Spaces:
Sleeping
Sleeping
Commit
·
e95b4e9
1
Parent(s):
08f4077
Upload 3 files
Browse files
models/multiple_choice/duma.py
ADDED
|
@@ -0,0 +1,355 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# @Time : 2022/4/12 12:12 下午
|
| 3 |
+
# @Author : JianingWang
|
| 4 |
+
# @File : duma.py
|
| 5 |
+
import math
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
from torch import nn
|
| 9 |
+
from torch.nn import CrossEntropyLoss
|
| 10 |
+
|
| 11 |
+
from transformers.models.bert.modeling_bert import BertModel, BertPreTrainedModel
|
| 12 |
+
from transformers.models.roberta.modeling_roberta import RobertaModel, RobertaPreTrainedModel
|
| 13 |
+
from transformers.models.albert.modeling_albert import AlbertModel, AlbertPreTrainedModel
|
| 14 |
+
from transformers.models.megatron_bert.modeling_megatron_bert import MegatronBertModel, MegatronBertPreTrainedModel
|
| 15 |
+
from transformers.modeling_outputs import MultipleChoiceModelOutput
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def split_context_query(sequence_output, pq_end_pos, input_ids):
|
| 19 |
+
context_max_len = sequence_output.size(1)
|
| 20 |
+
query_max_len = sequence_output.size(1)
|
| 21 |
+
sep_tok_len = 1 # [SEP]
|
| 22 |
+
context_sequence_output = sequence_output.new(
|
| 23 |
+
torch.Size((sequence_output.size(0), context_max_len, sequence_output.size(2)))).zero_()
|
| 24 |
+
query_sequence_output = sequence_output.new_zeros(
|
| 25 |
+
(sequence_output.size(0), query_max_len, sequence_output.size(2)))
|
| 26 |
+
query_attention_mask = sequence_output.new_zeros((sequence_output.size(0), query_max_len))
|
| 27 |
+
context_attention_mask = sequence_output.new_zeros((sequence_output.size(0), context_max_len))
|
| 28 |
+
for i in range(0, sequence_output.size(0)):
|
| 29 |
+
p_end = pq_end_pos[i][0]
|
| 30 |
+
q_end = pq_end_pos[i][1]
|
| 31 |
+
context_sequence_output[i, :min(context_max_len, p_end)] = sequence_output[i, 1: 1 + min(context_max_len, p_end)]
|
| 32 |
+
idx = min(query_max_len, q_end - p_end - sep_tok_len)
|
| 33 |
+
query_sequence_output[i, :idx] = sequence_output[i, p_end + sep_tok_len + 1: p_end + sep_tok_len + 1 + min(q_end - p_end - sep_tok_len, query_max_len)]
|
| 34 |
+
query_attention_mask[i, :idx] = sequence_output.new_ones((1, query_max_len))[0, :idx]
|
| 35 |
+
context_attention_mask[i, : min(context_max_len, p_end)] = sequence_output.new_ones((1, context_max_len))[0, : min(context_max_len, p_end)]
|
| 36 |
+
return context_sequence_output, query_sequence_output, context_attention_mask, query_attention_mask
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class BertCoAttention(nn.Module):
|
| 40 |
+
def __init__(self, config):
|
| 41 |
+
super(BertCoAttention, self).__init__()
|
| 42 |
+
if config.hidden_size % config.num_attention_heads != 0:
|
| 43 |
+
raise ValueError(
|
| 44 |
+
"The hidden size (%d) is not a multiple of the number of attention "
|
| 45 |
+
"heads (%d)" % (config.hidden_size, config.num_attention_heads))
|
| 46 |
+
self.output_attentions = config.output_attentions
|
| 47 |
+
|
| 48 |
+
self.num_attention_heads = config.num_attention_heads
|
| 49 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
| 50 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
| 51 |
+
|
| 52 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
| 53 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
| 54 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
| 55 |
+
|
| 56 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
| 57 |
+
|
| 58 |
+
def transpose_for_scores(self, x):
|
| 59 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
| 60 |
+
x = x.view(*new_x_shape)
|
| 61 |
+
return x.permute(0, 2, 1, 3)
|
| 62 |
+
|
| 63 |
+
def forward(self, context_states, query_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None):
|
| 64 |
+
mixed_query_layer = self.query(query_states)
|
| 65 |
+
|
| 66 |
+
extended_attention_mask = attention_mask[:, None, None, :]
|
| 67 |
+
# extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
|
| 68 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
| 69 |
+
attention_mask = extended_attention_mask
|
| 70 |
+
|
| 71 |
+
# If this is instantiated as a cross-attention module, the keys
|
| 72 |
+
# and values come from an encoder; the attention mask needs to be
|
| 73 |
+
# such that the encoder"s padding tokens are not attended to.
|
| 74 |
+
if encoder_hidden_states is not None:
|
| 75 |
+
mixed_key_layer = self.key(encoder_hidden_states)
|
| 76 |
+
mixed_value_layer = self.value(encoder_hidden_states)
|
| 77 |
+
attention_mask = encoder_attention_mask
|
| 78 |
+
else:
|
| 79 |
+
mixed_key_layer = self.key(context_states)
|
| 80 |
+
mixed_value_layer = self.value(context_states)
|
| 81 |
+
|
| 82 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
| 83 |
+
key_layer = self.transpose_for_scores(mixed_key_layer)
|
| 84 |
+
value_layer = self.transpose_for_scores(mixed_value_layer)
|
| 85 |
+
|
| 86 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
| 87 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
| 88 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
| 89 |
+
if attention_mask is not None:
