Spaces:
Sleeping
Sleeping
Commit
·
d131d1a
1
Parent(s):
1f544f7
Upload 2 files
Browse files
models/span_extraction/global_pointer.py
ADDED
|
@@ -0,0 +1,482 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# @Time : 2022/4/21 5:30 下午
|
| 3 |
+
# @Author : JianingWang
|
| 4 |
+
# @File : global_pointer.py
|
| 5 |
+
from typing import Optional
|
| 6 |
+
import torch
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
from dataclasses import dataclass
|
| 10 |
+
from torch.nn import BCEWithLogitsLoss
|
| 11 |
+
from transformers import MegatronBertModel, MegatronBertPreTrainedModel
|
| 12 |
+
from transformers.file_utils import ModelOutput
|
| 13 |
+
from transformers.models.bert import BertPreTrainedModel, BertModel
|
| 14 |
+
from transformers.models.roberta.modeling_roberta import RobertaModel, RobertaPreTrainedModel
|
| 15 |
+
from roformer import RoFormerPreTrainedModel, RoFormerModel, RoFormerModel
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class RawGlobalPointer(nn.Module):
|
| 19 |
+
def __init__(self, encoder, ent_type_size, inner_dim, RoPE=True):
|
| 20 |
+
# encodr: RoBerta-Large as encoder
|
| 21 |
+
# inner_dim: 64
|
| 22 |
+
# ent_type_size: ent_cls_num
|
| 23 |
+
super().__init__()
|
| 24 |
+
self.encoder = encoder
|
| 25 |
+
self.ent_type_size = ent_type_size
|
| 26 |
+
self.inner_dim = inner_dim
|
| 27 |
+
self.hidden_size = encoder.config.hidden_size
|
| 28 |
+
self.dense = nn.Linear(self.hidden_size, self.ent_type_size * self.inner_dim * 2)
|
| 29 |
+
|
| 30 |
+
self.RoPE = RoPE
|
| 31 |
+
|
| 32 |
+
def sinusoidal_position_embedding(self, batch_size, seq_len, output_dim):
|
| 33 |
+
position_ids = torch.arange(0, seq_len, dtype=torch.float).unsqueeze(-1)
|
| 34 |
+
|
| 35 |
+
indices = torch.arange(0, output_dim // 2, dtype=torch.float)
|
| 36 |
+
indices = torch.pow(10000, -2 * indices / output_dim)
|
| 37 |
+
embeddings = position_ids * indices
|
| 38 |
+
embeddings = torch.stack([torch.sin(embeddings), torch.cos(embeddings)], dim=-1)
|
| 39 |
+
embeddings = embeddings.repeat((batch_size, *([1] * len(embeddings.shape))))
|
| 40 |
+
embeddings = torch.reshape(embeddings, (batch_size, seq_len, output_dim))
|
| 41 |
+
embeddings = embeddings.to(self.device)
|
| 42 |
+
return embeddings
|
| 43 |
+
|
| 44 |
+
def forward(self, input_ids, attention_mask, token_type_ids):
|
| 45 |
+
self.device = input_ids.device
|
| 46 |
+
|
| 47 |
+
context_outputs = self.encoder(input_ids, attention_mask, token_type_ids)
|
| 48 |
+
# last_hidden_state:(batch_size, seq_len, hidden_size)
|
| 49 |
+
last_hidden_state = context_outputs[0]
|
| 50 |
+
|
| 51 |
+
batch_size = last_hidden_state.size()[0]
|
| 52 |
+
seq_len = last_hidden_state.size()[1]
|
| 53 |
+
|
| 54 |
+
outputs = self.dense(last_hidden_state)
|
| 55 |
+
outputs = torch.split(outputs, self.inner_dim * 2, dim=-1)
|
| 56 |
+
outputs = torch.stack(outputs, dim=-2)
|
| 57 |
+
qw, kw = outputs[..., :self.inner_dim], outputs[..., self.inner_dim:]
|
| 58 |
+
if self.RoPE:
|
| 59 |
+
# pos_emb:(batch_size, seq_len, inner_dim)
|
| 60 |
+
pos_emb = self.sinusoidal_position_embedding(batch_size, seq_len, self.inner_dim)
|
| 61 |
+
cos_pos = pos_emb[..., None, 1::2].repeat_interleave(2, dim=-1)
|
| 62 |
+
sin_pos = pos_emb[..., None, ::2].repeat_interleave(2, dim=-1)
|
| 63 |
+
qw2 = torch.stack([-qw[..., 1::2], qw[..., ::2]], -1)
|
| 64 |
+
qw2 = qw2.reshape(qw.shape)
|
| 65 |
+
qw = qw * cos_pos + qw2 * sin_pos
|
| 66 |
+
kw2 = torch.stack([-kw[..., 1::2], kw[..., ::2]], -1)
|
| 67 |
+
kw2 = kw2.reshape(kw.shape)
|
| 68 |
+
kw = kw * cos_pos + kw2 * sin_pos
|
| 69 |
+
# logits:(batch_size, ent_type_size, seq_len, seq_len)
|
| 70 |
+
logits = torch.einsum("bmhd,bnhd->bhmn", qw, kw)
|
| 71 |
+
|
| 72 |
+
# padding mask
|
| 73 |
+
pad_mask = attention_mask.unsqueeze(1).unsqueeze(1).expand(batch_size, self.ent_type_size, seq_len, seq_len)
|
| 74 |
+
logits = logits * pad_mask - (1 - pad_mask) * 1e12
|
| 75 |
+
|
| 76 |
+
# 排除下三角
|
| 77 |
+
mask = torch.tril(torch.ones_like(logits), -1)
|
| 78 |
+
logits = logits - mask * 1e12
|
| 79 |
+
|
| 80 |
+
return logits / self.inner_dim ** 0.5
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
class SinusoidalPositionEmbedding(nn.Module):
|
| 84 |
+
"""定义Sin-Cos位置Embedding
|
| 85 |
+
"""
|
| 86 |
+
|
| 87 |
+
def __init__(
|
| 88 |
+
self, output_dim, merge_mode="add", custom_position_ids=False):
|
| 89 |
+
super(SinusoidalPositionEmbedding, self).__init__()
|
| 90 |
+
self.output_dim = output_dim
|
| 91 |
+
self.merge_mode = merge_mode
|
| 92 |
+
self.custom_position_ids = custom_position_ids
|
| 93 |
+
|
| 94 |
+
def forward(self, inputs):
|
| 95 |
+
if self.custom_position_ids:
|
| 96 |
+
