Update app.py
Browse files
app.py
CHANGED
|
@@ -1,17 +1,17 @@
|
|
| 1 |
import io
|
| 2 |
import gradio as gr
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
-
import requests
|
|
|
|
| 5 |
import torch
|
| 6 |
import pathlib
|
| 7 |
from PIL import Image
|
| 8 |
from transformers import AutoFeatureExtractor, YolosForObjectDetection, DetrForObjectDetection
|
| 9 |
import os
|
| 10 |
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
# colors for visualization
|
| 15 |
COLORS = [
|
| 16 |
[0.000, 0.447, 0.741],
|
| 17 |
[0.850, 0.325, 0.098],
|
|
@@ -30,16 +30,15 @@ def make_prediction(img, feature_extractor, model):
|
|
| 30 |
|
| 31 |
def fig2img(fig):
|
| 32 |
buf = io.BytesIO()
|
| 33 |
-
fig.savefig(buf)
|
| 34 |
buf.seek(0)
|
| 35 |
pil_img = Image.open(buf)
|
| 36 |
basewidth = 750
|
| 37 |
-
wpercent = (basewidth/float(pil_img.size[0]))
|
| 38 |
-
hsize = int((float(pil_img.size[1])*float(wpercent)))
|
| 39 |
-
img = pil_img.resize((basewidth,hsize), Image.Resampling.LANCZOS)
|
| 40 |
return img
|
| 41 |
|
| 42 |
-
|
| 43 |
def visualize_prediction(img, output_dict, threshold=0.5, id2label=None):
|
| 44 |
keep = output_dict["scores"] > threshold
|
| 45 |
boxes = output_dict["boxes"][keep].tolist()
|
|
@@ -47,9 +46,7 @@ def visualize_prediction(img, output_dict, threshold=0.5, id2label=None):
|
|
| 47 |
labels = output_dict["labels"][keep].tolist()
|
| 48 |
|
| 49 |
if id2label is not None:
|
| 50 |
-
|
| 51 |
labels = [id2label[x] for x in labels]
|
| 52 |
-
|
| 53 |
|
| 54 |
plt.figure(figsize=(50, 50))
|
| 55 |
plt.imshow(img)
|
|
@@ -61,16 +58,14 @@ def visualize_prediction(img, output_dict, threshold=0.5, id2label=None):
|
|
| 61 |
ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=60, bbox=dict(facecolor="yellow", alpha=0.8))
|
| 62 |
plt.axis("off")
|
| 63 |
return fig2img(plt.gcf())
|
| 64 |
-
|
| 65 |
def get_original_image(url_input):
|
| 66 |
if validators.url(url_input):
|
| 67 |
image = Image.open(requests.get(url_input, stream=True).raw)
|
| 68 |
-
|
| 69 |
return image
|
| 70 |
|
| 71 |
-
def detect_objects(model_name,url_input,image_input,webcam_input,threshold):
|
| 72 |
-
|
| 73 |
-
#Extract model and feature extractor
|
| 74 |
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
| 75 |
|
| 76 |
if "yolos" in model_name:
|
|
@@ -80,41 +75,32 @@ def detect_objects(model_name,url_input,image_input,webcam_input,threshold):
|
|
| 80 |
|
| 81 |
if validators.url(url_input):
|
| 82 |
image = get_original_image(url_input)
|
| 83 |
-
|
| 84 |
-
elif image_input:
|
| 85 |
image = image_input
|
| 86 |
-
|
| 87 |
-
elif webcam_input:
|
| 88 |
image = webcam_input
|
| 89 |
|
| 90 |
-
#Make prediction
|
| 91 |
processed_outputs = make_prediction(image, feature_extractor, model)
|
| 92 |
|
| 93 |
-
#Visualize prediction
|
| 94 |
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
|
| 95 |
|
| 96 |
return viz_img
|
| 97 |
-
|
| 98 |
-
def set_example_image(example: list) -> dict:
|
| 99 |
-
return gr.Image.update(value=example[0])
|
| 100 |
-
|
| 101 |
-
def set_example_url(example: list) -> dict:
|
| 102 |
-
return gr.Textbox.update(value=example[0]), gr.Image.update(value=get_original_image(example[0]))
|
| 103 |
-
|
| 104 |
|
| 105 |
title = """<h1 id="title">License Plate Detection with YOLOS</h1>"""
|
| 106 |
|
| 107 |
description = """
|
| 108 |
YOLOS is a Vision Transformer (ViT) trained using the DETR loss. Despite its simplicity, a base-sized YOLOS model is able to achieve 42 AP on COCO validation 2017 (similar to DETR and more complex frameworks such as Faster R-CNN).