|
| 90 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
| 91 |
+
attention_scores = attention_scores + attention_mask
|
| 92 |
+
|
| 93 |
+
# Normalize the attention scores to probabilities.
|
| 94 |
+
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
| 95 |
+
|
| 96 |
+
# This is actually dropping out entire tokens to attend to, which might
|
| 97 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
| 98 |
+
attention_probs = self.dropout(attention_probs)
|
| 99 |
+
|
| 100 |
+
# Mask heads if we want to
|
| 101 |
+
if head_mask is not None:
|
| 102 |
+
attention_probs = attention_probs * head_mask
|
| 103 |
+
|
| 104 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
| 105 |
+
|
| 106 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
| 107 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
| 108 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
| 109 |
+
|
| 110 |
+
# outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer,)
|
| 111 |
+
outputs = context_layer
|
| 112 |
+
return outputs
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
class BertDUMAForMultipleChoice(BertPreTrainedModel):
|
| 116 |
+
|
| 117 |
+
def __init__(self, config):
|
| 118 |
+
super(BertDUMAForMultipleChoice, self).__init__(config)
|
| 119 |
+
|
| 120 |
+
self.bert = BertModel(config)
|
| 121 |
+
self.classifier_2 = nn.Linear(2 * config.hidden_size, 1)
|
| 122 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 123 |
+
self.bert_att = BertCoAttention(config)
|
| 124 |
+
|
| 125 |
+
self.init_weights()
|
| 126 |
+
|
| 127 |
+
def forward(self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
|
| 128 |
+
inputs_embeds=None, labels=None, pq_end_pos=None, iter=1):
|
| 129 |
+
num_choices = input_ids.shape[1]
|
| 130 |
+
|
| 131 |
+
flat_input_ids = input_ids.view(-1, input_ids.size(-1))
|
| 132 |
+
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
| 133 |
+
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
| 134 |
+
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
| 135 |
+
flat_head_mask = head_mask.view(-1, head_mask.size(-1)) if head_mask is not None else None
|
| 136 |
+
flat_inputs_embeds = inputs_embeds.view(-1, inputs_embeds.size(-1)) if inputs_embeds is not None else None
|
| 137 |
+
|
| 138 |
+
outputs = self.bert(
|
| 139 |
+
input_ids=flat_input_ids,
|
| 140 |
+
attention_mask=flat_attention_mask,
|
| 141 |
+
token_type_ids=flat_token_type_ids,
|
| 142 |
+
position_ids=flat_position_ids,
|
| 143 |
+
head_mask=flat_head_mask,
|
| 144 |
+
inputs_embeds=flat_inputs_embeds
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
sequence_output = outputs[0]
|
| 148 |
+
|
| 149 |
+
pq_end_pos = pq_end_pos.view(-1, pq_end_pos.size(-1))
|
| 150 |
+
|
| 151 |
+
context_sequence_output, query_sequence_output, context_attention_mask, query_attention_mask = \
|
| 152 |
+
split_context_query(sequence_output, pq_end_pos, input_ids)
|
| 153 |
+
for _ in range(0, iter):
|
| 154 |
+
cq_biatt_output = self.bert_att(context_sequence_output, query_sequence_output, context_attention_mask)
|
| 155 |
+
qc_biatt_output = self.bert_att(query_sequence_output, context_sequence_output, query_attention_mask)
|
| 156 |
+
|
| 157 |
+
query_sequence_output = cq_biatt_output
|
| 158 |
+
context_sequence_output = qc_biatt_output
|
| 159 |
+
|
| 160 |
+
cat_output = torch.cat([torch.mean(qc_biatt_output, 1), torch.mean(cq_biatt_output, 1)], 1)
|
| 161 |
+
pooled_output = self.dropout(cat_output)
|
| 162 |
+
logits = self.classifier_2(pooled_output)
|
| 163 |
+
|
| 164 |
+
reshaped_logits = logits.view(-1, num_choices)
|
| 165 |
+
|
| 166 |
+
outputs = (reshaped_logits,) + outputs[2:] # add hidden states and attention if they are here
|
| 167 |
+
|
| 168 |
+
if labels is not None:
|
| 169 |
+
loss_fct = CrossEntropyLoss()
|
| 170 |
+
loss = loss_fct(reshaped_logits, labels)
|
| 171 |
+
outputs = (loss,) + outputs
|
| 172 |
+
|
| 173 |
+
return outputs # (loss), reshaped_logits, (hidden_states), (attentions)
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
class RobertaDUMAForMultipleChoice(RobertaPreTrainedModel):
|
| 177 |
+
|
| 178 |
+
def __init__(self, config):
|
| 179 |
+
super(RobertaDUMAForMultipleChoice, self).__init__(config)
|
| 180 |
+
|
| 181 |
+
self.roberta = RobertaModel(config)
|
| 182 |
+
self.classifier_2 = nn.Linear(2 * config.hidden_size, 1)
|
| 183 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 184 |
+
self.bert_att = BertCoAttention(config)