seq_len = inputs.shape[1]
|
| 97 |
+
inputs, position_ids = inputs
|
| 98 |
+
position_ids = position_ids.type(torch.float)
|
| 99 |
+
else:
|
| 100 |
+
input_shape = inputs.shape
|
| 101 |
+
batch_size, seq_len = input_shape[0], input_shape[1]
|
| 102 |
+
position_ids = torch.arange(seq_len).type(torch.float)[None]
|
| 103 |
+
indices = torch.arange(self.output_dim // 2).type(torch.float)
|
| 104 |
+
indices = torch.pow(10000.0, -2 * indices / self.output_dim)
|
| 105 |
+
embeddings = torch.einsum("bn,d->bnd", position_ids, indices)
|
| 106 |
+
embeddings = torch.stack([torch.sin(embeddings), torch.cos(embeddings)], dim=-1)
|
| 107 |
+
embeddings = torch.reshape(embeddings, (-1, seq_len, self.output_dim))
|
| 108 |
+
if self.merge_mode == "add":
|
| 109 |
+
return inputs + embeddings.to(inputs.device)
|
| 110 |
+
elif self.merge_mode == "mul":
|
| 111 |
+
return inputs * (embeddings + 1.0).to(inputs.device)
|
| 112 |
+
elif self.merge_mode == "zero":
|
| 113 |
+
return embeddings.to(inputs.device)
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def multilabel_categorical_crossentropy(y_pred, y_true):
|
| 117 |
+
y_pred = (1 - 2 * y_true) * y_pred # -1 -> pos classes, 1 -> neg classes
|
| 118 |
+
y_pred_neg = y_pred - y_true * 1e12 # mask the pred outputs of pos classes
|
| 119 |
+
y_pred_pos = y_pred - (1 - y_true) * 1e12 # mask the pred outputs of neg classes
|
| 120 |
+
zeros = torch.zeros_like(y_pred[..., :1])
|
| 121 |
+
y_pred_neg = torch.cat([y_pred_neg, zeros], dim=-1)
|
| 122 |
+
y_pred_pos = torch.cat([y_pred_pos, zeros], dim=-1)
|
| 123 |
+
neg_loss = torch.logsumexp(y_pred_neg, dim=-1)
|
| 124 |
+
pos_loss = torch.logsumexp(y_pred_pos, dim=-1)
|
| 125 |
+
# print(y_pred, y_true, pos_loss)
|
| 126 |
+
return (neg_loss + pos_loss).mean()
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def multilabel_categorical_crossentropy2(y_pred, y_true):
|
| 130 |
+
y_pred = (1 - 2 * y_true) * y_pred # -1 -> pos classes, 1 -> neg classes
|
| 131 |
+
y_pred_neg = y_pred.clone()
|
| 132 |
+
y_pred_pos = y_pred.clone()
|
| 133 |
+
y_pred_neg[y_true>0] -= float("inf")
|
| 134 |
+
y_pred_pos[y_true<1] -= float("inf")
|
| 135 |
+
# y_pred_neg = y_pred - y_true * float("inf") # mask the pred outputs of pos classes
|
| 136 |
+
# y_pred_pos = y_pred - (1 - y_true) * float("inf") # mask the pred outputs of neg classes
|
| 137 |
+
zeros = torch.zeros_like(y_pred[..., :1])
|
| 138 |
+
y_pred_neg = torch.cat([y_pred_neg, zeros], dim=-1)
|
| 139 |
+
y_pred_pos = torch.cat([y_pred_pos, zeros], dim=-1)
|
| 140 |
+
neg_loss = torch.logsumexp(y_pred_neg, dim=-1)
|
| 141 |
+
pos_loss = torch.logsumexp(y_pred_pos, dim=-1)
|
| 142 |
+
# print(y_pred, y_true, pos_loss)
|
| 143 |
+
return (neg_loss + pos_loss).mean()
|
| 144 |
+
|
| 145 |
+
@dataclass
|
| 146 |
+
class GlobalPointerOutput(ModelOutput):
|
| 147 |
+
loss: Optional[torch.FloatTensor] = None
|
| 148 |
+
topk_probs: torch.FloatTensor = None
|
| 149 |
+
topk_indices: torch.IntTensor = None
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
class BertForEffiGlobalPointer(BertPreTrainedModel):
|
| 154 |
+
def __init__(self, config):
|
| 155 |
+
# encodr: RoBerta-Large as encoder
|
| 156 |
+
# inner_dim: 64
|
| 157 |
+
# ent_type_size: ent_cls_num
|
| 158 |
+
super().__init__(config)
|
| 159 |
+
self.bert = BertModel(config)
|
| 160 |
+
self.ent_type_size = config.ent_type_size
|
| 161 |
+
self.inner_dim = config.inner_dim
|
| 162 |
+
self.hidden_size = config.hidden_size
|
| 163 |
+
self.RoPE = config.RoPE
|
| 164 |
+
|
| 165 |
+
self.dense_1 = nn.Linear(self.hidden_size, self.inner_dim * 2)
|
| 166 |
+
self.dense_2 = nn.Linear(self.hidden_size, self.ent_type_size * 2) # 原版的dense2是(inner_dim * 2, ent_type_size * 2)
|
| 167 |
+
|
| 168 |
+
def sequence_masking(self, x, mask, value="-inf", axis=None):
|
| 169 |
+
if mask is None:
|
| 170 |
+
return x
|
| 171 |
+
else:
|
| 172 |
+
if value == "-inf":
|
| 173 |
+
value = -1e12
|
| 174 |
+
elif value == "inf":
|
| 175 |
+
value = 1e12
|
| 176 |
+
assert axis > 0, "axis must be greater than 0"
|
| 177 |
+
for _ in range(axis - 1):
|
| 178 |
+
mask = torch.unsqueeze(mask, 1)
|
| 179 |
+
for _ in range(x.ndim - mask.ndim):
|
| 180 |
+
mask = torch.unsqueeze(mask, mask.ndim)
|
| 181 |
+
return x * mask + value * (1 - mask)
|
| 182 |
+
|
| 183 |
+
def add_mask_tril(self, logits, mask):
|
| 184 |
+
if mask.dtype != logits.dtype:
|
| 185 |
+
mask = mask.type(logits.dtype)
|
| 186 |
+
logits = self.sequence_masking(logits, mask, "-inf", logits.ndim - 2)
|
| 187 |
+
logits = self.sequence_masking(logits, mask, "-inf", logits.ndim - 1)
|
| 188 |
+
# 排除下三角
|
| 189 |
+
mask = torch.tril(torch.ones_like(logits), diagonal=-1)
