)
|
| 396 |
+
|
| 397 |
+
def get_prompt(self, batch_size):
|
| 398 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.bert.device)
|
| 399 |
+
past_key_values = self.prefix_encoder(prefix_tokens)
|
| 400 |
+
# bsz, seqlen, _ = past_key_values.shape
|
| 401 |
+
past_key_values = past_key_values.view(
|
| 402 |
+
batch_size,
|
| 403 |
+
self.pre_seq_len,
|
| 404 |
+
self.n_layer * 2,
|
| 405 |
+
self.n_head,
|
| 406 |
+
self.n_embd
|
| 407 |
+
)
|
| 408 |
+
past_key_values = self.dropout(past_key_values)
|
| 409 |
+
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
|
| 410 |
+
return past_key_values
|
| 411 |
+
|
| 412 |
+
def embed_encode(self, input_ids):
|
| 413 |
+
embedding_output = self.bert.embeddings.word_embeddings(input_ids)
|
| 414 |
+
return embedding_output
|
| 415 |
+
|
| 416 |
+
def encode(self, input_ids=None, attention_mask=None, token_type_ids=None, mask_pos=None, inputs_embeds=None, return_full_softmax=False):
|
| 417 |
+
batch_size = input_ids.size(0)
|
| 418 |
+
|
| 419 |
+
# add prefix for prompt-tuning
|
| 420 |
+
past_key_values = self.get_prompt(batch_size=batch_size)
|
| 421 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.bert.device)
|
| 422 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
| 423 |
+
|
| 424 |
+
if mask_pos is not None:
|
| 425 |
+
mask_pos = mask_pos.squeeze()
|
| 426 |
+
|
| 427 |
+
# Encode everything
|
| 428 |
+
outputs = self.bert(
|
| 429 |
+
input_ids,
|
| 430 |
+
attention_mask=attention_mask,
|
| 431 |
+
token_type_ids=token_type_ids,
|
| 432 |
+
past_key_values=past_key_values,
|
| 433 |
+
)
|
| 434 |
+
# Get <mask> token representation
|
| 435 |
+
sequence_output, pooled_output = outputs[:2]
|
| 436 |
+
# sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
|
| 437 |
+
sequence_mask_output = sequence_output[torch.arange(sequence_output.size(0)), mask_pos]
|
| 438 |
+
|
| 439 |
+
# Logits over vocabulary tokens
|
| 440 |
+
prediction_mask_scores = self.cls(sequence_mask_output)
|
| 441 |
+
|
| 442 |
+
# Exit early and only return mask logits.
|
| 443 |
+
if return_full_softmax:
|
| 444 |
+
return prediction_mask_scores
|
| 445 |
+
|
| 446 |
+
# print("prediction_mask_scores.shape=", prediction_mask_scores.shape) # [batch_size, seq_len, vocab_size]
|
| 447 |
+
|
| 448 |
+
# Return logits for each label
|
| 449 |
+
logits = []
|
| 450 |
+
for label_id in range(len(self.label_word_list)):
|
| 451 |
+
logits.append(prediction_mask_scores[:, self.label_word_list[label_id]].unsqueeze(-1))
|
| 452 |
+
logits = torch.cat(logits, -1)
|
| 453 |
+
|
| 454 |
+
# Regression task
|
| 455 |
+
if self.config.num_labels == 1:
|
| 456 |
+
logsoftmax = nn.LogSoftmax(-1)
|
| 457 |
+
logits = logsoftmax(logits) # Log prob of right polarity
|
| 458 |
+
|
| 459 |
+
return logits, sequence_mask_output
|
| 460 |
+
|
| 461 |
+
|
| 462 |
+
def forward(
|
| 463 |
+
self,
|
| 464 |
+
input_ids=None,
|
| 465 |
+
attention_mask=None,
|
| 466 |
+
token_type_ids=None,
|
| 467 |
+
mask_pos=None,
|
| 468 |
+
labels=None,
|
| 469 |
+
inputs_embeds=None,
|
| 470 |
+
block_flag=None,
|
| 471 |
+
return_dict=None,
|
| 472 |
+
):
|
| 473 |
+
|
| 474 |
+
logits, sequence_mask_output = self.encode(input_ids, attention_mask, token_type_ids, mask_pos, inputs_embeds)
|
| 475 |
+
|
| 476 |
+
loss = None
|
| 477 |
+
if labels is not None:
|
| 478 |
+
if self.num_labels == 1:
|
| 479 |
+
# Regression task
|
| 480 |
+
loss_fct = nn.KLDivLoss(log_target=True)
|
| 481 |
+
labels = torch.stack([1 - (labels.view(-1) - self.lb) / (self.ub - self.lb), (labels.view(-1) - self.lb) / (self.ub - self.lb)], -1)
|
| 482 |
+
loss = loss_fct(logits.view(-1, 2), labels)
|
| 483 |
+
else:
|
| 484 |
+
|
| 485 |
+
if labels.shape == logits.shape:
|
| 486 |
+
loss = F.kl_div(F.log_softmax(logits, dim=-1, dtype=torch.float32),
|
| 487 |
+
labels, reduction="batchmean")
|
| 488 |
+
else:
|
| 489 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 490 |
+
|
| 491 |
+
loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
| 492 |
+
|
| 493 |
+
output = (logits,)
|
| 494 |
+
if self.num_labels == 1:
|
| 495 |
+
# Regression output
|
| 496 |
+
output = (torch.exp(logits[..., 1].unsqueeze(-1)) * (self.ub - self.lb) + self.lb,)
|
| 497 |
+
|
| 498 |
+
if not return_dict:
|
| 499 |
+
return ((loss,) + output) if loss is not None else output
|
| 500 |
+
|
| 501 |
+
return SequenceClassifierOutput(
|
| 502 |
+
loss=loss,
|
| 503 |
+
logits=logits,
|
| 504 |
+
)
|
| 505 |
+
|
| 506 |
+
|
| 507 |
+
"""
|
| 508 |
+
Adapter-tuning BERT
|
| 509 |
+
"""
|
| 510 |
+
class PromptBertAdapterForSequenceClassification(BertPreTrainedModel):
|
| 511 |
+
|
| 512 |
+
def __init__(self, config):
|
| 513 |
+
super().__init__(config)
|
| 514 |
+
self.num_labels = config.num_labels
|
| 515 |
+
self.bert = BertAdaModel(config)
|
| 516 |
+
self.cls = BertOnlyMLMHead(config)
|
| 517 |
+
self.init_weights()
|
| 518 |
+
|
| 519 |
+
if self.config.use_freezing:
|
| 520 |
+
self.bert = freezer.freeze_lm_component(self.bert, "adapter")
|
| 521 |
+
|
| 522 |
+
# These attributes should be assigned once the model is initialized
|
| 523 |
+
self.model_args = None
|
| 524 |
+
self.data_args = None
|
| 525 |
+
self.label_word_list = torch.Tensor(self.config.label_word_list).long().to(self.bert.device)
|
| 526 |
+
|
| 527 |
+
# For regression
|
| 528 |
+
self.lb = None
|
| 529 |
+
self.ub = None
|
| 530 |
+
|
| 531 |
+
# For label search.
|
| 532 |
+
self.return_full_softmax = None
|
| 533 |
+
|
| 534 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
| 535 |
+
if use_freezing:
|
| 536 |
+
self.bert = freezer.freeze_lm_component(self.bert, "adapter")
|
| 537 |
+
else:
|
| 538 |
+
self.bert = freezer.unfreeze_lm(self.bert)
|
| 539 |
+
|
| 540 |
+
def embed_encode(self, input_ids):
|
| 541 |
+
embedding_output = self.bert.embeddings.word_embeddings(input_ids)
|
| 542 |
+
return embedding_output
|
| 543 |
+
|
| 544 |
+
def encode(self, input_ids=None, attention_mask=None, token_type_ids=None, mask_pos=None, inputs_embeds=None, return_full_softmax=False):
|
| 545 |
+
batch_size = input_ids.size(0)
|
| 546 |
+
|
| 547 |
+
if mask_pos is not None:
|
| 548 |
+
mask_pos = mask_pos.squeeze()
|
| 549 |
+
|
| 550 |
+
# Encode everything
|
| 551 |
+
if inputs_embeds is None:
|
| 552 |
+
outputs = self.bert(
|
| 553 |
+
input_ids,
|
| 554 |
+
attention_mask=attention_mask,
|
| 555 |
+
token_type_ids=token_type_ids
|
| 556 |
+
)
|
| 557 |
+
else:
|
| 558 |
+
outputs = self.bert(
|
| 559 |
+
None,
|
| 560 |
+
attention_mask=attention_mask,
|
| 561 |
+
token_type_ids=token_type_ids,
|
| 562 |
+
inputs_embeds=inputs_embeds
|
| 563 |
+
)
|
| 564 |
+
|
| 565 |
+
# Get <mask> token representation
|
| 566 |
+
sequence_output, pooled_output = outputs[:2]
|
| 567 |
+
sequence_mask_output = sequence_output[torch.arange(sequence_output.size(0)), mask_pos]
|
| 568 |
+
|
| 569 |
+
# Logits over vocabulary tokens
|
| 570 |
+
prediction_mask_scores = self.cls(sequence_mask_output)