|
| 185 |
+
|
| 186 |
+
self.init_weights()
|
| 187 |
+
|
| 188 |
+
def forward(self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
|
| 189 |
+
inputs_embeds=None, labels=None, pq_end_pos=None, iter=1):
|
| 190 |
+
num_choices = input_ids.shape[1]
|
| 191 |
+
|
| 192 |
+
flat_input_ids = input_ids.view(-1, input_ids.size(-1))
|
| 193 |
+
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
| 194 |
+
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
| 195 |
+
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
| 196 |
+
flat_head_mask = head_mask.view(-1, head_mask.size(-1)) if head_mask is not None else None
|
| 197 |
+
flat_inputs_embeds = inputs_embeds.view(-1, inputs_embeds.size(-1)) if inputs_embeds is not None else None
|
| 198 |
+
|
| 199 |
+
outputs = self.roberta(
|
| 200 |
+
input_ids=flat_input_ids,
|
| 201 |
+
attention_mask=flat_attention_mask,
|
| 202 |
+
token_type_ids=flat_token_type_ids,
|
| 203 |
+
position_ids=flat_position_ids,
|
| 204 |
+
head_mask=flat_head_mask,
|
| 205 |
+
inputs_embeds=flat_inputs_embeds
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
sequence_output = outputs[0]
|
| 209 |
+
|
| 210 |
+
pq_end_pos = pq_end_pos.view(-1, pq_end_pos.size(-1))
|
| 211 |
+
|
| 212 |
+
context_sequence_output, query_sequence_output, context_attention_mask, query_attention_mask = \
|
| 213 |
+
split_context_query(sequence_output, pq_end_pos, input_ids)
|
| 214 |
+
for _ in range(0, iter):
|
| 215 |
+
cq_biatt_output = self.bert_att(context_sequence_output, query_sequence_output, context_attention_mask)
|
| 216 |
+
qc_biatt_output = self.bert_att(query_sequence_output, context_sequence_output, query_attention_mask)
|
| 217 |
+
|
| 218 |
+
query_sequence_output = cq_biatt_output
|
| 219 |
+
context_sequence_output = qc_biatt_output
|
| 220 |
+
|
| 221 |
+
cat_output = torch.cat([torch.mean(qc_biatt_output, 1), torch.mean(cq_biatt_output, 1)], 1)
|
| 222 |
+
pooled_output = self.dropout(cat_output)
|
| 223 |
+
logits = self.classifier_2(pooled_output)
|
| 224 |
+
|
| 225 |
+
reshaped_logits = logits.view(-1, num_choices)
|
| 226 |
+
|
| 227 |
+
outputs = (reshaped_logits,) + outputs[2:] # add hidden states and attention if they are here
|
| 228 |
+
|
| 229 |
+
if labels is not None:
|
| 230 |
+
loss_fct = CrossEntropyLoss()
|
| 231 |
+
loss = loss_fct(reshaped_logits, labels)
|
| 232 |
+
outputs = (loss,) + outputs
|
| 233 |
+
|
| 234 |
+
return outputs # (loss), reshaped_logits, (hidden_states), (attentions)
|
| 235 |
+
|
| 236 |
+
class AlbertDUMAForMultipleChoice(AlbertPreTrainedModel):
|
| 237 |
+
|
| 238 |
+
def __init__(self, config):
|
| 239 |
+
super(AlbertDUMAForMultipleChoice, self).__init__(config)
|
| 240 |
+
|
| 241 |
+
self.albert = AlbertModel(config)
|
| 242 |
+
self.classifier_2 = nn.Linear(2 * config.hidden_size, 1)
|
| 243 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 244 |
+
self.bert_att = BertCoAttention(config)
|
| 245 |
+
|
| 246 |
+
self.init_weights()
|
| 247 |
+
|
| 248 |
+
def forward(self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
|
| 249 |
+
inputs_embeds=None, labels=None, pq_end_pos=None, iter=1):
|
| 250 |
+
num_choices = input_ids.shape[1]
|
| 251 |
+
|
| 252 |
+
flat_input_ids = input_ids.view(-1, input_ids.size(-1))
|
| 253 |
+
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
| 254 |
+
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
| 255 |
+
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
| 256 |
+
flat_head_mask = head_mask.view(-1, head_mask.size(-1)) if head_mask is not None else None
|
| 257 |
+
flat_inputs_embeds = inputs_embeds.view(-1, inputs_embeds.size(-1)) if inputs_embeds is not None else None
|
| 258 |
+
|
| 259 |
+
outputs = self.albert(
|
| 260 |
+
input_ids=flat_input_ids,
|
| 261 |
+
attention_mask=flat_attention_mask,
|
| 262 |
+
token_type_ids=flat_token_type_ids,
|
| 263 |
+
position_ids=flat_position_ids,
|
| 264 |
+
head_mask=flat_head_mask,
|
| 265 |
+
inputs_embeds=flat_inputs_embeds
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
sequence_output = outputs[0]
|
| 269 |
+
|
| 270 |
+
pq_end_pos = pq_end_pos.view(-1, pq_end_pos.size(-1))
|
| 271 |
+
|
| 272 |
+
context_sequence_output, query_sequence_output, context_attention_mask, query_attention_mask = \
|
| 273 |
+
split_context_query(sequence_output, pq_end_pos, input_ids)
|
| 274 |
+
for _ in range(0, iter):
|
| 275 |
+