|
| 190 |
+
logits = logits - mask * 1e12
|
| 191 |
+
return logits
|
| 192 |
+
|
| 193 |
+
def forward(self, input_ids, attention_mask, token_type_ids, labels=None, short_labels=None):
|
| 194 |
+
# with torch.no_grad():
|
| 195 |
+
context_outputs = self.bert(input_ids, attention_mask, token_type_ids)
|
| 196 |
+
last_hidden_state = context_outputs.last_hidden_state # [bz, seq_len, hidden_dim]
|
| 197 |
+
outputs = self.dense_1(last_hidden_state) # [bz, seq_len, 2*inner_dim]
|
| 198 |
+
qw, kw = outputs[..., ::2], outputs[..., 1::2] # 从0,1开始间隔为2 最后一个纬度,从0开始,取奇数位置所有向量汇总
|
| 199 |
+
batch_size = input_ids.shape[0]
|
| 200 |
+
if self.RoPE:
|
| 201 |
+
pos = SinusoidalPositionEmbedding(self.inner_dim, "zero")(outputs)
|
| 202 |
+
cos_pos = pos[..., 1::2].repeat_interleave(2, dim=-1) # e.g. [0.34, 0.90] -> [0.34, 0.34, 0.90, 0.90]
|
| 203 |
+
sin_pos = pos[..., ::2].repeat_interleave(2, dim=-1)
|
| 204 |
+
qw2 = torch.stack([-qw[..., 1::2], qw[..., ::2]], 3)
|
| 205 |
+
qw2 = torch.reshape(qw2, qw.shape)
|
| 206 |
+
qw = qw * cos_pos + qw2 * sin_pos
|
| 207 |
+
kw2 = torch.stack([-kw[..., 1::2], kw[..., ::2]], 3)
|
| 208 |
+
kw2 = torch.reshape(kw2, kw.shape)
|
| 209 |
+
kw = kw * cos_pos + kw2 * sin_pos
|
| 210 |
+
logits = torch.einsum("bmd,bnd->bmn", qw, kw) / self.inner_dim ** 0.5
|
| 211 |
+
bias = torch.einsum("bnh->bhn", self.dense_2(last_hidden_state)) / 2
|
| 212 |
+
logits = logits[:, None] + bias[:, ::2, None] + bias[:, 1::2, :, None] # logits[:, None] 增加一个维度
|
| 213 |
+
# logit_mask = self.add_mask_tril(logits, mask=attention_mask)
|
| 214 |
+
loss = None
|
| 215 |
+
|
| 216 |
+
mask = torch.triu(attention_mask.unsqueeze(2) * attention_mask.unsqueeze(1)) # 上三角矩阵
|
| 217 |
+
# mask = torch.where(mask > 0, 0.0, 1)
|
| 218 |
+
if labels is not None:
|
| 219 |
+
y_pred = logits - (1-mask.unsqueeze(1))*1e12
|
| 220 |
+
y_true = labels.view(input_ids.shape[0] * self.ent_type_size, -1)
|
| 221 |
+
y_pred = y_pred.view(input_ids.shape[0] * self.ent_type_size, -1)
|
| 222 |
+
loss = multilabel_categorical_crossentropy(y_pred, y_true)
|
| 223 |
+
|
| 224 |
+
with torch.no_grad():
|
| 225 |
+
prob = torch.sigmoid(logits) * mask.unsqueeze(1)
|
| 226 |
+
topk = torch.topk(prob.view(batch_size, self.ent_type_size, -1), 50, dim=-1)
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
return GlobalPointerOutput(
|
| 230 |
+
loss=loss,
|
| 231 |
+
topk_probs=topk.values,
|
| 232 |
+
topk_indices=topk.indices
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
class RobertaForEffiGlobalPointer(RobertaPreTrainedModel):
|
| 238 |
+
def __init__(self, config):
|
| 239 |
+
# encodr: RoBerta-Large as encoder
|
| 240 |
+
# inner_dim: 64
|
| 241 |
+
# ent_type_size: ent_cls_num
|
| 242 |
+
super().__init__(config)
|
| 243 |
+
self.roberta = RobertaModel(config)
|
| 244 |
+
self.ent_type_size = config.ent_type_size
|
| 245 |
+
self.inner_dim = config.inner_dim
|
| 246 |
+
self.hidden_size = config.hidden_size
|
| 247 |
+
self.RoPE = config.RoPE
|
| 248 |
+
|
| 249 |
+
self.dense_1 = nn.Linear(self.hidden_size, self.inner_dim * 2)
|
| 250 |
+
self.dense_2 = nn.Linear(self.hidden_size, self.ent_type_size * 2) # 原版的dense2是(inner_dim * 2, ent_type_size * 2)
|
| 251 |
+
|
| 252 |
+
def sequence_masking(self, x, mask, value="-inf", axis=None):
|
| 253 |
+
if mask is None:
|
| 254 |
+
return x
|
| 255 |
+
else:
|
| 256 |
+
if value == "-inf":
|
| 257 |
+
value = -1e12
|
| 258 |
+
elif value == "inf":
|
| 259 |
+
value = 1e12
|
| 260 |
+
assert axis > 0, "axis must be greater than 0"
|
| 261 |
+
for _ in range(axis - 1):
|
| 262 |
+
mask = torch.unsqueeze(mask, 1)
|
| 263 |
+
for _ in range(x.ndim - mask.ndim):
|
| 264 |
+
mask = torch.unsqueeze(mask, mask.ndim)
|
| 265 |
+
return x * mask + value * (1 - mask)
|
| 266 |
+
|
| 267 |
+
def add_mask_tril(self, logits, mask):
|
| 268 |
+
if mask.dtype != logits.dtype:
|
| 269 |
+
mask = mask.type(logits.dtype)
|
| 270 |
+
logits = self.sequence_masking(logits, mask, "-inf", logits.ndim - 2)
|
| 271 |
+
logits = self.sequence_masking(logits, mask, "-inf", logits.ndim - 1)
|
| 272 |
+
# 排除下三角
|
| 273 |
+
mask = torch.tril(torch.ones_like(logits), diagonal=-1)
|
| 274 |
+
logits = logits - mask * 1e12
|
| 275 |
+
return logits
|
| 276 |
+
|
| 277 |
+
def forward(self, input_ids, attention_mask, token_type_ids, labels=None, short_labels=None):
|
| 278 |
+
# with torch.no_grad():
|
| 279 |
+
context_outputs = self.roberta(input_ids, attention_mask, token_type_ids)
|
| 280 |
+
last_hidden_state = context_outputs.last_hidden_state # [bz, seq_len, hidden_dim]
|
| 281 |
+
outputs = self.dense_1(last_hidden_state) # [bz, seq_len, 2*inner_dim]
|
| 282 |
+