|
| 571 |
+
|
| 572 |
+
# Exit early and only return mask logits.
|
| 573 |
+
if return_full_softmax:
|
| 574 |
+
return prediction_mask_scores
|
| 575 |
+
|
| 576 |
+
# Return logits for each label
|
| 577 |
+
logits = []
|
| 578 |
+
for label_id in range(len(self.label_word_list)):
|
| 579 |
+
logits.append(prediction_mask_scores[:, self.label_word_list[label_id]].unsqueeze(-1))
|
| 580 |
+
logits = torch.cat(logits, -1)
|
| 581 |
+
|
| 582 |
+
# Regression task
|
| 583 |
+
if self.config.num_labels == 1:
|
| 584 |
+
logsoftmax = nn.LogSoftmax(-1)
|
| 585 |
+
logits = logsoftmax(logits) # Log prob of right polarity
|
| 586 |
+
|
| 587 |
+
return logits, sequence_mask_output
|
| 588 |
+
|
| 589 |
+
|
| 590 |
+
def forward(
|
| 591 |
+
self,
|
| 592 |
+
input_ids=None,
|
| 593 |
+
attention_mask=None,
|
| 594 |
+
token_type_ids=None,
|
| 595 |
+
mask_pos=None,
|
| 596 |
+
labels=None,
|
| 597 |
+
inputs_embeds=None,
|
| 598 |
+
block_flag=None,
|
| 599 |
+
return_dict=None,
|
| 600 |
+
):
|
| 601 |
+
|
| 602 |
+
logits, sequence_mask_output = self.encode(input_ids, attention_mask, token_type_ids, mask_pos, inputs_embeds)
|
| 603 |
+
|
| 604 |
+
loss = None
|
| 605 |
+
if labels is not None:
|
| 606 |
+
if self.num_labels == 1:
|
| 607 |
+
# Regression task
|
| 608 |
+
loss_fct = nn.KLDivLoss(log_target=True)
|
| 609 |
+
labels = torch.stack([1 - (labels.view(-1) - self.lb) / (self.ub - self.lb), (labels.view(-1) - self.lb) / (self.ub - self.lb)], -1)
|
| 610 |
+
loss = loss_fct(logits.view(-1, 2), labels)
|
| 611 |
+
else:
|
| 612 |
+
|
| 613 |
+
if labels.shape == logits.shape:
|
| 614 |
+
loss = F.kl_div(F.log_softmax(logits, dim=-1, dtype=torch.float32),
|
| 615 |
+
labels, reduction="batchmean")
|
| 616 |
+
else:
|
| 617 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 618 |
+
|
| 619 |
+
loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
| 620 |
+
|
| 621 |
+
output = (logits,)
|
| 622 |
+
if self.num_labels == 1:
|
| 623 |
+
# Regression output
|
| 624 |
+
output = (torch.exp(logits[..., 1].unsqueeze(-1)) * (self.ub - self.lb) + self.lb,)
|
| 625 |
+
|
| 626 |
+
if not return_dict:
|
| 627 |
+
return ((loss,) + output) if loss is not None else output
|
| 628 |
+
|
| 629 |
+
return SequenceClassifierOutput(
|
| 630 |
+
loss=loss,
|
| 631 |
+
logits=logits,
|
| 632 |
+
)
|
| 633 |
+
|
| 634 |
+
|
| 635 |
+
|
| 636 |
+
"""
|
| 637 |
+
Vanilla Prompt-tuning RoBERTa
|
| 638 |
+
"""
|
| 639 |
+
class PromptRobertaForSequenceClassification(RobertaPreTrainedModel):
|
| 640 |
+
|
| 641 |
+
def __init__(self, config):
|
| 642 |
+
super().__init__(config)
|
| 643 |
+
self.num_labels = config.num_labels
|
| 644 |
+
self.pre_seq_len = self.config.pre_seq_len
|
| 645 |
+
self.hidden_size = self.config.hidden_size
|
| 646 |
+
# backbone
|
| 647 |
+
self.roberta = RobertaModel(config)
|
| 648 |
+
if self.config.use_freezing:
|
| 649 |
+
self.roberta = freezer.freeze_lm(self.roberta)
|
| 650 |
+
# mlm head
|
| 651 |
+
self.cls = RobertaLMHead(config)
|
| 652 |
+
|
| 653 |
+
self.init_weights()
|
| 654 |
+
|
| 655 |
+
# These attributes should be assigned once the model is initialized
|
| 656 |
+
self.label_word_list = torch.Tensor(self.config.label_word_list).long().to(self.roberta.device)
|
| 657 |
+
|
| 658 |
+
# For regression
|
| 659 |
+
self.lb = None
|
| 660 |
+
self.ub = None
|
| 661 |
+
|
| 662 |
+
# For label search.
|
| 663 |
+
self.return_full_softmax = None
|
| 664 |
+
|
| 665 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
| 666 |
+
if use_freezing:
|
| 667 |
+
self.roberta = freezer.freeze_lm(self.roberta)
|
| 668 |
+
else:
|
| 669 |
+
self.roberta = freezer.unfreeze_lm(self.roberta)
|
| 670 |
+
|
| 671 |
+
def encode(self, input_ids=None, attention_mask=None, token_type_ids=None, mask_pos=None, inputs_embeds=None, return_full_softmax=False):
|
| 672 |
+
"""
|
| 673 |
+
Encoding and obtain logits at masked position
|
| 674 |
+
"""
|
| 675 |
+
if mask_pos is not None:
|
| 676 |
+
mask_pos = mask_pos.squeeze()
|
| 677 |
+
# Encode everything
|
| 678 |
+
if inputs_embeds is None:
|
| 679 |
+
outputs = self.roberta(
|
| 680 |
+
input_ids,
|
| 681 |
+
attention_mask=attention_mask,
|
| 682 |
+
token_type_ids=token_type_ids
|
| 683 |
+
)
|
| 684 |
+
else:
|
| 685 |
+
outputs = self.roberta(
|
| 686 |
+
None,
|
| 687 |
+
attention_mask=attention_mask,
|
| 688 |
+
token_type_ids=token_type_ids,
|
| 689 |
+
inputs_embeds=inputs_embeds
|
| 690 |
+
)
|
| 691 |
+
# Get <mask> token representation
|
| 692 |
+
sequence_output, pooled_output = outputs[:2]
|
| 693 |
+
sequence_mask_output = sequence_output[torch.arange(sequence_output.size(0)), mask_pos]
|
| 694 |
+
# Logits over vocabulary tokens
|
| 695 |
+
prediction_mask_scores = self.cls(sequence_mask_output)
|
| 696 |
+
|
| 697 |
+
# Exit early and only return mask logits.
|
| 698 |
+
if return_full_softmax:
|
| 699 |
+
return prediction_mask_scores
|
| 700 |
+
|
| 701 |
+
# Return logits for each label
|
| 702 |
+
logits = []
|
| 703 |
+
for label_id in range(len(self.label_word_list)):
|
| 704 |
+
logits.append(prediction_mask_scores[:, self.label_word_list[label_id]].unsqueeze(-1))
|
| 705 |
+
logits = torch.cat(logits, -1)
|
| 706 |
+
|
| 707 |
+
# Regression task
|
| 708 |
+
if self.config.num_labels == 1:
|
| 709 |
+
logsoftmax = nn.LogSoftmax(-1)
|
| 710 |
+
logits = logsoftmax(logits) # Log prob of right polarity
|
| 711 |
+
|
| 712 |
+
return logits, sequence_mask_output
|
| 713 |
+
|
| 714 |
+
def forward(
|
| 715 |
+
self,
|
| 716 |
+
input_ids=None,
|
| 717 |
+
attention_mask=None,
|
| 718 |
+
token_type_ids=None,
|
| 719 |
+
mask_pos=None,
|
| 720 |
+
labels=None,
|
| 721 |
+
inputs_embeds=None,
|
| 722 |
+
block_flag=None,
|
| 723 |
+
return_dict=None,
|
| 724 |
+
):
|
| 725 |
+
|
| 726 |
+
logits, sequence_mask_output = self.encode(input_ids, attention_mask, token_type_ids, mask_pos, inputs_embeds)
|
| 727 |
+
loss = None
|
| 728 |
+
if labels is not None:
|
| 729 |
+
if self.num_labels == 1:
|
| 730 |
+
# Regression task
|
| 731 |
+
loss_fct = nn.KLDivLoss(log_target=True)
|
| 732 |
+
labels = torch.stack([1 - (labels.view(-1) - self.lb) / (self.ub - self.lb), (labels.view(-1) - self.lb) / (self.ub - self.lb)], -1)
|
| 733 |
+
loss = loss_fct(logits.view(-1, 2), labels)
|
| 734 |
+
else:
|
| 735 |
+
|
| 736 |
+
if labels.shape == logits.shape:
|
| 737 |
+
loss = F.kl_div(F.log_softmax(logits, dim=-1, dtype=torch.float32),
|
| 738 |
+
labels, reduction="batchmean")
|
| 739 |
+
else:
|
| 740 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 741 |
+
|
| 742 |
+
loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
| 743 |
+
|
| 744 |
+
output = (logits,)
|
| 745 |
+
if self.num_labels == 1:
|
| 746 |
+
# Regression output
|
| 747 |
+
output = (torch.exp(logits[..., 1].unsqueeze(-1)) * (self.ub - self.lb) + self.lb,)
|
| 748 |
+
|
| 749 |
+
if not return_dict:
|
| 750 |
+
return ((loss,) + output) if loss is not None else output
|
| 751 |
+
|
| 752 |
+
return SequenceClassifierOutput(
|
| 753 |
+
loss=loss,
|
| 754 |
+
logits=logits,
|
| 755 |
+
)
|
| 756 |
+
|
| 757 |
+
|
| 758 |
+
"""
|
| 759 |
+
P-tuning RoBERTa
|
| 760 |
+
"""
|
| 761 |
+
class PromptRobertaPtuningForSequenceClassification(RobertaPreTrainedModel):
|
| 762 |
+
|
| 763 |
+
def __init__(self, config):
|
| 764 |
+
super().__init__(config)
|
| 765 |
+
self.num_labels = config.num_labels
|
| 766 |
+
self.pre_seq_len = self.config.pre_seq_len
|
| 767 |
+
self.hidden_size = self.config.hidden_size
|
| 768 |
+
# backbone
|
| 769 |
+
self.roberta = RobertaModel(config)
|
| 770 |
+
if self.config.use_freezing:
|
| 771 |
+
self.roberta = freezer.freeze_lm(self.roberta)
|
| 772 |
+
# mlm head
|
| 773 |
+
self.cls = RobertaLMHead(config)
|
| 774 |
+
# prompt encoder
|
| 775 |
+
self.prompt_encoder = None
|
| 776 |
+
# plm embedding layer
|
| 777 |
+
self.backbone_embeddings = self.roberta.embeddings.word_embeddings
|
| 778 |
+
# prompt embedding layer
|
| 779 |
+
self.prompt_embeddings = torch.nn.Embedding(self.pre_seq_len, self.hidden_size)
|
| 780 |
+
|
| 781 |
+
self.init_weights()
|
| 782 |
+
|
| 783 |
+
# These attributes should be assigned once the model is initialized
|
| 784 |
+
self.label_word_list = torch.Tensor(self.config.label_word_list).long().to(self.roberta.device)