cq_biatt_output = self.bert_att(context_sequence_output, query_sequence_output, context_attention_mask)
|
| 276 |
+
qc_biatt_output = self.bert_att(query_sequence_output, context_sequence_output, query_attention_mask)
|
| 277 |
+
|
| 278 |
+
query_sequence_output = cq_biatt_output
|
| 279 |
+
context_sequence_output = qc_biatt_output
|
| 280 |
+
|
| 281 |
+
cat_output = torch.cat([torch.mean(qc_biatt_output, 1), torch.mean(cq_biatt_output, 1)], 1)
|
| 282 |
+
pooled_output = self.dropout(cat_output)
|
| 283 |
+
logits = self.classifier_2(pooled_output)
|
| 284 |
+
|
| 285 |
+
reshaped_logits = logits.view(-1, num_choices)
|
| 286 |
+
|
| 287 |
+
outputs = (reshaped_logits,) + outputs[2:] # add hidden states and attention if they are here
|
| 288 |
+
|
| 289 |
+
if labels is not None:
|
| 290 |
+
loss_fct = CrossEntropyLoss()
|
| 291 |
+
loss = loss_fct(reshaped_logits, labels)
|
| 292 |
+
outputs = (loss,) + outputs
|
| 293 |
+
|
| 294 |
+
return outputs # (loss), reshaped_logits, (hidden_states), (attentions)
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
class MegatronDumaForMultipleChoice(MegatronBertPreTrainedModel):
|
| 298 |
+
|
| 299 |
+
def __init__(self, config):
|
| 300 |
+
super(MegatronDumaForMultipleChoice, self).__init__(config)
|
| 301 |
+
|
| 302 |
+
self.bert = MegatronBertModel(config)
|
| 303 |
+
self.classifier_2 = nn.Linear(2 * config.hidden_size, 1)
|
| 304 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 305 |
+
self.bert_att = BertCoAttention(config)
|
| 306 |
+
|
| 307 |
+
self.init_weights()
|
| 308 |
+
|
| 309 |
+
def forward(self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
|
| 310 |
+
inputs_embeds=None, labels=None, pq_end_pos=None, iter=1):
|
| 311 |
+
num_choices = input_ids.shape[1]
|
| 312 |
+
|
| 313 |
+
flat_input_ids = input_ids.view(-1, input_ids.size(-1))
|
| 314 |
+
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
| 315 |
+
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
| 316 |
+
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
| 317 |
+
flat_head_mask = head_mask.view(-1, head_mask.size(-1)) if head_mask is not None else None
|
| 318 |
+
flat_inputs_embeds = inputs_embeds.view(-1, inputs_embeds.size(-1)) if inputs_embeds is not None else None
|
| 319 |
+
|
| 320 |
+
outputs = self.bert(
|
| 321 |
+
input_ids=flat_input_ids,
|
| 322 |
+
attention_mask=flat_attention_mask,
|
| 323 |
+
token_type_ids=flat_token_type_ids,
|
| 324 |
+
position_ids=flat_position_ids,
|
| 325 |
+
head_mask=flat_head_mask,
|
| 326 |
+
inputs_embeds=flat_inputs_embeds
|
| 327 |
+
)
|
| 328 |
+
|
| 329 |
+
sequence_output = outputs[0]
|
| 330 |
+
|
| 331 |
+
pq_end_pos = pq_end_pos.view(-1, pq_end_pos.size(-1))
|
| 332 |
+
|
| 333 |
+
context_sequence_output, query_sequence_output, context_attention_mask, query_attention_mask = \
|
| 334 |
+
split_context_query(sequence_output, pq_end_pos, input_ids)
|
| 335 |
+
for _ in range(0, iter):
|
| 336 |
+
cq_biatt_output = self.bert_att(context_sequence_output, query_sequence_output, context_attention_mask)
|
| 337 |
+
qc_biatt_output = self.bert_att(query_sequence_output, context_sequence_output, query_attention_mask)
|
| 338 |
+
|
| 339 |
+
query_sequence_output = cq_biatt_output
|
| 340 |
+
context_sequence_output = qc_biatt_output
|
| 341 |
+
|
| 342 |
+
cat_output = torch.cat([torch.mean(qc_biatt_output, 1), torch.mean(cq_biatt_output, 1)], 1)
|
| 343 |
+
pooled_output = self.dropout(cat_output)
|
| 344 |
+
logits = self.classifier_2(pooled_output)
|
| 345 |
+
|
| 346 |
+
reshaped_logits = logits.view(-1, num_choices)
|
| 347 |
+
|
| 348 |
+
outputs = (reshaped_logits,) + outputs[2:] # add hidden states and attention if they are here
|
| 349 |
+
|
| 350 |
+
if labels is not None:
|
| 351 |
+
loss_fct = CrossEntropyLoss()
|
| 352 |
+
loss = loss_fct(reshaped_logits, labels)
|
| 353 |
+
outputs = (loss,) + outputs
|
| 354 |
+
|
| 355 |
+
return outputs # (loss), reshaped_logits, (hidden_states), (attentions)
|
models/multiple_choice/multiple_choice.py
ADDED
|
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# @Time : 2022/4/16 12:10 下午
|
| 3 |
+
# @Author : JianingWang
|
| 4 |
+
# @File : multiple_choice.py
|
| 5 |
+
import torch
|
| 6 |
+
from torch import nn
|
| 7 |
+
from torch.nn import CrossEntropyLoss
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
# from transformers import MegatronBertPreTrainedModel, MegatronBertModel
|
| 10 |
+