qw, kw = outputs[..., ::2], outputs[..., 1::2] # 从0,1开始间隔为2 最后一个纬度,从0开始,取奇数位置所有向量汇总
|
| 283 |
+
batch_size = input_ids.shape[0]
|
| 284 |
+
if self.RoPE:
|
| 285 |
+
pos = SinusoidalPositionEmbedding(self.inner_dim, "zero")(outputs)
|
| 286 |
+
cos_pos = pos[..., 1::2].repeat_interleave(2, dim=-1) # e.g. [0.34, 0.90] -> [0.34, 0.34, 0.90, 0.90]
|
| 287 |
+
sin_pos = pos[..., ::2].repeat_interleave(2, dim=-1)
|
| 288 |
+
qw2 = torch.stack([-qw[..., 1::2], qw[..., ::2]], 3)
|
| 289 |
+
qw2 = torch.reshape(qw2, qw.shape)
|
| 290 |
+
qw = qw * cos_pos + qw2 * sin_pos
|
| 291 |
+
kw2 = torch.stack([-kw[..., 1::2], kw[..., ::2]], 3)
|
| 292 |
+
kw2 = torch.reshape(kw2, kw.shape)
|
| 293 |
+
kw = kw * cos_pos + kw2 * sin_pos
|
| 294 |
+
logits = torch.einsum("bmd,bnd->bmn", qw, kw) / self.inner_dim ** 0.5
|
| 295 |
+
bias = torch.einsum("bnh->bhn", self.dense_2(last_hidden_state)) / 2
|
| 296 |
+
logits = logits[:, None] + bias[:, ::2, None] + bias[:, 1::2, :, None] # logits[:, None] 增加一个维度
|
| 297 |
+
# logit_mask = self.add_mask_tril(logits, mask=attention_mask)
|
| 298 |
+
loss = None
|
| 299 |
+
|
| 300 |
+
mask = torch.triu(attention_mask.unsqueeze(2) * attention_mask.unsqueeze(1)) # 上三角矩阵
|
| 301 |
+
# mask = torch.where(mask > 0, 0.0, 1)
|
| 302 |
+
if labels is not None:
|
| 303 |
+
y_pred = logits - (1-mask.unsqueeze(1))*1e12
|
| 304 |
+
y_true = labels.view(input_ids.shape[0] * self.ent_type_size, -1)
|
| 305 |
+
y_pred = y_pred.view(input_ids.shape[0] * self.ent_type_size, -1)
|
| 306 |
+
loss = multilabel_categorical_crossentropy(y_pred, y_true)
|
| 307 |
+
|
| 308 |
+
with torch.no_grad():
|
| 309 |
+
prob = torch.sigmoid(logits) * mask.unsqueeze(1)
|
| 310 |
+
topk = torch.topk(prob.view(batch_size, self.ent_type_size, -1), 50, dim=-1)
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
return GlobalPointerOutput(
|
| 314 |
+
loss=loss,
|
| 315 |
+
topk_probs=topk.values,
|
| 316 |
+
topk_indices=topk.indices
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
class RoformerForEffiGlobalPointer(RoFormerPreTrainedModel):
|
| 321 |
+
def __init__(self, config):
|
| 322 |
+
# encodr: RoBerta-Large as encoder
|
| 323 |
+
# inner_dim: 64
|
| 324 |
+
# ent_type_size: ent_cls_num
|
| 325 |
+
super().__init__(config)
|
| 326 |
+
self.roformer = RoFormerModel(config)
|
| 327 |
+
self.ent_type_size = config.ent_type_size
|
| 328 |
+
self.inner_dim = config.inner_dim
|
| 329 |
+
self.hidden_size = config.hidden_size
|
| 330 |
+
self.RoPE = config.RoPE
|
| 331 |
+
|
| 332 |
+
self.dense_1 = nn.Linear(self.hidden_size, self.inner_dim * 2)
|
| 333 |
+
self.dense_2 = nn.Linear(self.hidden_size, self.ent_type_size * 2) # 原版的dense2是(inner_dim * 2, ent_type_size * 2)
|
| 334 |
+
|
| 335 |
+
def sequence_masking(self, x, mask, value="-inf", axis=None):
|
| 336 |
+
if mask is None:
|
| 337 |
+
return x
|
| 338 |
+
else:
|
| 339 |
+
if value == "-inf":
|
| 340 |
+
value = -1e12
|
| 341 |
+
elif value == "inf":
|
| 342 |
+
value = 1e12
|
| 343 |
+
assert axis > 0, "axis must be greater than 0"
|
| 344 |
+
for _ in range(axis - 1):
|
| 345 |
+
mask = torch.unsqueeze(mask, 1)
|
| 346 |
+
for _ in range(x.ndim - mask.ndim):
|
| 347 |
+
mask = torch.unsqueeze(mask, mask.ndim)
|
| 348 |
+
return x * mask + value * (1 - mask)
|
| 349 |
+
|
| 350 |
+
def add_mask_tril(self, logits, mask):
|
| 351 |
+
if mask.dtype != logits.dtype:
|
| 352 |
+
mask = mask.type(logits.dtype)
|
| 353 |
+
logits = self.sequence_masking(logits, mask, "-inf", logits.ndim - 2)
|
| 354 |
+
logits = self.sequence_masking(logits, mask, "-inf", logits.ndim - 1)
|
| 355 |
+
# 排除下三角
|
| 356 |
+
mask = torch.tril(torch.ones_like(logits), diagonal=-1)
|
| 357 |
+
logits = logits - mask * 1e12
|
| 358 |
+
return logits
|
| 359 |
+
|
| 360 |
+
def forward(self, input_ids, attention_mask, token_type_ids, labels=None, short_labels=None):
|
| 361 |
+
# with torch.no_grad():
|
| 362 |
+
context_outputs = self.roformer(input_ids, attention_mask, token_type_ids)
|
| 363 |
+
last_hidden_state = context_outputs.last_hidden_state # [bz, seq_len, hidden_dim]
|
| 364 |
+
outputs = self.dense_1(last_hidden_state) # [bz, seq_len, 2*inner_dim]
|
| 365 |
+
qw, kw = outputs[..., ::2], outputs[..., 1::2] # 从0,1开始间隔为2 最后一个纬度,从0开始,取奇数位置所有向量汇总
|
| 366 |
+
batch_size = input_ids.shape[0]
|
| 367 |
+
if self.RoPE:
|
| 368 |
+
pos = SinusoidalPositionEmbedding(self.inner_dim, "zero")(outputs)
|
| 369 |
+
cos_pos = pos[..., 1::2].repeat_interleave(2, dim=-1) # e.g. [0.34, 0.90] -> [0.34, 0.34, 0.90, 0.90]
|
| 370 |
+
sin_pos = pos[..., ::2].repeat_interleave(2, dim=-1)
|
| 371 |
+
qw2 = torch.stack([-qw[..., 1::2], qw[..., ::2]], 3)
|
| 372 |
+
qw2 = torch.reshape(qw2, qw.shape)
|
| 373 |
+