|
| 785 |
+
|
| 786 |
+
# For regression
|
| 787 |
+
self.lb = None
|
| 788 |
+
self.ub = None
|
| 789 |
+
|
| 790 |
+
# For label search.
|
| 791 |
+
self.return_full_softmax = None
|
| 792 |
+
|
| 793 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
| 794 |
+
if use_freezing:
|
| 795 |
+
self.roberta = freezer.freeze_lm(self.roberta)
|
| 796 |
+
else:
|
| 797 |
+
self.roberta = freezer.unfreeze_lm(self.roberta)
|
| 798 |
+
|
| 799 |
+
|
| 800 |
+
def generate_continuous_prompt_inputs(self, input_ids, block_flag=None, reparameterization=False):
|
| 801 |
+
"""
|
| 802 |
+
Generate continuous prompt embedding
|
| 803 |
+
"""
|
| 804 |
+
inputs_embeds = self.backbone_embeddings(input_ids)
|
| 805 |
+
|
| 806 |
+
batch_size = inputs_embeds.shape[0]
|
| 807 |
+
if block_flag is None:
|
| 808 |
+
# the first token is set 1, others are set 0
|
| 809 |
+
block_flag = torch.zeros_like(input_ids).long().to(inputs_embeds.device)
|
| 810 |
+
block_flag[:, 0] = 1
|
| 811 |
+
try:
|
| 812 |
+
replace_embeds = self.prompt_embeddings(
|
| 813 |
+
torch.LongTensor(list(range(self.pre_seq_len))).to(inputs_embeds.device))
|
| 814 |
+
except:
|
| 815 |
+
import pdb
|
| 816 |
+
pdb.set_trace()
|
| 817 |
+
replace_embeds = self.prompt_embeddings(torch.LongTensor(list(range(self.pre_seq_len))))
|
| 818 |
+
replace_embeds = replace_embeds.unsqueeze(0) # [batch_size, prompt_length, embed_size]
|
| 819 |
+
|
| 820 |
+
if self.prompt_encoder is not None:
|
| 821 |
+
replace_embeds = self.prompt_encoder(replace_embeds)
|
| 822 |
+
|
| 823 |
+
# edit by wjn
|
| 824 |
+
if reparameterization:
|
| 825 |
+
# blocked_indices = (block_flag == 1).nonzero(as_tuple=False).reshape((batch_size, self.pre_seq_len, 2))[:, :, 1]
|
| 826 |
+
blocked_indices = (block_flag == 1).nonzero()
|
| 827 |
+
# reparameterization
|
| 828 |
+
for bidx in range(batch_size):
|
| 829 |
+
for i in range(blocked_indices.shape[1]):
|
| 830 |
+
inputs_embeds[bidx, blocked_indices[bidx, i], :] = replace_embeds[:, i, :].squeeze()
|
| 831 |
+
else:
|
| 832 |
+
replace_embeds = replace_embeds.expand(batch_size, self.pre_seq_len, -1).to(inputs_embeds.device)
|
| 833 |
+
inputs_embeds = torch.cat((replace_embeds, inputs_embeds), dim=1)
|
| 834 |
+
return inputs_embeds
|
| 835 |
+
|
| 836 |
+
def encode(self, input_ids=None, attention_mask=None, token_type_ids=None, mask_pos=None, inputs_embeds=None, return_full_softmax=False):
|
| 837 |
+
"""
|
| 838 |
+
Encoding and obtain logits at masked position
|
| 839 |
+
"""
|
| 840 |
+
batch_size = inputs_embeds.shape[0]
|
| 841 |
+
if mask_pos is not None:
|
| 842 |
+
mask_pos = mask_pos.squeeze()
|
| 843 |
+
# Encode everything
|
| 844 |
+
if inputs_embeds is None:
|
| 845 |
+
outputs = self.roberta(
|
| 846 |
+
input_ids,
|
| 847 |
+
attention_mask=attention_mask,
|
| 848 |
+
token_type_ids=token_type_ids
|
| 849 |
+
)
|
| 850 |
+
else:
|
| 851 |
+
|
| 852 |
+
if inputs_embeds.shape[1] == attention_mask.shape[1]:
|
| 853 |
+
outputs = self.roberta(
|
| 854 |
+
None,
|
| 855 |
+
attention_mask=attention_mask,
|
| 856 |
+
token_type_ids=token_type_ids,
|
| 857 |
+
inputs_embeds=inputs_embeds
|
| 858 |
+
)
|
| 859 |
+
# Get <mask> token representation
|
| 860 |
+
sequence_output, pooled_output = outputs[:2]
|
| 861 |
+
# sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
|
| 862 |
+
else:
|
| 863 |
+
if attention_mask is not None:
|
| 864 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).long().to(self.roberta.device)
|
| 865 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
| 866 |
+
if token_type_ids is not None:
|
| 867 |
+
prefix_token_type_ids = torch.zeros(batch_size, self.pre_seq_len).long().to(self.roberta.device)
|
| 868 |
+
token_type_ids = torch.cat((prefix_token_type_ids, token_type_ids), dim=1)
|
| 869 |
+
outputs = self.roberta(
|
| 870 |
+
None,
|
| 871 |
+
attention_mask=attention_mask,
|
| 872 |
+
token_type_ids=token_type_ids,
|
| 873 |
+
inputs_embeds=inputs_embeds
|
| 874 |
+
)
|
| 875 |
+
# Get <mask> token representation
|
| 876 |
+
sequence_output, pooled_output = outputs[:2]
|
| 877 |
+
sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
|
| 878 |
+
|
| 879 |
+
sequence_mask_output = sequence_output[torch.arange(sequence_output.size(0)), mask_pos]
|
| 880 |
+
# Logits over vocabulary tokens
|
| 881 |
+
prediction_mask_scores = self.cls(sequence_mask_output)
|
| 882 |
+
|
| 883 |
+
# Exit early and only return mask logits.
|
| 884 |
+
if return_full_softmax:
|
| 885 |
+
return prediction_mask_scores
|
| 886 |
+
|
| 887 |
+
# Return logits for each label
|
| 888 |
+
logits = []
|
| 889 |
+
for label_id in range(len(self.label_word_list)):
|
| 890 |
+
logits.append(prediction_mask_scores[:, self.label_word_list[label_id]].unsqueeze(-1))
|
| 891 |
+
logits = torch.cat(logits, -1)
|
| 892 |
+
|
| 893 |
+
# Regression task
|
| 894 |
+
if self.config.num_labels == 1:
|
| 895 |
+
logsoftmax = nn.LogSoftmax(-1)
|
| 896 |
+
logits = logsoftmax(logits) # Log prob of right polarity
|
| 897 |
+
|
| 898 |
+
return logits, sequence_mask_output
|
| 899 |
+
|
| 900 |
+
def forward(
|
| 901 |
+
self,
|
| 902 |
+
input_ids=None,
|
| 903 |
+
attention_mask=None,
|
| 904 |
+
token_type_ids=None,
|
| 905 |
+
mask_pos=None,
|
| 906 |
+
labels=None,
|
| 907 |
+
inputs_embeds=None,
|
| 908 |
+
block_flag=None,
|
| 909 |
+
return_dict=None,
|
| 910 |
+
):
|
| 911 |
+
|
| 912 |
+
inputs_embeds = self.generate_continuous_prompt_inputs(input_ids, block_flag)
|
| 913 |
+
logits, sequence_mask_output = self.encode(input_ids, attention_mask, token_type_ids, mask_pos, inputs_embeds)
|
| 914 |
+
loss = None
|
| 915 |
+
if labels is not None:
|
| 916 |
+
if self.num_labels == 1:
|
| 917 |
+
# Regression task
|
| 918 |
+
loss_fct = nn.KLDivLoss(log_target=True)
|
| 919 |
+
labels = torch.stack([1 - (labels.view(-1) - self.lb) / (self.ub - self.lb), (labels.view(-1) - self.lb) / (self.ub - self.lb)], -1)
|
| 920 |
+
loss = loss_fct(logits.view(-1, 2), labels)
|
| 921 |
+
else:
|
| 922 |
+
|
| 923 |
+
if labels.shape == logits.shape:
|
| 924 |
+
loss = F.kl_div(F.log_softmax(logits, dim=-1, dtype=torch.float32),
|
| 925 |
+
labels, reduction="batchmean")
|
| 926 |
+
else:
|
| 927 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 928 |
+
|
| 929 |
+
loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
| 930 |
+
|
| 931 |
+
output = (logits,)
|
| 932 |
+
if self.num_labels == 1:
|
| 933 |
+
# Regression output
|
| 934 |
+
output = (torch.exp(logits[..., 1].unsqueeze(-1)) * (self.ub - self.lb) + self.lb,)
|
| 935 |
+
|
| 936 |
+
if not return_dict:
|
| 937 |
+
return ((loss,) + output) if loss is not None else output
|
| 938 |
+
|
| 939 |
+
return SequenceClassifierOutput(
|
| 940 |
+
loss=loss,
|
| 941 |
+
logits=logits,
|
| 942 |
+
)
|
| 943 |
+
|
| 944 |
+
|
| 945 |
+
"""
|
| 946 |
+
Prefix-tuning RoBERTa
|
| 947 |
+
"""
|
| 948 |
+
class PromptRobertaPrefixForSequenceClassification(RobertaPreTrainedModel):
|
| 949 |
+
|
| 950 |
+
def __init__(self, config):
|
| 951 |
+
super().__init__(config)
|
| 952 |
+
|
| 953 |
+
|
| 954 |
+
self.num_labels = config.num_labels
|
| 955 |
+
self.pre_seq_len = self.config.pre_seq_len
|
| 956 |
+
self.hidden_size = self.config.hidden_size
|
| 957 |
+
|
| 958 |
+
self.n_layer = config.num_hidden_layers
|
| 959 |
+
self.n_head = config.num_attention_heads
|
| 960 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
| 961 |
+
|
| 962 |
+
# backbone
|
| 963 |
+
self.robert = RobertaModel(config)
|
| 964 |
+
if self.config.use_freezing:
|
| 965 |
+
self.robert = freezer.freeze_lm(self.robert)
|
| 966 |
+
# mlm head
|
| 967 |
+
self.cls = RobertaLMHead(config)
|
| 968 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
| 969 |
+
# plm embedding layer
|
| 970 |
+
self.backbone_embeddings = self.robert.embeddings.word_embeddings
|
| 971 |
+
# prompt embedding layer
|
| 972 |
+
self.prompt_embeddings = torch.nn.Embedding(self.pre_seq_len, self.hidden_size)
|
| 973 |
+
# prefix encoder
|
| 974 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
| 975 |
+
self.prefix_encoder = PrefixEncoder(config)
|
| 976 |
+
|
| 977 |
+
self.init_weights()
|
| 978 |
+
|
| 979 |
+
# These attributes should be assigned once the model is initialized
|
| 980 |
+
self.label_word_list = torch.Tensor(self.config.label_word_list).long().to(self.robert.device)
|
| 981 |
+
|
| 982 |
+
# For regression
|
| 983 |
+
self.lb = None
|
| 984 |
+
self.ub = None
|
| 985 |
+
|
| 986 |
+
# For label search.
|
| 987 |
+
self.return_full_softmax = None
|
| 988 |
+
|
| 989 |
+
# For regression
|
| 990 |
+
self.lb = None
|
| 991 |
+
self.ub = None
|
| 992 |
+
|
| 993 |
+
# For label search.
|
| 994 |
+
self.return_full_softmax = None
|
| 995 |
+
|
| 996 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
| 997 |
+
if use_freezing:
|
| 998 |
+
self.robert = freezer.freeze_lm(self.robert)
|
| 999 |
+
else:
|
| 1000 |
+
self.robert = freezer.unfreeze_lm(self.robert)
|
| 1001 |
+
|
| 1002 |
+
def get_prompt(self, batch_size):
|
| 1003 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.robert.device)
|
| 1004 |
+
past_key_values = self.prefix_encoder(prefix_tokens)
|
| 1005 |
+
# bsz, seqlen, _ = past_key_values.shape
|
| 1006 |
+
past_key_values = past_key_values.view(
|
| 1007 |
+
batch_size,
|
| 1008 |
+
self.pre_seq_len,
|
| 1009 |
+
self.n_layer * 2,
|
| 1010 |
+
self.n_head,
|
| 1011 |
+
self.n_embd
|
| 1012 |
+
)
|
| 1013 |
+
past_key_values = self.dropout(past_key_values)
|
| 1014 |
+
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
|
| 1015 |
+
return past_key_values
|
| 1016 |
+
|
| 1017 |
+
def embed_encode(self, input_ids):
|
| 1018 |
+
embedding_output = self.robert.embeddings.word_embeddings(input_ids)
|
| 1019 |
+
return embedding_output
|
| 1020 |
+
|
| 1021 |
+
def encode(self, input_ids=None, attention_mask=None, token_type_ids=None, mask_pos=None, inputs_embeds=None, return_full_softmax=False):
|
| 1022 |
+
batch_size = input_ids.size(0)
|
| 1023 |
+
|
| 1024 |
+
# add prefix for prompt-tuning
|
| 1025 |
+
past_key_values = self.get_prompt(batch_size=batch_size)
|
| 1026 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.robert.device)
|
| 1027 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
| 1028 |
+
|
| 1029 |
+
if mask_pos is not None:
|
| 1030 |
+
mask_pos = mask_pos.squeeze()
|
| 1031 |
+
|
| 1032 |
+
# Encode everything
|
| 1033 |
+
outputs = self.robert(
|
| 1034 |
+
input_ids,
|
| 1035 |
+
attention_mask=attention_mask,
|
| 1036 |
+
token_type_ids=token_type_ids,
|
| 1037 |
+
past_key_values=past_key_values,
|
| 1038 |
+
)
|
| 1039 |
+
# Get <mask> token representation
|
| 1040 |
+
sequence_output, pooled_output = outputs[:2]
|
| 1041 |
+
# sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
|
| 1042 |
+
sequence_mask_output = sequence_output[torch.arange(sequence_output.size(0)), mask_pos]
|
| 1043 |
+
|
| 1044 |
+
# Logits over vocabulary tokens
|
| 1045 |
+
prediction_mask_scores = self.cls(sequence_mask_output)
