Spaces:
Paused
Paused
| from threading import Thread | |
| from typing import Iterator | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from transformers.generation.utils import GenerationConfig | |
| model_id = 'baichuan-inc/Baichuan2-13B-Chat' | |
| if torch.cuda.is_available(): | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| # device_map='auto', | |
| torch_dtype=torch.float16, | |
| trust_remote_code=True | |
| ) | |
| model = model.quantize(4).cuda() | |
| model.generation_config = GenerationConfig.from_pretrained(model_id) | |
| else: | |
| model = None | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_id, | |
| use_fast=False, | |
| trust_remote_code=True | |
| ) | |
| def get_prompt( | |
| message: str, | |
| chat_history: list[tuple[str, str]], | |
| system_prompt: str | |
| ) -> str: | |
| texts = [f'<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n'] | |
| # The first user input is _not_ stripped | |
| do_strip = False | |
| for user_input, response in chat_history: | |
| user_input = user_input.strip() if do_strip else user_input | |
| do_strip = True | |
| texts.append(f'{user_input} [/INST] {response.strip()} </s><s>[INST] ') | |
| message = message.strip() if do_strip else message | |
| texts.append(f'{message} [/INST]') | |
| return ''.join(texts) | |
| def get_input_token_length( | |
| message: str, | |
| chat_history: list[tuple[str, str]], | |
| system_prompt: str | |
| ) -> int: | |
| prompt = get_prompt(message, chat_history, system_prompt) | |
| input_ids = tokenizer([prompt], return_tensors='np', add_special_tokens=False)['input_ids'] | |
| return input_ids.shape[-1] | |
| def run( | |
| message: str, | |
| chat_history: list[tuple[str, str]], | |
| system_prompt: str, | |
| max_new_tokens: int = 1024, | |
| temperature: float = 1.0, | |
| top_p: float = 0.95, | |
| top_k: int = 5 | |
| ) -> Iterator[str]: | |
| print(chat_history) | |
| history = [] | |
| result="" | |
| for i in chat_history: | |
| history.append({"role": "user", "content": i[0]}) | |
| history.append({"role": "assistant", "content": i[1]}) | |
| print(history) | |
| history.append({"role": "user", "content": message}) | |
| for response in model.chat( | |
| tokenizer, | |
| history, | |
| # stream=True, | |
| # max_new_tokens=max_new_tokens, | |
| # temperature=temperature, | |
| # top_p=top_p, | |
| # top_k=top_k, | |
| ): | |
| print(response) | |
| result = result + response | |
| yield result | |
| # if "content" in response["choices"][0]["delta"]: | |
| # result = result + response["choices"][0]["delta"]["content"] | |
| # yield result | |