qw = qw * cos_pos + qw2 * sin_pos
|
| 374 |
+
kw2 = torch.stack([-kw[..., 1::2], kw[..., ::2]], 3)
|
| 375 |
+
kw2 = torch.reshape(kw2, kw.shape)
|
| 376 |
+
kw = kw * cos_pos + kw2 * sin_pos
|
| 377 |
+
logits = torch.einsum("bmd,bnd->bmn", qw, kw) / self.inner_dim ** 0.5
|
| 378 |
+
bias = torch.einsum("bnh->bhn", self.dense_2(last_hidden_state)) / 2
|
| 379 |
+
logits = logits[:, None] + bias[:, ::2, None] + bias[:, 1::2, :, None] # logits[:, None] 增加一个维度
|
| 380 |
+
# logit_mask = self.add_mask_tril(logits, mask=attention_mask)
|
| 381 |
+
loss = None
|
| 382 |
+
|
| 383 |
+
mask = torch.triu(attention_mask.unsqueeze(2) * attention_mask.unsqueeze(1)) # 上三角矩阵
|
| 384 |
+
# mask = torch.where(mask > 0, 0.0, 1)
|
| 385 |
+
if labels is not None:
|
| 386 |
+
y_pred = logits - (1-mask.unsqueeze(1))*1e12
|
| 387 |
+
y_true = labels.view(input_ids.shape[0] * self.ent_type_size, -1)
|
| 388 |
+
y_pred = y_pred.view(input_ids.shape[0] * self.ent_type_size, -1)
|
| 389 |
+
loss = multilabel_categorical_crossentropy(y_pred, y_true)
|
| 390 |
+
|
| 391 |
+
with torch.no_grad():
|
| 392 |
+
prob = torch.sigmoid(logits) * mask.unsqueeze(1)
|
| 393 |
+
topk = torch.topk(prob.view(batch_size, self.ent_type_size, -1), 50, dim=-1)
|
| 394 |
+
|
| 395 |
+
|
| 396 |
+
return GlobalPointerOutput(
|
| 397 |
+
loss=loss,
|
| 398 |
+
topk_probs=topk.values,
|
| 399 |
+
topk_indices=topk.indices
|
| 400 |
+
)
|
| 401 |
+
|
| 402 |
+
class MegatronForEffiGlobalPointer(MegatronBertPreTrainedModel):
|
| 403 |
+
def __init__(self, config):
|
| 404 |
+
# encodr: RoBerta-Large as encoder
|
| 405 |
+
# inner_dim: 64
|
| 406 |
+
# ent_type_size: ent_cls_num
|
| 407 |
+
super().__init__(config)
|
| 408 |
+
self.bert = MegatronBertModel(config)
|
| 409 |
+
self.ent_type_size = config.ent_type_size
|
| 410 |
+
self.inner_dim = config.inner_dim
|
| 411 |
+
self.hidden_size = config.hidden_size
|
| 412 |
+
self.RoPE = config.RoPE
|
| 413 |
+
|
| 414 |
+
self.dense_1 = nn.Linear(self.hidden_size, self.inner_dim * 2)
|
| 415 |
+
self.dense_2 = nn.Linear(self.hidden_size, self.ent_type_size * 2) # 原版的dense2是(inner_dim * 2, ent_type_size * 2)
|
| 416 |
+
|
| 417 |
+
def sequence_masking(self, x, mask, value="-inf", axis=None):
|
| 418 |
+
if mask is None:
|
| 419 |
+
return x
|
| 420 |
+
else:
|
| 421 |
+
if value == "-inf":
|
| 422 |
+
value = -1e12
|
| 423 |
+
elif value == "inf":
|
| 424 |
+
value = 1e12
|
| 425 |
+
assert axis > 0, "axis must be greater than 0"
|
| 426 |
+
for _ in range(axis - 1):
|
| 427 |
+
mask = torch.unsqueeze(mask, 1)
|
| 428 |
+
for _ in range(x.ndim - mask.ndim):
|
| 429 |
+
mask = torch.unsqueeze(mask, mask.ndim)
|
| 430 |
+
return x * mask + value * (1 - mask)
|
| 431 |
+
|
| 432 |
+
def add_mask_tril(self, logits, mask):
|
| 433 |
+
if mask.dtype != logits.dtype:
|
| 434 |
+
mask = mask.type(logits.dtype)
|
| 435 |
+
logits = self.sequence_masking(logits, mask, "-inf", logits.ndim - 2)
|
| 436 |
+
logits = self.sequence_masking(logits, mask, "-inf", logits.ndim - 1)
|
| 437 |
+
# 排除下三角
|
| 438 |
+
mask = torch.tril(torch.ones_like(logits), diagonal=-1)
|
| 439 |
+
logits = logits - mask * 1e12
|
| 440 |
+
return logits
|
| 441 |
+
|
| 442 |
+
def forward(self, input_ids, attention_mask, token_type_ids, labels=None, short_labels=None):
|
| 443 |
+
# with torch.no_grad():
|
| 444 |
+
context_outputs = self.bert(input_ids, attention_mask, token_type_ids)
|
| 445 |
+
last_hidden_state = context_outputs.last_hidden_state # [bz, seq_len, hidden_dim]
|
| 446 |
+
outputs = self.dense_1(last_hidden_state) # [bz, seq_len, 2*inner_dim]
|
| 447 |
+
qw, kw = outputs[..., ::2], outputs[..., 1::2] # 从0,1开始间隔为2 最后一个纬度,从0开始,取奇数位置所有向量汇总
|
| 448 |
+
batch_size = input_ids.shape[0]
|
| 449 |
+
if self.RoPE:
|
| 450 |
+
pos = SinusoidalPositionEmbedding(self.inner_dim, "zero")(outputs)
|
| 451 |
+
cos_pos = pos[..., 1::2].repeat_interleave(2, dim=-1) # e.g. [0.34, 0.90] -> [0.34, 0.34, 0.90, 0.90]
|
| 452 |
+
sin_pos = pos[..., ::2].repeat_interleave(2, dim=-1)
|
| 453 |
+
qw2 = torch.stack([-qw[..., 1::2], qw[..., ::2]], 3)
|
| 454 |
+
qw2 = torch.reshape(qw2, qw.shape)
|
| 455 |
+
qw = qw * cos_pos + qw2 * sin_pos
|
| 456 |
+
kw2 = torch.stack([-kw[..., 1::2], kw[..., ::2]], 3)
|
| 457 |
+
kw2 = torch.reshape(kw2, kw.shape)
|
| 458 |
+
kw = kw * cos_pos + kw2 * sin_pos
|
| 459 |
+
logits = torch.einsum("bmd,bnd->bmn", qw, kw) / self.inner_dim ** 0.5
|
| 460 |
+
bias = torch.einsum("bnh->bhn", self.dense_2(last_hidden_state)) / 2
|
| 461 |
+
logits = logits[:, None] + bias[:, ::2, None] + bias[:, 1::2, :, None] # logits[:, None] 增加一个维度
|
| 462 |
+
# logit_mask = self.add_mask_tril(logits, mask=attention_mask)
|
| 463 |
+