from transformers.models.megatron_bert import MegatronBertPreTrainedModel, MegatronBertModel
|
| 11 |
+
from transformers.modeling_outputs import MultipleChoiceModelOutput
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class MegatronBertForMultipleChoice(MegatronBertPreTrainedModel):
|
| 15 |
+
def __init__(self, config):
|
| 16 |
+
super().__init__(config)
|
| 17 |
+
|
| 18 |
+
self.bert = MegatronBertModel(config)
|
| 19 |
+
# classifier_dropout = (
|
| 20 |
+
# config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
| 21 |
+
# )
|
| 22 |
+
classifier_dropout = 0.2
|
| 23 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 24 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
| 25 |
+
|
| 26 |
+
# Initialize weights and apply final processing
|
| 27 |
+
self.post_init()
|
| 28 |
+
|
| 29 |
+
def forward(
|
| 30 |
+
self,
|
| 31 |
+
input_ids=None,
|
| 32 |
+
attention_mask=None,
|
| 33 |
+
token_type_ids=None,
|
| 34 |
+
position_ids=None,
|
| 35 |
+
head_mask=None,
|
| 36 |
+
inputs_embeds=None,
|
| 37 |
+
labels=None,
|
| 38 |
+
output_attentions=None,
|
| 39 |
+
output_hidden_states=None,
|
| 40 |
+
return_dict=None,
|
| 41 |
+
pseudo=None
|
| 42 |
+
):
|
| 43 |
+
r"""
|
| 44 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 45 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
| 46 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
| 47 |
+
`input_ids` above)
|
| 48 |
+
"""
|
| 49 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 50 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
| 51 |
+
|
| 52 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
| 53 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
| 54 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
| 55 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
| 56 |
+
inputs_embeds = (
|
| 57 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
| 58 |
+
if inputs_embeds is not None
|
| 59 |
+
else None
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
outputs = self.bert(
|
| 63 |
+
input_ids,
|
| 64 |
+
attention_mask=attention_mask,
|
| 65 |
+
token_type_ids=token_type_ids,
|
| 66 |
+
position_ids=position_ids,
|
| 67 |
+
head_mask=head_mask,
|
| 68 |
+
inputs_embeds=inputs_embeds,
|
| 69 |
+
output_attentions=output_attentions,
|
| 70 |
+
output_hidden_states=output_hidden_states,
|
| 71 |
+
return_dict=return_dict,
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
pooled_output = outputs[1] # [batch_size, num_choices, hidden_dim]
|
| 75 |
+
|
| 76 |
+
pooled_output = self.dropout(pooled_output)
|
| 77 |
+
logits = self.classifier(pooled_output) # [batch_size, num_choices, 1]
|
| 78 |
+
reshaped_logits = logits.view(-1, num_choices) # [batch_size, num_choices]
|
| 79 |
+
|
| 80 |
+
loss = None
|
| 81 |
+
if labels is not None:
|
| 82 |
+
if pseudo is None:
|
| 83 |
+
loss_fct = CrossEntropyLoss()
|
| 84 |
+
loss = loss_fct(reshaped_logits, labels)
|
| 85 |
+
else:
|
| 86 |
+
loss_fct = CrossEntropyLoss(reduction="none")
|
| 87 |
+
loss = loss_fct(reshaped_logits, labels)
|
| 88 |
+
weight = 1 - pseudo * 0.9
|
| 89 |
+
loss *= weight
|
| 90 |
+
loss = loss.mean()
|
| 91 |
+
|
| 92 |
+
if not return_dict:
|
| 93 |
+
output = (reshaped_logits,) + outputs[2:]
|
| 94 |
+
return ((loss,) + output) if loss is not None else output
|
| 95 |
+
|
| 96 |
+
return MultipleChoiceModelOutput(
|
| 97 |
+
loss=loss,
|
| 98 |
+
logits=reshaped_logits,
|
| 99 |
+
hidden_states=outputs.hidden_states,
|
| 100 |
+
attentions=outputs.attentions,
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
class MegatronBertRDropForMultipleChoice(MegatronBertPreTrainedModel):
|
| 105 |
+
def __init__(self, config):
|
| 106 |
+
super().__init__(config)
|
| 107 |
+
|
| 108 |
+
self.bert = MegatronBertModel(config)
|
| 109 |
+
# classifier_dropout = (
|
| 110 |
+
# config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
| 111 |
+
# )
|
| 112 |
+
classifier_dropout = 0.2
|
| 113 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 114 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
| 115 |
+
|
| 116 |
+
# Initialize weights and apply final processing
|
| 117 |
+
self.post_init()
|
| 118 |
+
|
| 119 |
+
def forward(
|
| 120 |
+
self,
|
| 121 |
+
input_ids=None,
|
| 122 |
+
attention_mask=None,
|
| 123 |
+
token_type_ids=None,
|
| 124 |
+
position_ids=None,
|
| 125 |
+
head_mask=None,
|
| 126 |
+
inputs_embeds=None,
|
| 127 |
+
labels=None,
|
| 128 |
+
output_attentions=None,
|
| 129 |
+
output_hidden_states=None,
