Update app.py
Browse files
app.py
CHANGED
|
@@ -95,7 +95,7 @@ def set_example_url(example: list) -> dict:
|
|
| 95 |
return gr.Textbox.update(value=example[0]), gr.Image.update(value=get_original_image(example[0]))
|
| 96 |
|
| 97 |
|
| 98 |
-
title = """<h1 id="title">
|
| 99 |
|
| 100 |
description = """
|
| 101 |
YOLOS is a Vision Transformer (ViT) trained using the DETR loss. Despite its simplicity, a base-sized YOLOS model is able to achieve 42 AP on COCO validation 2017 (similar to DETR and more complex frameworks such as Faster R-CNN).
|
|
@@ -168,7 +168,7 @@ with demo:
|
|
| 168 |
example_url.click(fn=set_example_url,inputs=[example_url],outputs=[url_input,original_image])
|
| 169 |
|
| 170 |
|
| 171 |
-
gr.Markdown("
|
|
|
|
| 95 |
return gr.Textbox.update(value=example[0]), gr.Image.update(value=get_original_image(example[0]))
|
| 96 |
|
| 97 |
|
| 98 |
+
title = """<h1 id="title">License Plate Detection with YOLOS</h1>"""
|
| 99 |
|
| 100 |
description = """
|
| 101 |
YOLOS is a Vision Transformer (ViT) trained using the DETR loss. Despite its simplicity, a base-sized YOLOS model is able to achieve 42 AP on COCO validation 2017 (similar to DETR and more complex frameworks such as Faster R-CNN).
|
|
|
|
| 168 |
example_url.click(fn=set_example_url,inputs=[example_url],outputs=[url_input,original_image])
|
| 169 |
|
| 170 |
|
| 171 |
+
gr.Markdown("")
|
| 172 |
|
| 173 |
|
| 174 |
demo.launch(debug=True,enable_queue=True)
|