loss = None
|
| 464 |
+
|
| 465 |
+
mask = torch.triu(attention_mask.unsqueeze(2) * attention_mask.unsqueeze(1)) # 上三角矩阵
|
| 466 |
+
# mask = torch.where(mask > 0, 0.0, 1)
|
| 467 |
+
if labels is not None:
|
| 468 |
+
y_pred = logits - (1-mask.unsqueeze(1))*1e12
|
| 469 |
+
y_true = labels.view(input_ids.shape[0] * self.ent_type_size, -1)
|
| 470 |
+
y_pred = y_pred.view(input_ids.shape[0] * self.ent_type_size, -1)
|
| 471 |
+
loss = multilabel_categorical_crossentropy(y_pred, y_true)
|
| 472 |
+
|
| 473 |
+
with torch.no_grad():
|
| 474 |
+
prob = torch.sigmoid(logits) * mask.unsqueeze(1)
|
| 475 |
+
topk = torch.topk(prob.view(batch_size, self.ent_type_size, -1), 50, dim=-1)
|
| 476 |
+
|
| 477 |
+
|
| 478 |
+
return GlobalPointerOutput(
|
| 479 |
+
loss=loss,
|
| 480 |
+
topk_probs=topk.values,
|
| 481 |
+
topk_indices=topk.indices
|
| 482 |
+
)
|
models/span_extraction/span_for_ner.py
ADDED
|
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from transformers.models.bert.modeling_bert import BertPreTrainedModel, BertModel
|
| 5 |
+
from transformers.models.roberta.modeling_roberta import RobertaPreTrainedModel, RobertaModel
|
| 6 |
+
from transformers.models.albert.modeling_albert import AlbertPreTrainedModel, AlbertModel
|
| 7 |
+
from transformers.models.megatron_bert.modeling_megatron_bert import MegatronBertPreTrainedModel, MegatronBertModel
|
| 8 |
+
from models.basic_modules.linears import PoolerEndLogits, PoolerStartLogits
|
| 9 |
+
from torch.nn import CrossEntropyLoss
|
| 10 |
+
from loss.focal_loss import FocalLoss
|
| 11 |
+
from loss.label_smoothing import LabelSmoothingCrossEntropy
|
| 12 |
+
|
| 13 |
+
class BertSpanForNer(BertPreTrainedModel):
|
| 14 |
+
def __init__(self, config,):
|
| 15 |
+
super(BertSpanForNer, self).__init__(config)
|
| 16 |
+
self.soft_label = config.soft_label
|
| 17 |
+
self.num_labels = config.num_labels
|
| 18 |
+
self.loss_type = config.loss_type
|
| 19 |
+
self.bert = BertModel(config)
|
| 20 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 21 |
+
self.start_fc = PoolerStartLogits(config.hidden_size, self.num_labels)
|
| 22 |
+
if self.soft_label:
|
| 23 |
+
self.end_fc = PoolerEndLogits(config.hidden_size + self.num_labels, self.num_labels)
|
| 24 |
+
else:
|
| 25 |
+
self.end_fc = PoolerEndLogits(config.hidden_size + 1, self.num_labels)
|
| 26 |
+
self.init_weights()
|
| 27 |
+
|
| 28 |
+
def forward(self, input_ids, token_type_ids=None, attention_mask=None, start_positions=None,end_positions=None):
|
| 29 |
+
outputs = self.bert(input_ids = input_ids,attention_mask=attention_mask,token_type_ids=token_type_ids)
|
| 30 |
+
sequence_output = outputs[0]
|
| 31 |
+
sequence_output = self.dropout(sequence_output)
|
| 32 |
+
start_logits = self.start_fc(sequence_output)
|
| 33 |
+
if start_positions is not None and self.training:
|
| 34 |
+
if self.soft_label:
|
| 35 |
+
batch_size = input_ids.size(0)
|
| 36 |
+
seq_len = input_ids.size(1)
|
| 37 |
+
label_logits = torch.FloatTensor(batch_size, seq_len, self.num_labels)
|
| 38 |
+
label_logits.zero_()
|
| 39 |
+
label_logits = label_logits.to(input_ids.device)
|
| 40 |
+
label_logits.scatter_(2, start_positions.unsqueeze(2), 1)
|
| 41 |
+
else:
|
| 42 |
+
label_logits = start_positions.unsqueeze(2).float()
|
| 43 |
+
else:
|
| 44 |
+
label_logits = F.softmax(start_logits, -1)
|
| 45 |
+
if not self.soft_label:
|
| 46 |
+
label_logits = torch.argmax(label_logits, -1).unsqueeze(2).float()
|
| 47 |
+
end_logits = self.end_fc(sequence_output, label_logits)
|
| 48 |
+
outputs = (start_logits, end_logits,) + outputs[2:]
|
| 49 |
+
|
| 50 |
+
if start_positions is not None and end_positions is not None:
|
| 51 |
+
assert self.loss_type in ["lsr", "focal", "ce"]
|
| 52 |
+
if self.loss_type =="lsr":
|
| 53 |
+
loss_fct = LabelSmoothingCrossEntropy()
|
| 54 |
+
elif self.loss_type == "focal":
|
| 55 |
+
loss_fct = FocalLoss()
|
| 56 |
+
else:
|
| 57 |
+
loss_fct = CrossEntropyLoss()
|
| 58 |
+
start_logits = start_logits.view(-1, self.num_labels)
|
| 59 |
+
end_logits = end_logits.view(-1, self.num_labels)
|
| 60 |
+
active_loss = attention_mask.view(-1) == 1
|
| 61 |
+
active_start_logits = start_logits[active_loss]
|
| 62 |
+
active_end_logits = end_logits[active_loss]
|
| 63 |
+
|
| 64 |
+
active_start_labels = start_positions.view(-1)[active_loss]
|
| 65 |
+
active_end_labels = end_positions.view(-1)[active_loss]
|
| 66 |
+
|
| 67 |
+
start_loss = loss_fct(active_start_logits, active_start_labels)
|
| 68 |
+
end_loss = loss_fct(active_end_logits, active_end_labels)
|
| 69 |
+
total_loss = (start_loss + end_loss) / 2
|
| 70 |
+
outputs = (total_loss,) + outputs
|
| 71 |
+
return outputs
|
| 72 |
+
|