|
| 1046 |
+
|
| 1047 |
+
# Exit early and only return mask logits.
|
| 1048 |
+
if return_full_softmax:
|
| 1049 |
+
return prediction_mask_scores
|
| 1050 |
+
|
| 1051 |
+
# Return logits for each label
|
| 1052 |
+
logits = []
|
| 1053 |
+
for label_id in range(len(self.label_word_list)):
|
| 1054 |
+
logits.append(prediction_mask_scores[:, self.label_word_list[label_id]].unsqueeze(-1))
|
| 1055 |
+
logits = torch.cat(logits, -1)
|
| 1056 |
+
|
| 1057 |
+
# Regression task
|
| 1058 |
+
if self.config.num_labels == 1:
|
| 1059 |
+
logsoftmax = nn.LogSoftmax(-1)
|
| 1060 |
+
logits = logsoftmax(logits) # Log prob of right polarity
|
| 1061 |
+
|
| 1062 |
+
return logits, sequence_mask_output
|
| 1063 |
+
|
| 1064 |
+
|
| 1065 |
+
def forward(
|
| 1066 |
+
self,
|
| 1067 |
+
input_ids=None,
|
| 1068 |
+
attention_mask=None,
|
| 1069 |
+
token_type_ids=None,
|
| 1070 |
+
mask_pos=None,
|
| 1071 |
+
labels=None,
|
| 1072 |
+
inputs_embeds=None,
|
| 1073 |
+
block_flag=None,
|
| 1074 |
+
return_dict=None,
|
| 1075 |
+
):
|
| 1076 |
+
|
| 1077 |
+
logits, sequence_mask_output = self.encode(input_ids, attention_mask, token_type_ids, mask_pos, inputs_embeds)
|
| 1078 |
+
|
| 1079 |
+
loss = None
|
| 1080 |
+
if labels is not None:
|
| 1081 |
+
if self.num_labels == 1:
|
| 1082 |
+
# Regression task
|
| 1083 |
+
loss_fct = nn.KLDivLoss(log_target=True)
|
| 1084 |
+
labels = torch.stack([1 - (labels.view(-1) - self.lb) / (self.ub - self.lb), (labels.view(-1) - self.lb) / (self.ub - self.lb)], -1)
|
| 1085 |
+
loss = loss_fct(logits.view(-1, 2), labels)
|
| 1086 |
+
else:
|
| 1087 |
+
|
| 1088 |
+
if labels.shape == logits.shape:
|
| 1089 |
+
loss = F.kl_div(F.log_softmax(logits, dim=-1, dtype=torch.float32),
|
| 1090 |
+
labels, reduction="batchmean")
|
| 1091 |
+
else:
|
| 1092 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 1093 |
+
|
| 1094 |
+
loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
| 1095 |
+
|
| 1096 |
+
output = (logits,)
|
| 1097 |
+
if self.num_labels == 1:
|
| 1098 |
+
# Regression output
|
| 1099 |
+
output = (torch.exp(logits[..., 1].unsqueeze(-1)) * (self.ub - self.lb) + self.lb,)
|
| 1100 |
+
|
| 1101 |
+
if not return_dict:
|
| 1102 |
+
return ((loss,) + output) if loss is not None else output
|
| 1103 |
+
|
| 1104 |
+
return SequenceClassifierOutput(
|
| 1105 |
+
loss=loss,
|
| 1106 |
+
logits=logits,
|
| 1107 |
+
)
|
| 1108 |
+
|
| 1109 |
+
"""
|
| 1110 |
+
Adapter-tuning RoBERTa
|
| 1111 |
+
"""
|
| 1112 |
+
class PromptRobertaAdapterForSequenceClassification(RobertaPreTrainedModel):
|
| 1113 |
+
|
| 1114 |
+
def __init__(self, config):
|
| 1115 |
+
super().__init__(config)
|
| 1116 |
+
self.num_labels = config.num_labels
|
| 1117 |
+
self.roberta = RobertaAdaModel(config)
|
| 1118 |
+
self.cls = RobertaLMHead(config)
|
| 1119 |
+
self.init_weights()
|
| 1120 |
+
|
| 1121 |
+
if self.config.use_freezing:
|
| 1122 |
+
self.roberta = freezer.freeze_lm_component(self.roberta, "adapter")
|
| 1123 |
+
|
| 1124 |
+
# These attributes should be assigned once the model is initialized
|
| 1125 |
+
self.model_args = None
|
| 1126 |
+
self.data_args = None
|
| 1127 |
+
self.label_word_list = torch.Tensor(self.config.label_word_list).long().to(self.roberta.device)
|
| 1128 |
+
|
| 1129 |
+
# For regression
|
| 1130 |
+
self.lb = None
|
| 1131 |
+
self.ub = None
|
| 1132 |
+
|
| 1133 |
+
# For label search.
|
| 1134 |
+
self.return_full_softmax = None
|
| 1135 |
+
|
| 1136 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
| 1137 |
+
if use_freezing:
|
| 1138 |
+
self.roberta = freezer.freeze_lm_component(self.roberta, "adapter")
|
| 1139 |
+
else:
|
| 1140 |
+
self.roberta = freezer.unfreeze_lm(self.berobertart)
|
| 1141 |
+
|
| 1142 |
+
def embed_encode(self, input_ids):
|
| 1143 |
+
embedding_output = self.roberta.embeddings.word_embeddings(input_ids)
|
| 1144 |
+
return embedding_output
|
| 1145 |
+
|
| 1146 |
+
def encode(self, input_ids=None, attention_mask=None, token_type_ids=None, mask_pos=None, inputs_embeds=None, return_full_softmax=False):
|
| 1147 |
+
batch_size = input_ids.size(0)
|
| 1148 |
+
|
| 1149 |
+
if mask_pos is not None:
|
| 1150 |
+
mask_pos = mask_pos.squeeze()
|
| 1151 |
+
|
| 1152 |
+
# Encode everything
|
| 1153 |
+
if inputs_embeds is None:
|
| 1154 |
+
outputs = self.roberta(
|
| 1155 |
+
input_ids,
|
| 1156 |
+
attention_mask=attention_mask,
|
| 1157 |
+
token_type_ids=token_type_ids
|
| 1158 |
+
)
|
| 1159 |
+
else:
|
| 1160 |
+
outputs = self.roberta(
|
| 1161 |
+
None,
|
| 1162 |
+
attention_mask=attention_mask,
|
| 1163 |
+
token_type_ids=token_type_ids,
|
| 1164 |
+
inputs_embeds=inputs_embeds
|
| 1165 |
+
)
|
| 1166 |
+
|
| 1167 |
+
# Get <mask> token representation
|
| 1168 |
+
sequence_output, pooled_output = outputs[:2]
|
| 1169 |
+
sequence_mask_output = sequence_output[torch.arange(sequence_output.size(0)), mask_pos]
|
| 1170 |
+
|
| 1171 |
+
# Logits over vocabulary tokens
|
| 1172 |
+
prediction_mask_scores = self.cls(sequence_mask_output)
|
| 1173 |
+
|
| 1174 |
+
# Exit early and only return mask logits.
|
| 1175 |
+
if return_full_softmax:
|
| 1176 |
+
return prediction_mask_scores
|
| 1177 |
+
|
| 1178 |
+
# Return logits for each label
|
| 1179 |
+
logits = []
|
| 1180 |
+
for label_id in range(len(self.label_word_list)):
|
| 1181 |
+
logits.append(prediction_mask_scores[:, self.label_word_list[label_id]].unsqueeze(-1))
|
| 1182 |
+
logits = torch.cat(logits, -1)
|
| 1183 |
+
|
| 1184 |
+
# Regression task
|
| 1185 |
+
if self.config.num_labels == 1:
|
| 1186 |
+
logsoftmax = nn.LogSoftmax(-1)
|
| 1187 |
+
logits = logsoftmax(logits) # Log prob of right polarity
|
| 1188 |
+
|
| 1189 |
+
return logits, sequence_mask_output
|
| 1190 |
+
|
| 1191 |
+
|
| 1192 |
+
def forward(
|
| 1193 |
+
self,
|
| 1194 |
+
input_ids=None,
|
| 1195 |
+
attention_mask=None,
|
| 1196 |
+
token_type_ids=None,
|
| 1197 |
+
mask_pos=None,
|
| 1198 |
+
labels=None,
|
| 1199 |
+
inputs_embeds=None,
|
| 1200 |
+
block_flag=None,
|
| 1201 |
+
return_dict=None,
|
| 1202 |
+
):
|
| 1203 |
+
|
| 1204 |
+
logits, sequence_mask_output = self.encode(input_ids, attention_mask, token_type_ids, mask_pos, inputs_embeds)
|
| 1205 |
+
|
| 1206 |
+
loss = None
|
| 1207 |
+
if labels is not None:
|
| 1208 |
+
if self.num_labels == 1:
|
| 1209 |
+
# Regression task
|
| 1210 |
+
loss_fct = nn.KLDivLoss(log_target=True)
|
| 1211 |
+
labels = torch.stack([1 - (labels.view(-1) - self.lb) / (self.ub - self.lb), (labels.view(-1) - self.lb) / (self.ub - self.lb)], -1)
|
| 1212 |
+
loss = loss_fct(logits.view(-1, 2), labels)
|
| 1213 |
+
else:
|
| 1214 |
+
|
| 1215 |
+
if labels.shape == logits.shape:
|
| 1216 |
+
loss = F.kl_div(F.log_softmax(logits, dim=-1, dtype=torch.float32),
|
| 1217 |
+
labels, reduction="batchmean")
|
| 1218 |
+
else:
|
| 1219 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 1220 |
+
|
| 1221 |
+
loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
| 1222 |
+
|
| 1223 |
+
output = (logits,)
|
| 1224 |
+
if self.num_labels == 1:
|
| 1225 |
+
# Regression output
|
| 1226 |
+
output = (torch.exp(logits[..., 1].unsqueeze(-1)) * (self.ub - self.lb) + self.lb,)
|
| 1227 |
+
|
| 1228 |
+
if not return_dict:
|
| 1229 |
+
return ((loss,) + output) if loss is not None else output
|
| 1230 |
+
|
| 1231 |
+
return SequenceClassifierOutput(
|
| 1232 |
+
loss=loss,
|
| 1233 |
+
logits=logits,
|
| 1234 |
+
)