|
| 130 |
+
return_dict=None,
|
| 131 |
+
|
| 132 |
+
):
|
| 133 |
+
r"""
|
| 134 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 135 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
| 136 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
| 137 |
+
`input_ids` above)
|
| 138 |
+
"""
|
| 139 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 140 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
| 141 |
+
|
| 142 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
| 143 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
| 144 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
| 145 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
| 146 |
+
inputs_embeds = (
|
| 147 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
| 148 |
+
if inputs_embeds is not None
|
| 149 |
+
else None
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
logits_list = []
|
| 153 |
+
for i in range(2):
|
| 154 |
+
outputs = self.bert(
|
| 155 |
+
input_ids,
|
| 156 |
+
attention_mask=attention_mask,
|
| 157 |
+
token_type_ids=token_type_ids,
|
| 158 |
+
position_ids=position_ids,
|
| 159 |
+
head_mask=head_mask,
|
| 160 |
+
inputs_embeds=inputs_embeds,
|
| 161 |
+
output_attentions=output_attentions,
|
| 162 |
+
output_hidden_states=output_hidden_states,
|
| 163 |
+
return_dict=return_dict,
|
| 164 |
+
)
|
| 165 |
+
pooled_output = outputs[1]
|
| 166 |
+
pooled_output = self.dropout(pooled_output)
|
| 167 |
+
logits = self.classifier(pooled_output)
|
| 168 |
+
logits_list.append(logits.view(-1, num_choices))
|
| 169 |
+
|
| 170 |
+
loss = None
|
| 171 |
+
alpha = 1.0
|
| 172 |
+
for logits in logits_list:
|
| 173 |
+
if labels is not None:
|
| 174 |
+
loss_fct = CrossEntropyLoss()
|
| 175 |
+
l = loss_fct(logits, labels)
|
| 176 |
+
if loss:
|
| 177 |
+
loss += alpha * l
|
| 178 |
+
else:
|
| 179 |
+
loss = alpha * l
|
| 180 |
+
|
| 181 |
+
if loss is not None:
|
| 182 |
+
p = torch.log_softmax(logits_list[0], dim=-1)
|
| 183 |
+
p_tec = torch.exp(p)
|
| 184 |
+
q = torch.log_softmax(logits_list[-1], dim=-1)
|
| 185 |
+
q_tec = torch.exp(q)
|
| 186 |
+
|
| 187 |
+
kl_loss = F.kl_div(p, q_tec, reduction="none").sum()
|
| 188 |
+
reverse_kl_loss = F.kl_div(q, p_tec, reduction="none").sum()
|
| 189 |
+
loss += 0.5 * (kl_loss + reverse_kl_loss) / 2.
|
| 190 |
+
|
| 191 |
+
return MultipleChoiceModelOutput(
|
| 192 |
+
loss=loss,
|
| 193 |
+
logits=logits_list[0],
|
| 194 |
+
hidden_states=None,
|
| 195 |
+
attentions=None
|
| 196 |
+
)
|
models/multiple_choice/multiple_choice_tag.py
ADDED
|
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# @Time : 2022/3/3 7:59 下午
|
| 3 |
+
# @Author : JianingWang
|
| 4 |
+
# @File : multiple_choice.py
|
| 5 |
+
import torch
|
| 6 |
+
from roformer import RoFormerPreTrainedModel, RoFormerModel
|
| 7 |
+
from torch import nn
|
| 8 |
+
from torch.nn import CrossEntropyLoss
|
| 9 |
+
|
| 10 |
+
from transformers import MegatronBertPreTrainedModel, MegatronBertModel
|
| 11 |
+
from transformers.modeling_outputs import MultipleChoiceModelOutput
|
| 12 |
+
from transformers.models.bert import BertPreTrainedModel, BertModel
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class BertForTagMultipleChoice(BertPreTrainedModel):
|
| 16 |
+
def __init__(self, config):
|
| 17 |
+
super().__init__(config)
|
| 18 |
+
|
| 19 |
+
self.bert = BertModel(config)
|
| 20 |
+
classifier_dropout = (
|
| 21 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
| 22 |
+
)
|
| 23 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 24 |
+
self.classifier = nn.Linear(config.hidden_size * 2, 1)
|
| 25 |
+
|
| 26 |
+
# Initialize weights and apply final processing
|
| 27 |
+
self.post_init()
|
| 28 |
+
|
| 29 |
+
def forward(
|
| 30 |
+
self,
|
| 31 |
+
input_ids=None,
|
| 32 |
+
attention_mask=None,
|
| 33 |
+
token_type_ids=None,
|
| 34 |
+
position_ids=None,
|
| 35 |
+
head_mask=None,
|
| 36 |
+
inputs_embeds=None,
|
| 37 |
+
labels=None,
|
| 38 |
+
output_attentions=None,
|
| 39 |
+
output_hidden_states=None,
|
| 40 |
+
return_dict=None,
|
| 41 |
+
pseudo=None
|
| 42 |
+
):
|
| 43 |
+
r"""
|
| 44 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 45 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
| 46 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
| 47 |
+
`input_ids` above)
|
| 48 |
+
"""
|
| 49 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 50 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