| 73 |
+
class RobertaSpanForNer(RobertaPreTrainedModel):
|
| 74 |
+
def __init__(self, config,):
|
| 75 |
+
super(RobertaSpanForNer, self).__init__(config)
|
| 76 |
+
self.soft_label = config.soft_label
|
| 77 |
+
self.num_labels = config.num_labels
|
| 78 |
+
self.loss_type = config.loss_type
|
| 79 |
+
self.roberta = RobertaModel(config)
|
| 80 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 81 |
+
self.start_fc = PoolerStartLogits(config.hidden_size, self.num_labels)
|
| 82 |
+
if self.soft_label:
|
| 83 |
+
self.end_fc = PoolerEndLogits(config.hidden_size + self.num_labels, self.num_labels)
|
| 84 |
+
else:
|
| 85 |
+
self.end_fc = PoolerEndLogits(config.hidden_size + 1, self.num_labels)
|
| 86 |
+
self.init_weights()
|
| 87 |
+
|
| 88 |
+
def forward(self, input_ids, token_type_ids=None, attention_mask=None, start_positions=None,end_positions=None):
|
| 89 |
+
outputs = self.roberta(input_ids = input_ids,attention_mask=attention_mask,token_type_ids=token_type_ids)
|
| 90 |
+
sequence_output = outputs[0]
|
| 91 |
+
sequence_output = self.dropout(sequence_output)
|
| 92 |
+
start_logits = self.start_fc(sequence_output)
|
| 93 |
+
if start_positions is not None and self.training:
|
| 94 |
+
if self.soft_label:
|
| 95 |
+
batch_size = input_ids.size(0)
|
| 96 |
+
seq_len = input_ids.size(1)
|
| 97 |
+
label_logits = torch.FloatTensor(batch_size, seq_len, self.num_labels)
|
| 98 |
+
label_logits.zero_()
|
| 99 |
+
label_logits = label_logits.to(input_ids.device)
|
| 100 |
+
label_logits.scatter_(2, start_positions.unsqueeze(2), 1)
|
| 101 |
+
else:
|
| 102 |
+
label_logits = start_positions.unsqueeze(2).float()
|
| 103 |
+
else:
|
| 104 |
+
label_logits = F.softmax(start_logits, -1)
|
| 105 |
+
if not self.soft_label:
|
| 106 |
+
label_logits = torch.argmax(label_logits, -1).unsqueeze(2).float()
|
| 107 |
+
end_logits = self.end_fc(sequence_output, label_logits)
|
| 108 |
+
outputs = (start_logits, end_logits,) + outputs[2:]
|
| 109 |
+
|
| 110 |
+
if start_positions is not None and end_positions is not None:
|
| 111 |
+
assert self.loss_type in ["lsr", "focal", "ce"]
|
| 112 |
+
if self.loss_type =="lsr":
|
| 113 |
+
loss_fct = LabelSmoothingCrossEntropy()
|
| 114 |
+
elif self.loss_type == "focal":
|
| 115 |
+
loss_fct = FocalLoss()
|
| 116 |
+
else:
|
| 117 |
+
loss_fct = CrossEntropyLoss()
|
| 118 |
+
start_logits = start_logits.view(-1, self.num_labels)
|
| 119 |
+
end_logits = end_logits.view(-1, self.num_labels)
|
| 120 |
+
active_loss = attention_mask.view(-1) == 1
|
| 121 |
+
active_start_logits = start_logits[active_loss]
|
| 122 |
+
active_end_logits = end_logits[active_loss]
|
| 123 |
+
|
| 124 |
+
active_start_labels = start_positions.view(-1)[active_loss]
|
| 125 |
+
active_end_labels = end_positions.view(-1)[active_loss]
|
| 126 |
+
|
| 127 |
+
start_loss = loss_fct(active_start_logits, active_start_labels)
|
| 128 |
+
end_loss = loss_fct(active_end_logits, active_end_labels)
|
| 129 |
+
total_loss = (start_loss + end_loss) / 2
|
| 130 |
+
outputs = (total_loss,) + outputs
|
| 131 |
+
return outputs
|
| 132 |
+
|
| 133 |
+
class AlbertSpanForNer(AlbertPreTrainedModel):
|
| 134 |
+
def __init__(self, config,):
|
| 135 |
+
super(AlbertSpanForNer, self).__init__(config)
|
| 136 |
+
self.soft_label = config.soft_label
|
| 137 |
+
self.num_labels = config.num_labels
|
| 138 |
+
self.loss_type = config.loss_type
|
| 139 |
+
self.bert = AlbertModel(config)
|
| 140 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 141 |
+
self.start_fc = PoolerStartLogits(config.hidden_size, self.num_labels)
|
| 142 |
+
if self.soft_label:
|
| 143 |
+
self.end_fc = PoolerEndLogits(config.hidden_size + self.num_labels, self.num_labels)
|
| 144 |
+
else:
|
| 145 |
+
self.end_fc = PoolerEndLogits(config.hidden_size + 1, self.num_labels)
|
| 146 |
+
self.init_weights()
|
| 147 |
+
|
| 148 |
+
def forward(self, input_ids, token_type_ids=None, attention_mask=None, start_positions=None,end_positions=None):
|
| 149 |
+
outputs = self.bert(input_ids = input_ids,attention_mask=attention_mask,token_type_ids=token_type_ids)
|
| 150 |
+
sequence_output = outputs[0]
|
| 151 |
+
sequence_output = self.dropout(sequence_output)
|
| 152 |
+
start_logits = self.start_fc(sequence_output)
|
| 153 |
+
if start_positions is not None and self.training:
|
| 154 |
+
if self.soft_label:
|
| 155 |
+
batch_size = input_ids.size(0)
|
| 156 |
+
seq_len = input_ids.size(1)
|
| 157 |
+
label_logits = torch.FloatTensor(batch_size, seq_len, self.num_labels)
|
| 158 |
+
label_logits.zero_()
|
| 159 |
+
label_logits = label_logits.to(input_ids.device)
|
| 160 |
+
label_logits.scatter_(2, start_positions.unsqueeze(2), 1)
|
| 161 |
+