|
| 1235 |
+
|
| 1236 |
+
|
| 1237 |
+
# class DebertaForPromptFinetuning(DebertaPreTrainedModel):
|
| 1238 |
+
# _keys_to_ignore_on_load_unexpected = [r"pooler"]
|
| 1239 |
+
# _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
| 1240 |
+
|
| 1241 |
+
# def __init__(self, config):
|
| 1242 |
+
# super().__init__(config)
|
| 1243 |
+
# self.num_labels = config.num_labels
|
| 1244 |
+
# #self.deberta = DebertaV2Model(config)
|
| 1245 |
+
|
| 1246 |
+
# self.deberta = DebertaModel(config)
|
| 1247 |
+
# self.cls = DebertaOnlyMLMHead(config)
|
| 1248 |
+
|
| 1249 |
+
# if self.config.use_freezing:
|
| 1250 |
+
# self.deberta = freezer.freeze_lm(self.deberta)
|
| 1251 |
+
|
| 1252 |
+
# self.pooler = ContextPooler(config)
|
| 1253 |
+
# output_dim = self.pooler.output_dim
|
| 1254 |
+
|
| 1255 |
+
# self.classifier = torch.nn.Linear(output_dim, self.num_labels)
|
| 1256 |
+
# drop_out = getattr(config, "cls_dropout", None)
|
| 1257 |
+
# drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
|
| 1258 |
+
|
| 1259 |
+
# self.dropout = StableDropout(drop_out)
|
| 1260 |
+
|
| 1261 |
+
# classification_list = [self.pooler, self.dropout,self.classifier]
|
| 1262 |
+
|
| 1263 |
+
# self.classifier = nn.Sequential(*classification_list)
|
| 1264 |
+
# # self.cls = DebertaV2OnlyMLMHead(config)
|
| 1265 |
+
|
| 1266 |
+
# self.map = nn.Linear(config.hidden_size, config.hidden_size)
|
| 1267 |
+
# self.init_weights()
|
| 1268 |
+
|
| 1269 |
+
# # These attributes should be assigned once the model is initialized
|
| 1270 |
+
# self.model_args = None
|
| 1271 |
+
# self.data_args = None
|
| 1272 |
+
# self.label_word_list = torch.Tensor(self.config.label_word_list).long().to(self.bert.device)
|
| 1273 |
+
# self.K = 1
|
| 1274 |
+
# self.step_size=1e-5
|
| 1275 |
+
# # import pdb
|
| 1276 |
+
# # pdb.set_trace()
|
| 1277 |
+
# #self.step_size=config.step_size
|
| 1278 |
+
|
| 1279 |
+
# # For regression
|
| 1280 |
+
# self.lb = None
|
| 1281 |
+
# self.ub = None
|
| 1282 |
+
|
| 1283 |
+
# self.pre_seq_len = self.config.pre_seq_len
|
| 1284 |
+
# # For auto label search.
|
| 1285 |
+
# self.return_full_softmax = None
|
| 1286 |
+
|
| 1287 |
+
# def freeze_backbone(self, use_freezing: bool=True):
|
| 1288 |
+
# if use_freezing:
|
| 1289 |
+
# self.deberta = freezer.freeze_lm(self.deberta)
|
| 1290 |
+
# else:
|
| 1291 |
+
# self.deberta = freezer.unfreeze_lm(self.deberta)
|
| 1292 |
+
|
| 1293 |
+
|
| 1294 |
+
|
| 1295 |
+
# def embed_encode(self, input_ids):
|
| 1296 |
+
# embedding_output = self.deberta.embeddings.word_embeddings(input_ids)
|
| 1297 |
+
# return embedding_output
|
| 1298 |
+
|
| 1299 |
+
# def encode(self, input_ids=None, attention_mask=None, token_type_ids=None, mask_pos=None, inputs_embeds=None,
|
| 1300 |
+
# return_full_softmax=False):
|
| 1301 |
+
# batch_size = input_ids.size(0)
|
| 1302 |
+
|
| 1303 |
+
# if mask_pos is not None:
|
| 1304 |
+
# mask_pos = mask_pos.squeeze()
|
| 1305 |
+
|
| 1306 |
+
|
| 1307 |
+
# # Encode everything
|
| 1308 |
+
# if inputs_embeds is None:
|
| 1309 |
+
# outputs = self.deberta(
|
| 1310 |
+
# input_ids,
|
| 1311 |
+
# attention_mask=attention_mask,
|
| 1312 |
+
# token_type_ids=token_type_ids
|
| 1313 |
+
# )
|
| 1314 |
+
# else:
|
| 1315 |
+
# outputs = self.deberta(
|
| 1316 |
+
# None,
|
| 1317 |
+
# attention_mask=attention_mask,
|
| 1318 |
+
# token_type_ids=token_type_ids,
|
| 1319 |
+
# inputs_embeds=inputs_embeds
|
| 1320 |
+
# )
|
| 1321 |
+
|
| 1322 |
+
# # Get <mask> token representation
|
| 1323 |
+
# sequence_output = outputs[0]
|
| 1324 |
+
# sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
|
| 1325 |
+
# sequence_mask_output = sequence_output[torch.arange(sequence_output.size(0)), mask_pos]
|
| 1326 |
+
|
| 1327 |
+
# # Logits over vocabulary tokens
|
| 1328 |
+
# prediction_mask_scores = self.cls(sequence_mask_output)
|
| 1329 |
+
|
| 1330 |
+
# # sequence_mask_output = self.lm_head.dense(sequence_mask_output)
|
| 1331 |
+
|
| 1332 |
+
# # Exit early and only return mask logits.
|
| 1333 |
+
# if return_full_softmax:
|
| 1334 |
+
# return prediction_mask_scores
|
| 1335 |
+
|
| 1336 |
+
# # Return logits for each label
|
| 1337 |
+
# logits = []
|
| 1338 |
+
# for label_id in range(len(self.label_word_list)):
|
| 1339 |
+
# logits.append(prediction_mask_scores[:, self.label_word_list[label_id]].unsqueeze(-1))
|
| 1340 |
+
# logits = torch.cat(logits, -1)
|
| 1341 |
+
|
| 1342 |
+
# # Regression task
|
| 1343 |
+
# if self.config.num_labels == 1:
|
| 1344 |
+
# logsoftmax = nn.LogSoftmax(-1)
|
| 1345 |
+
# logits = logsoftmax(logits) # Log prob of right polarity
|
| 1346 |
+
|
| 1347 |
+
# if self.model_args.hybrid == 1:
|
| 1348 |
+
# cls_logits = self.classifier(sequence_output)
|
| 1349 |
+
# return (logits, cls_logits), sequence_mask_output
|
| 1350 |
+
|
| 1351 |
+
# return logits, sequence_mask_output
|
| 1352 |
+
|
| 1353 |
+
# def forward(
|
| 1354 |
+
# self,
|
| 1355 |
+
# input_ids=None,
|
| 1356 |
+
# attention_mask=None,
|
| 1357 |
+
# token_type_ids=None,
|
| 1358 |
+
# mask_pos=None,
|
| 1359 |
+
# labels=None,
|
| 1360 |
+
# inputs_embeds=None,
|
| 1361 |
+
# fwd_type=0,
|
| 1362 |
+
# block_flag=None
|
| 1363 |
+
# ):
|
| 1364 |
+
|
| 1365 |
+
# if fwd_type == 2:
|
| 1366 |
+
# assert inputs_embeds is not None
|
| 1367 |
+
# return self.encode(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids,
|
| 1368 |
+
# mask_pos=mask_pos, inputs_embeds=inputs_embeds)
|
| 1369 |
+
|
| 1370 |
+
# elif fwd_type == 1:
|
| 1371 |
+
# return self.embed_encode(input_ids)
|
| 1372 |
+
|
| 1373 |
+
|
| 1374 |
+
|
| 1375 |
+
# if (self.model_args.prompt_ptuning or self.model_args.prompt_prefix) and block_flag is not None:
|
| 1376 |
+
# inputs_embeds = self.generate_continuous_prompt_inputs(input_ids, block_flag)
|
| 1377 |
+
|
| 1378 |
+
# logits, sequence_mask_output = self.encode(input_ids, attention_mask, token_type_ids, mask_pos, inputs_embeds)
|
| 1379 |
+
|
| 1380 |
+
# if self.model_args.hybrid == 1:
|
| 1381 |
+
# logits = logits[0]
|
| 1382 |
+
# cls_logits = logits[1]
|
| 1383 |
+
|
| 1384 |
+
# loss = None
|
| 1385 |
+
# if labels is not None:
|
| 1386 |
+
# if self.num_labels == 1:
|
| 1387 |
+
# # Regression task
|
| 1388 |
+
# loss_fct = nn.KLDivLoss(log_target=True)
|
| 1389 |
+
# labels = torch.stack([1 - (labels.view(-1) - self.lb) / (self.ub - self.lb),
|
| 1390 |
+
# (labels.view(-1) - self.lb) / (self.ub - self.lb)], -1)
|
| 1391 |
+
# loss = loss_fct(logits.view(-1, 2), labels)
|
| 1392 |
+
# else:
|
| 1393 |
+
|