|
| 109 |
-
The YOLOS model was fine-tuned on COCO 2017 object detection (118k annotated images). It was introduced in the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Fang et al. and first released in [this repository](https://github.com/hustvl/YOLOS).
|
| 110 |
-
This model was further fine-tuned on the [Car license plate dataset](
|
| 111 |
Links to HuggingFace Models:
|
| 112 |
- [nickmuchi/yolos-small-rego-plates-detection](https://huggingface.co/nickmuchi/yolos-small-rego-plates-detection)
|
| 113 |
- [hustlv/yolos-small](https://huggingface.co/hustlv/yolos-small)
|
| 114 |
"""
|
| 115 |
|
| 116 |
-
models = ["nickmuchi/yolos-small-finetuned-license-plate-detection","nickmuchi/detr-resnet50-license-plate-detection"]
|
| 117 |
-
urls = ["https://drive.google.com/uc?id=1j9VZQ4NDS4gsubFf3m2qQoTMWLk552bQ","https://drive.google.com/uc?id=1p9wJIqRz3W50e2f_A0D8ftla8hoXz4T5"]
|
| 118 |
images = [[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.j*g'))]
|
| 119 |
|
| 120 |
twitter_link = """
|
|
@@ -126,54 +112,52 @@ h1#title {
|
|
| 126 |
text-align: center;
|
| 127 |
}
|
| 128 |
'''
|
|
|
|
| 129 |
demo = gr.Blocks(css=css)
|
| 130 |
|
| 131 |
with demo:
|
| 132 |
gr.Markdown(title)
|
| 133 |
gr.Markdown(description)
|
| 134 |
gr.Markdown(twitter_link)
|
| 135 |
-
options = gr.Dropdown(choices=models,label='Object Detection Model',value=models[0],show_label=True)
|
| 136 |
-
slider_input = gr.Slider(minimum=0.2,maximum=1,value=0.5,step=0.1,label='Prediction Threshold')
|
| 137 |
|
| 138 |
with gr.Tabs():
|
| 139 |
with gr.TabItem('Image URL'):
|
| 140 |
with gr.Row():
|
| 141 |
with gr.Column():
|
| 142 |
-
url_input = gr.Textbox(lines=2,label='Enter valid image URL here..')
|
| 143 |
-
original_image = gr.Image(
|
| 144 |
-
url_input.change(get_original_image, url_input, original_image)
|
| 145 |
with gr.Column():
|
| 146 |
-
img_output_from_url = gr.Image(
|
| 147 |
|
| 148 |
with gr.Row():
|
| 149 |
-
example_url = gr.Examples(examples=urls,inputs=[url_input])
|
| 150 |
|
| 151 |
-
|
| 152 |
url_but = gr.Button('Detect')
|
| 153 |
|
| 154 |
with gr.TabItem('Image Upload'):
|
| 155 |
with gr.Row():
|
| 156 |
-
img_input = gr.Image(type='pil'
|
| 157 |
-
img_output_from_upload= gr.Image(
|
| 158 |
|
| 159 |
with gr.Row():
|
| 160 |
-
example_images = gr.Examples(examples=images,inputs=[img_input])
|
| 161 |
|
| 162 |
-
|
| 163 |
img_but = gr.Button('Detect')
|
| 164 |
|
| 165 |
with gr.TabItem('WebCam'):
|
| 166 |
with gr.Row():
|
| 167 |
-
web_input = gr.Image(source='webcam',type='pil'
|
| 168 |
-
img_output_from_webcam= gr.Image(
|
| 169 |
|
| 170 |
cam_but = gr.Button('Detect')
|
| 171 |
|
| 172 |
-
url_but.click(detect_objects,inputs=[options,url_input,img_input,web_input,slider_input],outputs=[img_output_from_url],queue=True)
|
| 173 |
-
img_but.click(detect_objects,inputs=[options,url_input,img_input,web_input,slider_input],outputs=[img_output_from_upload],queue=True)
|
| 174 |
-
cam_but.click(detect_objects,inputs=[options,url_input,img_input,web_input,slider_input],outputs=[img_output_from_webcam],queue=True)
|
| 175 |
|
| 176 |
gr.Markdown("")
|
| 177 |
|
| 178 |
-
|
| 179 |
-
demo.launch(debug=True,enable_queue=True)
|
|
|
|