else:
|
| 162 |
+
label_logits = start_positions.unsqueeze(2).float()
|
| 163 |
+
else:
|
| 164 |
+
label_logits = F.softmax(start_logits, -1)
|
| 165 |
+
if not self.soft_label:
|
| 166 |
+
label_logits = torch.argmax(label_logits, -1).unsqueeze(2).float()
|
| 167 |
+
end_logits = self.end_fc(sequence_output, label_logits)
|
| 168 |
+
outputs = (start_logits, end_logits,) + outputs[2:]
|
| 169 |
+
|
| 170 |
+
if start_positions is not None and end_positions is not None:
|
| 171 |
+
assert self.loss_type in ["lsr","focal","ce"]
|
| 172 |
+
if self.loss_type =="lsr":
|
| 173 |
+
loss_fct = LabelSmoothingCrossEntropy()
|
| 174 |
+
elif self.loss_type == "focal":
|
| 175 |
+
loss_fct = FocalLoss()
|
| 176 |
+
else:
|
| 177 |
+
loss_fct = CrossEntropyLoss()
|
| 178 |
+
start_logits = start_logits.view(-1, self.num_labels)
|
| 179 |
+
end_logits = end_logits.view(-1, self.num_labels)
|
| 180 |
+
active_loss = attention_mask.view(-1) == 1
|
| 181 |
+
active_start_logits = start_logits[active_loss]
|
| 182 |
+
active_start_labels = start_positions.view(-1)[active_loss]
|
| 183 |
+
active_end_logits = end_logits[active_loss]
|
| 184 |
+
active_end_labels = end_positions.view(-1)[active_loss]
|
| 185 |
+
|
| 186 |
+
start_loss = loss_fct(active_start_logits, active_start_labels)
|
| 187 |
+
end_loss = loss_fct(active_end_logits, active_end_labels)
|
| 188 |
+
total_loss = (start_loss + end_loss) / 2
|
| 189 |
+
outputs = (total_loss,) + outputs
|
| 190 |
+
return outputs
|
| 191 |
+
|
| 192 |
+
class MegatronBertSpanForNer(MegatronBertPreTrainedModel):
|
| 193 |
+
def __init__(self, config,):
|
| 194 |
+
super(BertSpanForNer, self).__init__(config)
|
| 195 |
+
# self.soft_label = config.soft_label
|
| 196 |
+
self.soft_label = True
|
| 197 |
+
self.num_labels = config.num_labels
|
| 198 |
+
# self.loss_type = config.loss_type
|
| 199 |
+
self.loss_type = "ce"
|
| 200 |
+
self.bert = MegatronBertModel(config)
|
| 201 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 202 |
+
self.start_fc = PoolerStartLogits(config.hidden_size, self.num_labels)
|
| 203 |
+
if self.soft_label:
|
| 204 |
+
self.end_fc = PoolerEndLogits(config.hidden_size + self.num_labels, self.num_labels)
|
| 205 |
+
else:
|
| 206 |
+
self.end_fc = PoolerEndLogits(config.hidden_size + 1, self.num_labels)
|
| 207 |
+
self.init_weights()
|
| 208 |
+
|
| 209 |
+
def forward(self, input_ids, token_type_ids=None, attention_mask=None, start_positions=None,end_positions=None):
|
| 210 |
+
outputs = self.bert(input_ids = input_ids,attention_mask=attention_mask,token_type_ids=token_type_ids)
|
| 211 |
+
sequence_output = outputs[0]
|
| 212 |
+
sequence_output = self.dropout(sequence_output)
|
| 213 |
+
start_logits = self.start_fc(sequence_output)
|
| 214 |
+
if start_positions is not None and self.training:
|
| 215 |
+
if self.soft_label:
|
| 216 |
+
batch_size = input_ids.size(0)
|
| 217 |
+
seq_len = input_ids.size(1)
|
| 218 |
+
label_logits = torch.FloatTensor(batch_size, seq_len, self.num_labels)
|
| 219 |
+
label_logits.zero_()
|
| 220 |
+
label_logits = label_logits.to(input_ids.device)
|
| 221 |
+
label_logits.scatter_(2, start_positions.unsqueeze(2), 1)
|
| 222 |
+
else:
|
| 223 |
+
label_logits = start_positions.unsqueeze(2).float()
|
| 224 |
+
else:
|
| 225 |
+
label_logits = F.softmax(start_logits, -1)
|
| 226 |
+
if not self.soft_label:
|
| 227 |
+
label_logits = torch.argmax(label_logits, -1).unsqueeze(2).float()
|
| 228 |
+
end_logits = self.end_fc(sequence_output, label_logits)
|
| 229 |
+
outputs = (start_logits, end_logits,) + outputs[2:]
|
| 230 |
+
|
| 231 |
+
if start_positions is not None and end_positions is not None:
|
| 232 |
+
assert self.loss_type in ["lsr", "focal", "ce"]
|
| 233 |
+
if self.loss_type =="lsr":
|
| 234 |
+
loss_fct = LabelSmoothingCrossEntropy()
|
| 235 |
+
elif self.loss_type == "focal":
|
| 236 |
+
loss_fct = FocalLoss()
|
| 237 |
+
else:
|
| 238 |
+
loss_fct = CrossEntropyLoss()
|
| 239 |
+
start_logits = start_logits.view(-1, self.num_labels)
|
| 240 |
+
end_logits = end_logits.view(-1, self.num_labels)
|
| 241 |
+
active_loss = attention_mask.view(-1) == 1
|
| 242 |
+
active_start_logits = start_logits[active_loss]
|
| 243 |
+
active_end_logits = end_logits[active_loss]
|
| 244 |
+
|
| 245 |
+
active_start_labels = start_positions.view(-1)[active_loss]
|
| 246 |
+
active_end_labels = end_positions.view(-1)[active_loss]
|
| 247 |
+
|
| 248 |
+
start_loss = loss_fct(active_start_logits, active_start_labels)
|
| 249 |
+
end_loss = loss_fct(active_end_logits, active_end_labels)
|
| 250 |
+
total_loss = (start_loss + end_loss) / 2
|
| 251 |
+
outputs = (total_loss,) + outputs
|
| 252 |
+
return outputs
|