| 1394 |
+
# if labels.shape == logits.shape:
|
| 1395 |
+
# loss = F.kl_div(F.log_softmax(logits, dim=-1, dtype=torch.float32),
|
| 1396 |
+
# labels, reduction="batchmean")
|
| 1397 |
+
# else:
|
| 1398 |
+
# loss_fct = nn.CrossEntropyLoss()
|
| 1399 |
+
|
| 1400 |
+
# loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
| 1401 |
+
|
| 1402 |
+
# output = (logits,)
|
| 1403 |
+
# if self.num_labels == 1:
|
| 1404 |
+
# # Regression output
|
| 1405 |
+
# output = (torch.exp(logits[..., 1].unsqueeze(-1)) * (self.ub - self.lb) + self.lb,)
|
| 1406 |
+
|
| 1407 |
+
# return ((loss,) + output) if loss is not None else output
|
| 1408 |
+
|
| 1409 |
+
|
| 1410 |
+
|
| 1411 |
+
# # add by wjn
|
| 1412 |
+
# # Prefix-tuning for Deberta
|
| 1413 |
+
# class DebertaPrefixForPromptFinetuning(DebertaPreTrainedModel):
|
| 1414 |
+
|
| 1415 |
+
# def __init__(self, config):
|
| 1416 |
+
# super().__init__(config)
|
| 1417 |
+
# self.num_labels = config.num_labels
|
| 1418 |
+
# #self.deberta = DebertaV2Model(config)
|
| 1419 |
+
|
| 1420 |
+
# self.deberta = DebertaModel(config)
|
| 1421 |
+
# self.cls = DebertaOnlyMLMHead(config)
|
| 1422 |
+
|
| 1423 |
+
# self.pooler = ContextPooler(config)
|
| 1424 |
+
# output_dim = self.pooler.output_dim
|
| 1425 |
+
|
| 1426 |
+
# self.classifier = torch.nn.Linear(output_dim, self.num_labels)
|
| 1427 |
+
# drop_out = getattr(config, "cls_dropout", None)
|
| 1428 |
+
# drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
|
| 1429 |
+
|
| 1430 |
+
# self.dropout = StableDropout(drop_out)
|
| 1431 |
+
|
| 1432 |
+
# classification_list = [self.pooler, self.dropout,self.classifier]
|
| 1433 |
+
|
| 1434 |
+
# self.classifier = nn.Sequential(*classification_list)
|
| 1435 |
+
# # self.cls = DebertaV2OnlyMLMHead(config)
|
| 1436 |
+
|
| 1437 |
+
# self.map = nn.Linear(config.hidden_size, config.hidden_size)
|
| 1438 |
+
# self.init_weights()
|
| 1439 |
+
|
| 1440 |
+
# if self.config.use_freezing:
|
| 1441 |
+
# self.deberta = freezer.freeze_lm(self.deberta)
|
| 1442 |
+
|
| 1443 |
+
# self.pre_seq_len = config.pre_seq_len
|
| 1444 |
+
# self.n_layer = config.num_hidden_layers
|
| 1445 |
+
# self.n_head = config.num_attention_heads
|
| 1446 |
+
# self.n_embd = config.hidden_size // config.num_attention_heads
|
| 1447 |
+
|
| 1448 |
+
# self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
| 1449 |
+
# self.prefix_encoder = PrefixEncoder(config)
|
| 1450 |
+
|
| 1451 |
+
# # These attributes should be assigned once the model is initialized
|
| 1452 |
+
# self.model_args = None
|
| 1453 |
+
# self.data_args = None
|
| 1454 |
+
# self.label_word_list = torch.Tensor(self.config.label_word_list).long().to(self.bert.device)
|
| 1455 |
+
# self.K = 1
|
| 1456 |
+
# self.step_size=1e-5
|
| 1457 |
+
# # import pdb
|
| 1458 |
+
# # pdb.set_trace()
|
| 1459 |
+
# #self.step_size=config.step_size
|
| 1460 |
+
|
| 1461 |
+
# # For regression
|
| 1462 |
+
# self.lb = None
|
| 1463 |
+
# self.ub = None
|
| 1464 |
+
|
| 1465 |
+
|
| 1466 |
+
# # For auto label search.
|
| 1467 |
+
# self.return_full_softmax = None
|
| 1468 |
+
|
| 1469 |
+
# def freeze_backbone(self, use_freezing: bool=True):
|
| 1470 |
+
# if use_freezing:
|
| 1471 |
+
# self.deberta = freezer.freeze_lm(self.deberta)
|
| 1472 |
+
# else:
|
| 1473 |
+
# self.deberta = freezer.unfreeze_lm(self.deberta)
|
| 1474 |
+
|
| 1475 |
+
# def get_prompt(self, batch_size):
|
| 1476 |
+
# prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.deberta.device)
|
| 1477 |
+
# past_key_values = self.prefix_encoder(prefix_tokens)
|
| 1478 |
+
# # bsz, seqlen, _ = past_key_values.shape
|
| 1479 |
+
# past_key_values = past_key_values.view(
|
| 1480 |
+
# batch_size,
|
| 1481 |
+
# self.pre_seq_len,
|
| 1482 |
+
# self.n_layer * 2,
|
| 1483 |
+
# self.n_head,
|
| 1484 |
+
# self.n_embd
|
| 1485 |
+
# )
|
| 1486 |
+
# past_key_values = self.dropout(past_key_values)
|
| 1487 |
+
# past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
|
| 1488 |
+
# return past_key_values
|
| 1489 |
+
|
| 1490 |
+
|
| 1491 |
+
# def get_constrast_loss(self,
|
| 1492 |
+
# input_ids=None,
|
| 1493 |
+
# attention_mask=None,
|
| 1494 |
+
# mask_pos=None,
|
| 1495 |
+
# labels=None,
|
| 1496 |
+
# inputs_embeds=None):
|
| 1497 |
+
|
| 1498 |
+
# self.cos = nn.CosineSimilarity(dim=-1)
|
| 1499 |
+
|
| 1500 |
+
|
| 1501 |
+
# _, sequence_mask_output_1 = self.encode(input_ids, attention_mask, mask_pos, inputs_embeds)
|
| 1502 |
+
# _, sequence_mask_output_2 = self.encode(input_ids, attention_mask, mask_pos, inputs_embeds)
|
| 1503 |
+
|
| 1504 |
+
# sequence_mask_output_1= self.lm_head.dense(sequence_mask_output_1)
|
| 1505 |
+
# sequence_mask_output_2 = self.lm_head.dense(sequence_mask_output_2)
|
| 1506 |
+
# # input_args = [input_ids, attention_mask, mask_pos, labels, None, 1]
|
| 1507 |
+
# # embed = self.forward(*input_args)
|
| 1508 |
+
# #
|
| 1509 |
+
# # vat_args = [input_ids, attention_mask, mask_pos, labels, embed, 2]
|
| 1510 |
+
# #
|
| 1511 |
+
# # adv_logits, outputs = self.forward(*vat_args)
|
| 1512 |
+
# #
|
| 1513 |
+
# # logit_mask = F.softmax(logits, dim=-1)[torch.arange(adv_logits.size(0)), labels] > 0.7
|
| 1514 |
+
# #
|
| 1515 |
+
# # outputs = outputs[logit_mask]
|
| 1516 |
+
# # seq_outputs = sequence_mask_output[logit_mask]
|
| 1517 |
+
# # new_label = labels[logit_mask]
|
| 1518 |
+
# # #
|
| 1519 |
+
# # #
|
| 1520 |
+
# # rand_perm = torch.randperm(outputs.size(0))
|
| 1521 |
+
# # rand_outputs = outputs[rand_perm, :]
|
| 1522 |
+
# # rand_label = new_label[rand_perm]
|
| 1523 |
+
# # pair_label = (new_label == rand_label).long()
|
| 1524 |
+
# #
|
| 1525 |
+
# # seq_outputs = self.map(seq_outputs)
|
| 1526 |
+
# # rand_outputs = self.map(rand_outputs)
|
| 1527 |
+
|
| 1528 |
+
# pair_labels = (labels.unsqueeze(1) == labels.unsqueeze(0)).float()
|
| 1529 |
+
|
| 1530 |
+
# # import pdb
|
| 1531 |
+
# # pdb.set_trace()
|
| 1532 |
+
|
| 1533 |
+
# contra_loss = self.contra_lc(sequence_mask_output_1.unsqueeze(1), sequence_mask_output_2.unsqueeze(0), pair_labels)
|
| 1534 |
+
|
| 1535 |
+
# if torch.isnan(contra_loss):
|
| 1536 |
+
# return 0
|
| 1537 |
+
|
| 1538 |
+
# return contra_loss
|
| 1539 |
+
|
| 1540 |
+
# def embed_encode(self, input_ids):
|
| 1541 |
+
# embedding_output = self.deberta.embeddings.word_embeddings(input_ids)
|
| 1542 |
+
# return embedding_output
|
| 1543 |
+
|
| 1544 |
+
# def encode(self, input_ids=None, attention_mask=None, token_type_ids=None, mask_pos=None, inputs_embeds=None, return_full_softmax=False):