| 51 |
+
|
| 52 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
| 53 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
| 54 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
| 55 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
| 56 |
+
inputs_embeds = (
|
| 57 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
| 58 |
+
if inputs_embeds is not None
|
| 59 |
+
else None
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
outputs = self.bert(
|
| 63 |
+
input_ids,
|
| 64 |
+
attention_mask=attention_mask,
|
| 65 |
+
token_type_ids=token_type_ids,
|
| 66 |
+
position_ids=position_ids,
|
| 67 |
+
head_mask=head_mask,
|
| 68 |
+
inputs_embeds=inputs_embeds,
|
| 69 |
+
output_attentions=output_attentions,
|
| 70 |
+
output_hidden_states=output_hidden_states,
|
| 71 |
+
return_dict=return_dict,
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
w = torch.logical_and(input_ids >= min(self.config.start_token_ids), input_ids <= max(self.config.start_token_ids))
|
| 75 |
+
start_index = w.nonzero()[:, 1].view(-1, 2)
|
| 76 |
+
# <start_entity> + <end_entity> 进分类
|
| 77 |
+
pooled_output = torch.cat([torch.cat([x[y[0], :], x[y[1], :]]).unsqueeze(0) for x, y in zip(outputs.last_hidden_state, start_index)])
|
| 78 |
+
|
| 79 |
+
pooled_output = self.dropout(pooled_output)
|
| 80 |
+
logits = self.classifier(pooled_output)
|
| 81 |
+
reshaped_logits = logits.view(-1, num_choices)
|
| 82 |
+
|
| 83 |
+
loss = None
|
| 84 |
+
if labels is not None:
|
| 85 |
+
if pseudo is None:
|
| 86 |
+
loss_fct = CrossEntropyLoss()
|
| 87 |
+
loss = loss_fct(reshaped_logits, labels)
|
| 88 |
+
else:
|
| 89 |
+
loss_fct = CrossEntropyLoss(reduction="none")
|
| 90 |
+
loss = loss_fct(reshaped_logits, labels)
|
| 91 |
+
weight = 1 - pseudo * 0.9
|
| 92 |
+
loss *= weight
|
| 93 |
+
loss = loss.mean()
|
| 94 |
+
|
| 95 |
+
if not return_dict:
|
| 96 |
+
output = (reshaped_logits,) + outputs[2:]
|
| 97 |
+
return ((loss,) + output) if loss is not None else output
|
| 98 |
+
|
| 99 |
+
return MultipleChoiceModelOutput(
|
| 100 |
+
loss=loss,
|
| 101 |
+
logits=reshaped_logits,
|
| 102 |
+
hidden_states=outputs.hidden_states,
|
| 103 |
+
attentions=outputs.attentions,
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
class RoFormerForTagMultipleChoice(RoFormerPreTrainedModel):
|
| 108 |
+
def __init__(self, config):
|
| 109 |
+
super().__init__(config)
|
| 110 |
+
|
| 111 |
+
self.roformer = RoFormerModel(config, add_pooling_layer=False)
|
| 112 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 113 |
+
self.classifier = nn.Linear(config.hidden_size * 2, 1)
|
| 114 |
+
|
| 115 |
+
# Initialize weights and apply final processing
|
| 116 |
+
self.post_init()
|
| 117 |
+
|
| 118 |
+
def forward(
|
| 119 |
+
self,
|
| 120 |
+
input_ids=None,
|
| 121 |
+
attention_mask=None,
|
| 122 |
+
token_type_ids=None,
|
| 123 |
+
head_mask=None,
|
| 124 |
+
inputs_embeds=None,
|
| 125 |
+
labels=None,
|
| 126 |
+
output_attentions=None,
|
| 127 |
+
output_hidden_states=None,
|
| 128 |
+
return_dict=None,
|
| 129 |
+
):
|
| 130 |
+
r"""
|
| 131 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
| 132 |
+
Labels for computing the multiple choice classification loss. Indices should be in ``[0, ...,
|
| 133 |
+
num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See
|
| 134 |
+
:obj:`input_ids` above)
|
| 135 |
+
"""
|
| 136 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 137 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
| 138 |
+
|
| 139 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
| 140 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
| 141 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
| 142 |
+
|
| 143 |
+
inputs_embeds = (
|
| 144 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
| 145 |
+
if inputs_embeds is not None
|
| 146 |
+
else None
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
outputs = self.roformer(
|
| 150 |
+
input_ids,
|
| 151 |
+
attention_mask=attention_mask,
|
| 152 |
+
token_type_ids=token_type_ids,
|
| 153 |
+
head_mask=head_mask,
|
| 154 |
+
inputs_embeds=inputs_embeds,
|
| 155 |
+
output_attentions=output_attentions,
|
| 156 |
+
output_hidden_states=output_hidden_states,
|
| 157 |
+
return_dict=return_dict,
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
w = torch.logical_and(input_ids >= min(self.config.start_token_ids), input_ids <= max(self.config.start_token_ids))
|
| 161 |
+