| 1 |
import io
|
| 2 |
import gradio as gr
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
+
import requests
|
| 5 |
+
import validators
|
| 6 |
import torch
|
| 7 |
import pathlib
|
| 8 |
from PIL import Image
|
| 9 |
from transformers import AutoFeatureExtractor, YolosForObjectDetection, DetrForObjectDetection
|
| 10 |
import os
|
| 11 |
|
| 12 |
+
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
|
| 13 |
|
| 14 |
+
# Colors for visualization
|
|
|
|
|
|
|
| 15 |
COLORS = [
|
| 16 |
[0.000, 0.447, 0.741],
|
| 17 |
[0.850, 0.325, 0.098],
|
|
|
|
| 30 |
|
| 31 |
def fig2img(fig):
|
| 32 |
buf = io.BytesIO()
|
| 33 |
+
fig.savefig(buf, format='png')
|
| 34 |
buf.seek(0)
|
| 35 |
pil_img = Image.open(buf)
|
| 36 |
basewidth = 750
|
| 37 |
+
wpercent = (basewidth / float(pil_img.size[0]))
|
| 38 |
+
hsize = int((float(pil_img.size[1]) * float(wpercent)))
|
| 39 |
+
img = pil_img.resize((basewidth, hsize), Image.Resampling.LANCZOS)
|
| 40 |
return img
|
| 41 |
|
|
|
|
| 42 |
def visualize_prediction(img, output_dict, threshold=0.5, id2label=None):
|
| 43 |
keep = output_dict["scores"] > threshold
|
| 44 |
boxes = output_dict["boxes"][keep].tolist()
|
|
|
|
| 46 |
labels = output_dict["labels"][keep].tolist()
|
| 47 |
|
| 48 |
if id2label is not None:
|
|
|
|
| 49 |
labels = [id2label[x] for x in labels]
|
|
|
|
| 50 |
|
| 51 |
plt.figure(figsize=(50, 50))
|
| 52 |
plt.imshow(img)
|
|
|
|
| 58 |
ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=60, bbox=dict(facecolor="yellow", alpha=0.8))
|
| 59 |
plt.axis("off")
|
| 60 |
return fig2img(plt.gcf())
|
| 61 |
+
|
| 62 |
def get_original_image(url_input):
|
| 63 |
if validators.url(url_input):
|
| 64 |
image = Image.open(requests.get(url_input, stream=True).raw)
|
|
|
|
| 65 |
return image
|
| 66 |
|
| 67 |
+
def detect_objects(model_name, url_input, image_input, webcam_input, threshold):
|
| 68 |
+
# Extract model and feature extractor
|
|
|
|
| 69 |
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
| 70 |
|
| 71 |
if "yolos" in model_name:
|
|
|
|
| 75 |
|
| 76 |
if validators.url(url_input):
|
| 77 |
image = get_original_image(url_input)
|
| 78 |
+
elif image_input is not None:
|
|
|
|
| 79 |
image = image_input
|
| 80 |
+
elif webcam_input is not None:
|
|
|
|
| 81 |
image = webcam_input
|
| 82 |
|
| 83 |
+
# Make prediction
|
| 84 |
processed_outputs = make_prediction(image, feature_extractor, model)
|
| 85 |
|
| 86 |
+
# Visualize prediction
|
| 87 |
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
|
| 88 |
|
| 89 |
return viz_img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
title = """<h1 id="title">License Plate Detection with YOLOS</h1>"""
|
| 92 |
|
| 93 |
description = """
|
| 94 |
YOLOS is a Vision Transformer (ViT) trained using the DETR loss. Despite its simplicity, a base-sized YOLOS model is able to achieve 42 AP on COCO validation 2017 (similar to DETR and more complex frameworks such as Faster R-CNN).
|
| 95 |
+
The YOLOS model was fine-tuned on COCO 2017 object detection (118k annotated images). It was introduced in the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Fang et al. and first released in [this repository](https://github.com/hustvl/YOLOS).