|
| 1545 |
+
# batch_size = input_ids.size(0)
|
| 1546 |
+
|
| 1547 |
+
# # add prefix for prompt-tuning
|
| 1548 |
+
# past_key_values = self.get_prompt(batch_size=batch_size)
|
| 1549 |
+
# prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.deberta.device)
|
| 1550 |
+
# attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
| 1551 |
+
|
| 1552 |
+
# if mask_pos is not None:
|
| 1553 |
+
# mask_pos = mask_pos.squeeze()
|
| 1554 |
+
|
| 1555 |
+
# # Encode everything
|
| 1556 |
+
|
| 1557 |
+
# outputs = self.deberta(
|
| 1558 |
+
# input_ids,
|
| 1559 |
+
# attention_mask=attention_mask,
|
| 1560 |
+
# token_type_ids=token_type_ids,
|
| 1561 |
+
# past_key_values=past_key_values,
|
| 1562 |
+
# )
|
| 1563 |
+
|
| 1564 |
+
|
| 1565 |
+
# # Get <mask> token representation
|
| 1566 |
+
# sequence_output, pooled_output = outputs[:2]
|
| 1567 |
+
# # sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
|
| 1568 |
+
# sequence_mask_output = sequence_output[torch.arange(sequence_output.size(0)), mask_pos]
|
| 1569 |
+
|
| 1570 |
+
# # Logits over vocabulary tokens
|
| 1571 |
+
# prediction_mask_scores = self.cls(sequence_mask_output)
|
| 1572 |
+
|
| 1573 |
+
# #sequence_mask_output = self.lm_head.dense(sequence_mask_output)
|
| 1574 |
+
|
| 1575 |
+
# # Exit early and only return mask logits.
|
| 1576 |
+
# if return_full_softmax:
|
| 1577 |
+
# return prediction_mask_scores
|
| 1578 |
+
|
| 1579 |
+
# # Return logits for each label
|
| 1580 |
+
# logits = []
|
| 1581 |
+
# for label_id in range(len(self.label_word_list)):
|
| 1582 |
+
# logits.append(prediction_mask_scores[:, self.label_word_list[label_id]].unsqueeze(-1))
|
| 1583 |
+
# logits = torch.cat(logits, -1)
|
| 1584 |
+
|
| 1585 |
+
# # Regression task
|
| 1586 |
+
# if self.config.num_labels == 1:
|
| 1587 |
+
# logsoftmax = nn.LogSoftmax(-1)
|
| 1588 |
+
# logits = logsoftmax(logits) # Log prob of right polarity
|
| 1589 |
+
|
| 1590 |
+
# if self.model_args.hybrid == 1:
|
| 1591 |
+
# cls_logits = self.classifier(sequence_output)
|
| 1592 |
+
# return (logits, cls_logits), sequence_mask_output
|
| 1593 |
+
|
| 1594 |
+
# return logits, sequence_mask_output
|
| 1595 |
+
|
| 1596 |
+
|
| 1597 |
+
# def forward(
|
| 1598 |
+
# self,
|
| 1599 |
+
# input_ids=None,
|
| 1600 |
+
# attention_mask=None,
|
| 1601 |
+
# token_type_ids=None,
|
| 1602 |
+
# mask_pos=None,
|
| 1603 |
+
# labels=None,
|
| 1604 |
+
# inputs_embeds=None,
|
| 1605 |
+
# fwd_type=0,
|
| 1606 |
+
# block_flag=None,
|
| 1607 |
+
# return_dict=None,
|
| 1608 |
+
# ):
|
| 1609 |
+
|
| 1610 |
+
# if fwd_type == 2:
|
| 1611 |
+
# assert inputs_embeds is not None
|
| 1612 |
+
# return self.encode(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids,
|
| 1613 |
+
# mask_pos=mask_pos, inputs_embeds=inputs_embeds)
|
| 1614 |
+
|
| 1615 |
+
# elif fwd_type == 1:
|
| 1616 |
+
# return self.embed_encode(input_ids)
|
| 1617 |
+
|
| 1618 |
+
|
| 1619 |
+
|
| 1620 |
+
# if (self.model_args.prompt_ptuning or self.model_args.prompt_prefix) and block_flag is not None:
|
| 1621 |
+
# inputs_embeds = self.generate_continuous_prompt_inputs(input_ids, block_flag)
|
| 1622 |
+
|
| 1623 |
+
# logits, sequence_mask_output = self.encode(input_ids, attention_mask, token_type_ids, mask_pos, inputs_embeds)
|
| 1624 |
+
|
| 1625 |
+
# if self.model_args.hybrid == 1:
|
| 1626 |
+
# logits = logits[0]
|
| 1627 |
+
# cls_logits = logits[1]
|
| 1628 |
+
|
| 1629 |
+
# loss = None
|
| 1630 |
+
# if labels is not None:
|
| 1631 |
+
# if self.num_labels == 1:
|
| 1632 |
+
# # Regression task
|
| 1633 |
+
# loss_fct = nn.KLDivLoss(log_target=True)
|
| 1634 |
+
# labels = torch.stack([1 - (labels.view(-1) - self.lb) / (self.ub - self.lb),
|
| 1635 |
+
# (labels.view(-1) - self.lb) / (self.ub - self.lb)], -1)
|
| 1636 |
+
# loss = loss_fct(logits.view(-1, 2), labels)
|
| 1637 |
+
# else:
|
| 1638 |
+
|
| 1639 |
+
# if labels.shape == logits.shape:
|
| 1640 |
+
# loss = F.kl_div(F.log_softmax(logits, dim=-1, dtype=torch.float32),
|
| 1641 |
+
# labels, reduction="batchmean")
|
| 1642 |
+
# else:
|
| 1643 |
+
# loss_fct = nn.CrossEntropyLoss()
|
| 1644 |
+
|
| 1645 |
+
# loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
| 1646 |
+
|
| 1647 |
+
# output = (logits,)
|
| 1648 |
+
# if self.num_labels == 1:
|
| 1649 |
+
# # Regression output
|
| 1650 |
+
# output = (torch.exp(logits[..., 1].unsqueeze(-1)) * (self.ub - self.lb) + self.lb,)
|
| 1651 |
+
|
| 1652 |
+
# if not return_dict:
|
| 1653 |
+
# return ((loss,) + output) if loss is not None else output
|
| 1654 |
+
|
| 1655 |
+
# return SequenceClassifierOutput(
|
| 1656 |
+
# loss=loss,
|
| 1657 |
+
# logits=logits,
|
| 1658 |
+
# )
|
| 1659 |
+
|
| 1660 |
+
|
| 1661 |
+
|
| 1662 |
+
|
| 1663 |
+
# class Debertav2ForPromptFinetuning(DebertaV2PreTrainedModel):
|
| 1664 |
+
# _keys_to_ignore_on_load_unexpected = [r"pooler"]
|
| 1665 |
+
# _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
| 1666 |
+
|
| 1667 |
+
# def __init__(self, config):
|
| 1668 |
+
# super().__init__(config)
|
| 1669 |
+
# self.num_labels = config.num_labels
|
| 1670 |
+
# self.deberta = DebertaV2Model(config)
|
| 1671 |
+
|
| 1672 |
+
# if self.config.use_freezing:
|
| 1673 |
+
# self.deberta = freezer.freeze_lm(self.deberta)
|
| 1674 |
+
# self.cls = DebertaV2OnlyMLMHead(config)
|
| 1675 |
+
|
| 1676 |
+
# #self.deberta = DebertaModel(config)
|
| 1677 |
+
# #self.cls = DebertaOnlyMLMHead(config)
|
| 1678 |
+
|
| 1679 |
+
# self.pooler = ContextPooler(config)
|
| 1680 |
+
# output_dim = self.pooler.output_dim
|
| 1681 |
+
|
| 1682 |
+
# self.classifier = torch.nn.Linear(output_dim, self.num_labels)
|
| 1683 |
+
# drop_out = getattr(config, "cls_dropout", None)
|
| 1684 |
+
# drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
|
| 1685 |
+
|
| 1686 |
+
# self.dropout = StableDropout(drop_out)
|
| 1687 |
+
|
| 1688 |
+
# classification_list = [self.pooler, self.dropout,self.classifier]
|
| 1689 |
+
|
| 1690 |
+
# self.classifier = nn.Sequential(*classification_list)
|
| 1691 |
+
# # self.cls = DebertaV2OnlyMLMHead(config)
|
| 1692 |
+
|
| 1693 |
+
# self.map = nn.Linear(config.hidden_size, config.hidden_size)
|
| 1694 |
+
# self.init_weights()
|
| 1695 |
+
|
| 1696 |
+
# # These attributes should be assigned once the model is initialized
|
| 1697 |
+
# self.model_args = None
|
| 1698 |
+
# self.data_args = None
|
| 1699 |
+
# self.label_word_list = torch.Tensor(self.config.label_word_list).long().to(self.bert.device)
|
| 1700 |
+
# self.K = 1
|
| 1701 |
+
# self.step_size=1e-5
|
| 1702 |
+
# # import pdb
|
| 1703 |
+
# # pdb.set_trace()
|
| 1704 |
+
# #self.step_size=config.step_size
|
| 1705 |
+
|
| 1706 |
+
# # For regression
|
| 1707 |
+
# self.lb = None
|
| 1708 |
+
# self.ub = None
|
| 1709 |
+
|
| 1710 |
+
# self.pre_seq_len = self.config.pre_seq_len
|
| 1711 |
+
# # For auto label search.
|
| 1712 |
+
# self.return_full_softmax = None
|
| 1713 |
+
|
| 1714 |
+
# def freeze_backbone(self, use_freezing: bool=True):
|
| 1715 |
+
# if use_freezing:
|
| 1716 |
+
# self.deberta = freezer.freeze_lm(self.deberta)
|
| 1717 |
+
# else:
|
| 1718 |
+
# self.deberta = freezer.unfreeze_lm(self.deberta)
|
| 1719 |
+
|
| 1720 |
+
# def embed_encode(self, input_ids):
|
| 1721 |
+
# embedding_output = self.deberta.embeddings.word_embeddings(input_ids)
|
| 1722 |
+
# return embedding_output
|
| 1723 |
+
|
| 1724 |
+
# def encode(self, input_ids=None, attention_mask=None, mask_pos=None, inputs_embeds=None, return_full_softmax=False):
|
| 1725 |
+
# batch_size = input_ids.size(0)
|
| 1726 |
+
|
| 1727 |
+
# if mask_pos is not None:
|
| 1728 |
+
# mask_pos = mask_pos.squeeze()
|
| 1729 |
+
|
| 1730 |
+
# # Encode everything
|
| 1731 |
+
# if inputs_embeds is None:
|
| 1732 |
+
# outputs = self.deberta(
|
| 1733 |
+
# input_ids,
|
| 1734 |
+
# attention_mask=attention_mask
|
| 1735 |
+
# )
|
| 1736 |
+
# else:
|
| 1737 |
+
# outputs = self.deberta(
|
| 1738 |
+
# None,
|
| 1739 |
+
# attention_mask=attention_mask,
|
| 1740 |
+
# inputs_embeds=inputs_embeds
|
| 1741 |
+
# )
|
| 1742 |
+
|
| 1743 |
+
|
| 1744 |
+
# # Get <mask> token representation
|
| 1745 |
+
# sequence_output = outputs[0]
|
| 1746 |
+
# sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
|
| 1747 |
+
# sequence_mask_output = sequence_output[torch.arange(sequence_output.size(0)), mask_pos]
|
| 1748 |
+
|
| 1749 |
+
|
| 1750 |
+
# # Logits over vocabulary tokens
|
| 1751 |
+
# prediction_mask_scores = self.cls(sequence_mask_output)
|
| 1752 |
+
|
| 1753 |
+
# #sequence_mask_output = self.lm_head.dense(sequence_mask_output)
|
| 1754 |
+
|
| 1755 |
+
# # Exit early and only return mask logits.
|
| 1756 |
+
# if return_full_softmax:
|
| 1757 |
+
# return prediction_mask_scores
|
| 1758 |
+
|
| 1759 |
+
# # Return logits for each label
|
| 1760 |
+
# logits = []
|
| 1761 |
+
# for label_id in range(len(self.label_word_list)):
|
| 1762 |
+
# logits.append(prediction_mask_scores[:, self.label_word_list[label_id]].unsqueeze(-1))
|
| 1763 |
+
# logits = torch.cat(logits, -1)
|
| 1764 |
+
|
| 1765 |
+
# # Regression task
|
| 1766 |
+
# if self.config.num_labels == 1:
|
| 1767 |
+
# logsoftmax = nn.LogSoftmax(-1)
|
| 1768 |
+
# logits = logsoftmax(logits) # Log prob of right polarity
|
| 1769 |
+
|
| 1770 |
+
# return logits, sequence_mask_output
|
| 1771 |
+
|
| 1772 |
+
|
| 1773 |
+
# def forward(
|
| 1774 |
+
# self,
|
| 1775 |
+
# input_ids=None,
|
| 1776 |
+
# attention_mask=None,
|
| 1777 |
+
# mask_pos=None,
|
| 1778 |
+
# labels=None,
|
| 1779 |
+
# inputs_embeds=None,
|
| 1780 |
+
# fwd_type=0,
|
| 1781 |
+
# block_flag=None,
|
| 1782 |
+
# return_dict=None
|
| 1783 |
+
# ):
|
| 1784 |
+
# if fwd_type == 2:
|
| 1785 |
+
# assert inputs_embeds is not None
|
| 1786 |
+
