Update app.py
Browse files
app.py
CHANGED
|
@@ -64,7 +64,7 @@ def get_original_image(url_input):
|
|
| 64 |
image = Image.open(requests.get(url_input, stream=True).raw)
|
| 65 |
return image
|
| 66 |
|
| 67 |
-
def detect_objects(model_name, url_input, image_input,
|
| 68 |
# Extract model and feature extractor
|
| 69 |
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
| 70 |
|
|
@@ -77,8 +77,6 @@ def detect_objects(model_name, url_input, image_input, webcam_input, threshold):
|
|
| 77 |
image = get_original_image(url_input)
|
| 78 |
elif image_input is not None:
|
| 79 |
image = image_input
|
| 80 |
-
elif webcam_input is not None:
|
| 81 |
-
image = webcam_input
|
| 82 |
|
| 83 |
# Make prediction
|
| 84 |
processed_outputs = make_prediction(image, feature_extractor, model)
|
|
@@ -103,9 +101,6 @@ models = ["nickmuchi/yolos-small-finetuned-license-plate-detection", "nickmuchi/
|
|
| 103 |
urls = ["https://drive.google.com/uc?id=1j9VZQ4NDS4gsubFf3m2qQoTMWLk552bQ", "https://drive.google.com/uc?id=1p9wJIqRz3W50e2f_A0D8ftla8hoXz4T5"]
|
| 104 |
images = [[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.j*g'))]
|
| 105 |
|
| 106 |
-
twitter_link = """
|
| 107 |
-
[](https://twitter.com/nickmuchi)
|
| 108 |
-
"""
|
| 109 |
|
| 110 |
css = '''
|
| 111 |
h1#title {
|
|
@@ -150,6 +145,6 @@ with demo:
|
|
| 150 |
url_but.click(fn=detect_objects, inputs=[options, url_input, img_input, slider_input], outputs=[img_output_from_url], queue=True)
|
| 151 |
img_but.click(fn=detect_objects, inputs=[options, url_input, img_input, slider_input], outputs=[img_output_from_upload], queue=True)
|
| 152 |
|
| 153 |
-
gr.Markdown("")
|
| 154 |
|
| 155 |
demo.launch(debug=True)
|
|
|
|
| 64 |
image = Image.open(requests.get(url_input, stream=True).raw)
|
| 65 |
return image
|
| 66 |
|
| 67 |
+
def detect_objects(model_name, url_input, image_input,threshold):
|
| 68 |
# Extract model and feature extractor
|
| 69 |
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
| 70 |
|
|
|
|
| 77 |
image = get_original_image(url_input)
|
| 78 |
elif image_input is not None:
|
| 79 |
image = image_input
|
|
|
|
|
|
|
| 80 |
|
| 81 |
# Make prediction
|
| 82 |
processed_outputs = make_prediction(image, feature_extractor, model)
|
|
|
|
| 101 |
urls = ["https://drive.google.com/uc?id=1j9VZQ4NDS4gsubFf3m2qQoTMWLk552bQ", "https://drive.google.com/uc?id=1p9wJIqRz3W50e2f_A0D8ftla8hoXz4T5"]
|
| 102 |
images = [[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.j*g'))]
|
| 103 |
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
css = '''
|
| 106 |
h1#title {
|
|
|
|
| 145 |
url_but.click(fn=detect_objects, inputs=[options, url_input, img_input, slider_input], outputs=[img_output_from_url], queue=True)
|
| 146 |
img_but.click(fn=detect_objects, inputs=[options, url_input, img_input, slider_input], outputs=[img_output_from_upload], queue=True)
|
| 147 |
|
| 148 |
+
#gr.Markdown("")
|
| 149 |
|
| 150 |
demo.launch(debug=True)
|