start_index = w.nonzero()[:, 1].view(-1, 2)
|
| 162 |
+
# <start_entity> + <end_entity> 进分类
|
| 163 |
+
pooled_output = torch.cat([torch.cat([x[y[0], :], x[y[1], :]]).unsqueeze(0) for x, y in zip(outputs.last_hidden_state, start_index)])
|
| 164 |
+
|
| 165 |
+
pooled_output = self.dropout(pooled_output)
|
| 166 |
+
logits = self.classifier(pooled_output)
|
| 167 |
+
reshaped_logits = logits.view(-1, num_choices)
|
| 168 |
+
|
| 169 |
+
loss = None
|
| 170 |
+
if labels is not None:
|
| 171 |
+
loss_fct = CrossEntropyLoss()
|
| 172 |
+
loss = loss_fct(reshaped_logits, labels)
|
| 173 |
+
|
| 174 |
+
if not return_dict:
|
| 175 |
+
output = (reshaped_logits,) + outputs[2:]
|
| 176 |
+
return ((loss,) + output) if loss is not None else output
|
| 177 |
+
|
| 178 |
+
return MultipleChoiceModelOutput(
|
| 179 |
+
loss=loss,
|
| 180 |
+
logits=reshaped_logits,
|
| 181 |
+
hidden_states=outputs.hidden_states,
|
| 182 |
+
attentions=outputs.attentions,
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
class MegatronBertForTagMultipleChoice(MegatronBertPreTrainedModel):
|
| 187 |
+
def __init__(self, config):
|
| 188 |
+
super().__init__(config)
|
| 189 |
+
|
| 190 |
+
self.bert = MegatronBertModel(config)
|
| 191 |
+
self.dropout = nn.Dropout(0.2)
|
| 192 |
+
self.classifier = nn.Linear(config.hidden_size * 2, 1)
|
| 193 |
+
|
| 194 |
+
# Initialize weights and apply final processing
|
| 195 |
+
self.post_init()
|
| 196 |
+
|
| 197 |
+
def forward(
|
| 198 |
+
self,
|
| 199 |
+
input_ids=None,
|
| 200 |
+
attention_mask=None,
|
| 201 |
+
token_type_ids=None,
|
| 202 |
+
position_ids=None,
|
| 203 |
+
head_mask=None,
|
| 204 |
+
inputs_embeds=None,
|
| 205 |
+
labels=None,
|
| 206 |
+
output_attentions=None,
|
| 207 |
+
output_hidden_states=None,
|
| 208 |
+
return_dict=None,
|
| 209 |
+
pseudo=None
|
| 210 |
+
):
|
| 211 |
+
r"""
|
| 212 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 213 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
| 214 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
| 215 |
+
`input_ids` above)
|
| 216 |
+
"""
|
| 217 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 218 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
| 219 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
| 220 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
| 221 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
| 222 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
| 223 |
+
inputs_embeds = (
|
| 224 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
| 225 |
+
if inputs_embeds is not None
|
| 226 |
+
else None
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
outputs = self.bert(
|
| 230 |
+
input_ids,
|
| 231 |
+
attention_mask=attention_mask,
|
| 232 |
+
token_type_ids=token_type_ids,
|
| 233 |
+
position_ids=position_ids,
|
| 234 |
+
head_mask=head_mask,
|
| 235 |
+
inputs_embeds=inputs_embeds,
|
| 236 |
+
output_attentions=output_attentions,
|
| 237 |
+
output_hidden_states=output_hidden_states,
|
| 238 |
+
return_dict=return_dict,
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
w = torch.logical_and(input_ids >= min(self.config.start_token_ids), input_ids <= max(self.config.start_token_ids))
|
| 242 |
+
start_index = w.nonzero()[:, 1].view(-1, 2)
|
| 243 |
+
# <start_entity> + <end_entity> 进分类
|
| 244 |
+
pooled_output = torch.cat([torch.cat([x[y[0], :], x[y[1], :]]).unsqueeze(0) for x, y in zip(outputs.last_hidden_state, start_index)])
|
| 245 |
+
|
| 246 |
+
pooled_output = self.dropout(pooled_output)
|
| 247 |
+
logits = self.classifier(pooled_output)
|
| 248 |
+
reshaped_logits = logits.view(-1, num_choices)
|
| 249 |
+
|
| 250 |
+
loss = None
|
| 251 |
+
if labels is not None:
|
| 252 |
+
if pseudo is None:
|
| 253 |
+
loss_fct = CrossEntropyLoss()
|
| 254 |
+
loss = loss_fct(reshaped_logits, labels)
|
| 255 |
+
else:
|
| 256 |
+
loss_fct = CrossEntropyLoss(reduction="none")
|
| 257 |
+
loss = loss_fct(reshaped_logits, labels)
|
| 258 |
+
weight = 1 - pseudo*0.9
|
| 259 |
+
loss *= weight
|
| 260 |
+
loss = loss.mean()
|
| 261 |
+
|
| 262 |
+
if not return_dict:
|
| 263 |
+
output = (reshaped_logits,) + outputs[2:]
|
| 264 |
+
return ((loss,) + output) if loss is not None else output
|
| 265 |
+
|
| 266 |
+
return MultipleChoiceModelOutput(
|
| 267 |
+
loss=loss,
|
| 268 |
+
logits=reshaped_logits,
|
| 269 |
+
hidden_states=outputs.hidden_states,
|
| 270 |
+
attentions=outputs.attentions,
|
| 271 |
+
)
|