|
| 96 |
+
This model was further fine-tuned on the [Car license plate dataset](https://www.kaggle.com/datasets/andrewmvd/car-plate-detection) from Kaggle. The dataset consists of 443 images of vehicles with annotations categorized as "Vehicle" and "Rego Plates". The model was trained for 200 epochs on a single GPU.
|
| 97 |
Links to HuggingFace Models:
|
| 98 |
- [nickmuchi/yolos-small-rego-plates-detection](https://huggingface.co/nickmuchi/yolos-small-rego-plates-detection)
|
| 99 |
- [hustlv/yolos-small](https://huggingface.co/hustlv/yolos-small)
|
| 100 |
"""
|
| 101 |
|
| 102 |
+
models = ["nickmuchi/yolos-small-finetuned-license-plate-detection", "nickmuchi/detr-resnet50-license-plate-detection"]
|
| 103 |
+
urls = ["https://drive.google.com/uc?id=1j9VZQ4NDS4gsubFf3m2qQoTMWLk552bQ", "https://drive.google.com/uc?id=1p9wJIqRz3W50e2f_A0D8ftla8hoXz4T5"]
|
| 104 |
images = [[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.j*g'))]
|
| 105 |
|
| 106 |
twitter_link = """
|
|
|
|
| 112 |
text-align: center;
|
| 113 |
}
|
| 114 |
'''
|
| 115 |
+
|
| 116 |
demo = gr.Blocks(css=css)
|
| 117 |
|
| 118 |
with demo:
|
| 119 |
gr.Markdown(title)
|
| 120 |
gr.Markdown(description)
|
| 121 |
gr.Markdown(twitter_link)
|
| 122 |
+
options = gr.Dropdown(choices=models, label='Object Detection Model', value=models[0], show_label=True)
|
| 123 |
+
slider_input = gr.Slider(minimum=0.2, maximum=1, value=0.5, step=0.1, label='Prediction Threshold')
|
| 124 |
|
| 125 |
with gr.Tabs():
|
| 126 |
with gr.TabItem('Image URL'):
|
| 127 |
with gr.Row():
|
| 128 |
with gr.Column():
|
| 129 |
+
url_input = gr.Textbox(lines=2, label='Enter valid image URL here..')
|
| 130 |
+
original_image = gr.Image()
|
| 131 |
+
url_input.change(fn=get_original_image, inputs=url_input, outputs=original_image)
|
| 132 |
with gr.Column():
|
| 133 |
+
img_output_from_url = gr.Image()
|
| 134 |
|
| 135 |
with gr.Row():
|
| 136 |
+
example_url = gr.Examples(examples=urls, inputs=[url_input])
|
| 137 |
|
|
|
|
| 138 |
url_but = gr.Button('Detect')
|
| 139 |
|
| 140 |
with gr.TabItem('Image Upload'):
|
| 141 |
with gr.Row():
|
| 142 |
+
img_input = gr.Image(type='pil')
|
| 143 |
+
img_output_from_upload = gr.Image()
|
| 144 |
|
| 145 |
with gr.Row():
|
| 146 |
+
example_images = gr.Examples(examples=images, inputs=[img_input])
|
| 147 |
|
|
|
|
| 148 |
img_but = gr.Button('Detect')
|
| 149 |
|
| 150 |
with gr.TabItem('WebCam'):
|
| 151 |
with gr.Row():
|
| 152 |
+
web_input = gr.Image(source='webcam', type='pil')
|
| 153 |
+
img_output_from_webcam = gr.Image()
|
| 154 |
|
| 155 |
cam_but = gr.Button('Detect')
|
| 156 |
|
| 157 |
+
url_but.click(fn=detect_objects, inputs=[options, url_input, img_input, web_input, slider_input], outputs=[img_output_from_url], queue=True)
|
| 158 |
+
img_but.click(fn=detect_objects, inputs=[options, url_input, img_input, web_input, slider_input], outputs=[img_output_from_upload], queue=True)
|
| 159 |
+
cam_but.click(fn=detect_objects, inputs=[options, url_input, img_input, web_input, slider_input], outputs=[img_output_from_webcam], queue=True)
|
| 160 |
|
| 161 |
gr.Markdown("")
|
| 162 |
|
| 163 |
+
demo.launch(debug=True, enable_queue=True)
|
|
|