# return self.encode(input_ids=input_ids, attention_mask=attention_mask, mask_pos=mask_pos, inputs_embeds=inputs_embeds)
|
| 1787 |
+
|
| 1788 |
+
# elif fwd_type == 1:
|
| 1789 |
+
# return self.embed_encode(input_ids)
|
| 1790 |
+
|
| 1791 |
+
# logits, sequence_mask_output = self.encode(input_ids, attention_mask, mask_pos, inputs_embeds)
|
| 1792 |
+
|
| 1793 |
+
# loss = None
|
| 1794 |
+
|
| 1795 |
+
|
| 1796 |
+
# if labels is not None:
|
| 1797 |
+
# if self.num_labels == 1:
|
| 1798 |
+
# # Regression task
|
| 1799 |
+
# loss_fct = nn.KLDivLoss(log_target=True)
|
| 1800 |
+
# labels = torch.stack([1 - (labels.view(-1) - self.lb) / (self.ub - self.lb), (labels.view(-1) - self.lb) / (self.ub - self.lb)], -1)
|
| 1801 |
+
# loss = loss_fct(logits.view(-1, 2), labels)
|
| 1802 |
+
# else:
|
| 1803 |
+
|
| 1804 |
+
# if labels.shape == logits.shape:
|
| 1805 |
+
# loss = F.kl_div(F.log_softmax(logits, dim=-1, dtype=torch.float32),
|
| 1806 |
+
# labels, reduction="batchmean")
|
| 1807 |
+
# else:
|
| 1808 |
+
# loss_fct = nn.CrossEntropyLoss()
|
| 1809 |
+
|
| 1810 |
+
# loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
| 1811 |
+
# if self.model_args.hybrid == 1:
|
| 1812 |
+
# cls_loss = loss_fct(cls_logits.view(-1, cls_logits.size(-1)), labels.view(-1))
|
| 1813 |
+
# loss = loss + cls_loss
|
| 1814 |
+
|
| 1815 |
+
# output = (logits,)
|
| 1816 |
+
# if self.num_labels == 1:
|
| 1817 |
+
# # Regression output
|
| 1818 |
+
# output = (torch.exp(logits[..., 1].unsqueeze(-1)) * (self.ub - self.lb) + self.lb,)
|
| 1819 |
+
|
| 1820 |
+
# if not return_dict:
|
| 1821 |
+
# return ((loss,) + output) if loss is not None else output
|
| 1822 |
+
|
| 1823 |
+
# return SequenceClassifierOutput(
|
| 1824 |
+
# loss=loss,
|
| 1825 |
+
# logits=logits,
|
| 1826 |
+
# )
|
| 1827 |
+
|
| 1828 |
+
|
| 1829 |
+
# class Debertav2PrefixForPromptFinetuning(DebertaV2PreTrainedModel):
|
| 1830 |
+
# _keys_to_ignore_on_load_unexpected = [r"pooler"]
|
| 1831 |
+
# _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
| 1832 |
+
|
| 1833 |
+
# def __init__(self, config):
|
| 1834 |
+
# super().__init__(config)
|
| 1835 |
+
# self.num_labels = config.num_labels
|
| 1836 |
+
# self.deberta = DebertaV2Model(config)
|
| 1837 |
+
# self.cls = DebertaV2OnlyMLMHead(config)
|
| 1838 |
+
|
| 1839 |
+
# #self.deberta = DebertaModel(config)
|
| 1840 |
+
# #self.cls = DebertaOnlyMLMHead(config)
|
| 1841 |
+
|
| 1842 |
+
# self.pooler = ContextPooler(config)
|
| 1843 |
+
# output_dim = self.pooler.output_dim
|
| 1844 |
+
|
| 1845 |
+
# self.classifier = torch.nn.Linear(output_dim, self.num_labels)
|
| 1846 |
+
# drop_out = getattr(config, "cls_dropout", None)
|
| 1847 |
+
# drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
|
| 1848 |
+
|
| 1849 |
+
# self.dropout = StableDropout(drop_out)
|
| 1850 |
+
|
| 1851 |
+
# classification_list = [self.pooler, self.dropout,self.classifier]
|
| 1852 |
+
|
| 1853 |
+
# self.classifier = nn.Sequential(*classification_list)
|
| 1854 |
+
# # self.cls = DebertaV2OnlyMLMHead(config)
|
| 1855 |
+
|
| 1856 |
+
# self.map = nn.Linear(config.hidden_size, config.hidden_size)
|
| 1857 |
+
# self.init_weights()
|
| 1858 |
+
|
| 1859 |
+
# if self.config.use_freezing:
|
| 1860 |
+
# self.deberta = freezer.freeze_lm(self.deberta)
|
| 1861 |
+
|
| 1862 |
+
# self.pre_seq_len = config.pre_seq_len
|
| 1863 |
+
# self.n_layer = config.num_hidden_layers
|
| 1864 |
+
# self.n_head = config.num_attention_heads
|
| 1865 |
+
# self.n_embd = config.hidden_size // config.num_attention_heads
|
| 1866 |
+
|
| 1867 |
+
# self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
| 1868 |
+
# self.prefix_encoder = PrefixEncoder(config)
|
| 1869 |
+
|
| 1870 |
+
# # These attributes should be assigned once the model is initialized
|
| 1871 |
+
# self.model_args = None
|
| 1872 |
+
# self.data_args = None
|
| 1873 |
+
# self.label_word_list = torch.Tensor(self.config.label_word_list).long().to(self.bert.device)
|
| 1874 |
+
# self.K = 1
|
| 1875 |
+
# self.step_size=1e-5
|
| 1876 |
+
# # import pdb
|
| 1877 |
+
# # pdb.set_trace()
|
| 1878 |
+
# #self.step_size=config.step_size
|
| 1879 |
+
|
| 1880 |
+
# # For regression
|
| 1881 |
+
# self.lb = None
|
| 1882 |
+
# self.ub = None
|
| 1883 |
+
|
| 1884 |
+
|
| 1885 |
+
# # For auto label search.
|
| 1886 |
+
# self.return_full_softmax = None
|
| 1887 |
+
|
| 1888 |
+
# def freeze_backbone(self, use_freezing: bool=True):
|
| 1889 |
+
# if use_freezing:
|
| 1890 |
+
# self.deberta = freezer.freeze_lm(self.deberta)
|
| 1891 |
+
# else:
|
| 1892 |
+
# self.deberta = freezer.unfreeze_lm(self.deberta)
|
| 1893 |
+
|
| 1894 |
+
# def get_prompt(self, batch_size):
|
| 1895 |
+
# prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.deberta.device)
|
| 1896 |
+
# past_key_values = self.prefix_encoder(prefix_tokens)
|
| 1897 |
+
# # bsz, seqlen, _ = past_key_values.shape
|
| 1898 |
+
# past_key_values = past_key_values.view(
|
| 1899 |
+
# batch_size,
|
| 1900 |
+
# self.pre_seq_len,
|
| 1901 |
+
# self.n_layer * 2,
|
| 1902 |
+
# self.n_head,
|
| 1903 |
+
# self.n_embd
|
| 1904 |
+
# )
|
| 1905 |
+
# past_key_values = self.dropout(past_key_values)
|
| 1906 |
+
# past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
|
| 1907 |
+
# return past_key_values
|
| 1908 |
+
|
| 1909 |
+
|
| 1910 |
+
# def embed_encode(self, input_ids):
|
| 1911 |
+
# embedding_output = self.deberta.embeddings.word_embeddings(input_ids)
|
| 1912 |
+
# return embedding_output
|
| 1913 |
+
|
| 1914 |
+
# def encode(self, input_ids=None, attention_mask=None, mask_pos=None, inputs_embeds=None, return_full_softmax=False):
|
| 1915 |
+
# batch_size = input_ids.size(0)
|
| 1916 |
+
|
| 1917 |
+
# # add prefix for prompt-tuning
|
| 1918 |
+
# past_key_values = self.get_prompt(batch_size=batch_size)
|
| 1919 |
+
# prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.deberta.device)
|
| 1920 |
+
# attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
| 1921 |
+
|
| 1922 |
+
|
| 1923 |
+
# if mask_pos is not None:
|
| 1924 |
+
# mask_pos = mask_pos.squeeze()
|
| 1925 |
+
|
| 1926 |
+
# # Encode everything
|
| 1927 |
+
# outputs = self.deberta(
|
| 1928 |
+
# input_ids,
|
| 1929 |
+
# attention_mask=attention_mask,
|
| 1930 |
+
# past_key_values=past_key_values,
|
| 1931 |
+
# )
|
| 1932 |
+
|
| 1933 |
+
|
| 1934 |
+
# # Get <mask> token representation
|
| 1935 |
+
# sequence_output = outputs[0]
|
| 1936 |
+
# # sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
|
| 1937 |
+
# sequence_mask_output = sequence_output[torch.arange(sequence_output.size(0)), mask_pos]
|
| 1938 |
+
|
| 1939 |
+
|
| 1940 |
+
# # Logits over vocabulary tokens
|
| 1941 |
+
# prediction_mask_scores = self.cls(sequence_mask_output)
|
| 1942 |
+
|
| 1943 |
+
# #sequence_mask_output = self.lm_head.dense(sequence_mask_output)
|
| 1944 |
+
|
| 1945 |
+
# # Exit early and only return mask logits.
|
| 1946 |
+
# if return_full_softmax:
|
| 1947 |
+
# return prediction_mask_scores
|
| 1948 |
+
|
| 1949 |
+
# # Return logits for each label
|
| 1950 |
+
# logits = []
|
| 1951 |
+
# for label_id in range(len(self.label_word_list)):
|
| 1952 |
+
# logits.append(prediction_mask_scores[:, self.label_word_list[label_id]].unsqueeze(-1))
|
| 1953 |
+
# logits = torch.cat(logits, -1)
|
| 1954 |
+
|
| 1955 |
+
# # Regression task
|
| 1956 |
+
# if self.config.num_labels == 1:
|
| 1957 |
+
# logsoftmax = nn.LogSoftmax(-1)
|
| 1958 |
+
# logits = logsoftmax(logits) # Log prob of right polarity
|
| 1959 |
+
|
| 1960 |
+
# return logits, sequence_mask_output
|
| 1961 |
+
|
| 1962 |
+
|
| 1963 |
+
# def forward(
|
| 1964 |
+
# self,
|
| 1965 |
+
# input_ids=None,
|
| 1966 |
+
# attention_mask=None,
|
| 1967 |
+
# mask_pos=None,
|
| 1968 |
+
# labels=None,
|
| 1969 |
+
# inputs_embeds=None,
|
| 1970 |
+
# fwd_type=0,
|
| 1971 |
+
# block_flag=None,
|
| 1972 |
+
# return_dict=None,
|
| 1973 |
+
# ):
|
| 1974 |
+
# if fwd_type == 2:
|
| 1975 |
+
# assert inputs_embeds is not None
|
| 1976 |
+
# return self.encode(input_ids=input_ids, attention_mask=attention_mask, mask_pos=mask_pos, inputs_embeds=inputs_embeds)
|
| 1977 |
+
|
| 1978 |
+
# elif fwd_type == 1:
|
| 1979 |
+
# return self.embed_encode(input_ids)
|
| 1980 |
+
|
| 1981 |
+
# logits, sequence_mask_output = self.encode(input_ids, attention_mask, mask_pos, inputs_embeds)
|
| 1982 |
+
|
| 1983 |
+
# loss = None
|
| 1984 |
+
|
| 1985 |
+
|
| 1986 |
+
# if labels is not None:
|
| 1987 |
+
# if self.num_labels == 1:
|
| 1988 |
+
# # Regression task
|
| 1989 |
+
# loss_fct = nn.KLDivLoss(log_target=True)
|
| 1990 |
+
# labels = torch.stack([1 - (labels.view(-1) - self.lb) / (self.ub - self.lb), (labels.view(-1) - self.lb) / (self.ub - self.lb)], -1)
|
| 1991 |
+
# loss = loss_fct(logits.view(-1, 2), labels)
|
| 1992 |
+
# else:
|
| 1993 |
+
|
| 1994 |
+
# if labels.shape == logits.shape:
|
| 1995 |
+
# loss = F.kl_div(F.log_softmax(logits, dim=-1, dtype=torch.float32),
|
| 1996 |
+
# labels, reduction="batchmean")
|
| 1997 |
+
# else:
|
| 1998 |
+
# loss_fct = nn.CrossEntropyLoss()
|
| 1999 |
+
|
| 2000 |
+
# loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
| 2001 |
+
# if self.model_args.hybrid == 1:
|
| 2002 |
+
# cls_loss = loss_fct(cls_logits.view(-1, cls_logits.size(-1)), labels.view(-1))
|
| 2003 |
+
# loss = loss + cls_loss
|
| 2004 |
+
|
| 2005 |
+
# output = (logits,)
|
| 2006 |
+
# if self.num_labels == 1:
|
| 2007 |
+
# # Regression output
|
| 2008 |
+
# output = (torch.exp(logits[..., 1].unsqueeze(-1)) * (self.ub - self.lb) + self.lb,)
|
| 2009 |
+
|
| 2010 |
+
# if not return_dict:
|
| 2011 |
+
# return ((loss,) + output) if loss is not None else output
|
| 2012 |
+
|
| 2013 |
+
# return SequenceClassifierOutput(
|
| 2014 |
+
# loss=loss,
|
| 2015 |
+
# logits=logits,
|
| 2016 |
+
# )
|