Spaces:
Running
Running
fusion
Browse files
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
title: Speech analysis
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: gray
|
| 5 |
colorTo: gray
|
| 6 |
sdk: gradio
|
|
|
|
| 1 |
---
|
| 2 |
title: Speech analysis
|
| 3 |
+
emoji: 🌀
|
| 4 |
colorFrom: gray
|
| 5 |
colorTo: gray
|
| 6 |
sdk: gradio
|
app.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
import typing
|
| 2 |
-
|
| 3 |
import gradio as gr
|
| 4 |
import matplotlib.pyplot as plt
|
| 5 |
import numpy as np
|
|
@@ -58,16 +58,95 @@ class AgeGenderModel(Wav2Vec2PreTrainedModel):
|
|
| 58 |
|
| 59 |
def forward(
|
| 60 |
self,
|
| 61 |
-
|
| 62 |
):
|
| 63 |
|
| 64 |
-
|
| 65 |
-
|
| 66 |
hidden_states = torch.mean(hidden_states, dim=1)
|
| 67 |
logits_age = self.age(hidden_states)
|
| 68 |
logits_gender = torch.softmax(self.gender(hidden_states), dim=1)
|
| 69 |
|
| 70 |
return hidden_states, logits_age, logits_gender
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
|
| 73 |
class ExpressionHead(nn.Module):
|
|
@@ -106,12 +185,11 @@ class ExpressionModel(Wav2Vec2PreTrainedModel):
|
|
| 106 |
self.init_weights()
|
| 107 |
|
| 108 |
def forward(self, input_values):
|
| 109 |
-
|
| 110 |
-
hidden_states = outputs[0]
|
| 111 |
hidden_states = torch.mean(hidden_states, dim=1)
|
| 112 |
logits = self.classifier(hidden_states)
|
| 113 |
|
| 114 |
-
return hidden_states, logits
|
| 115 |
|
| 116 |
|
| 117 |
# Load models from hub
|
|
@@ -120,46 +198,37 @@ age_gender_model = AgeGenderModel.from_pretrained(age_gender_model_name)
|
|
| 120 |
expression_processor = Wav2Vec2Processor.from_pretrained(expression_model_name)
|
| 121 |
expression_model = ExpressionModel.from_pretrained(expression_model_name)
|
| 122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
def process_func(x: np.ndarray, sampling_rate: int) -> typing.Tuple[str, dict, str]:
|
| 125 |
-
|
| 126 |
-
#
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
):
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
y = torch.from_numpy(y).to(device)
|
| 138 |
-
|
| 139 |
-
# run through model
|
| 140 |
-
with torch.no_grad():
|
| 141 |
-
y = model(y)
|
| 142 |
-
if len(y) == 3:
|
| 143 |
-
# Age-gender model
|
| 144 |
-
y = torch.hstack([y[1], y[2]])
|
| 145 |
-
else:
|
| 146 |
-
# Expression model
|
| 147 |
-
y = y[1]
|
| 148 |
-
|
| 149 |
-
# convert to numpy
|
| 150 |
-
y = y.detach().cpu().numpy()
|
| 151 |
-
results.append(y[0])
|
| 152 |
|
| 153 |
# Plot A/D/V values
|
| 154 |
-
plot_expression(
|
|
|
|
|
|
|
| 155 |
expression_file = "expression.png"
|
| 156 |
plt.savefig(expression_file)
|
| 157 |
return (
|
| 158 |
-
f"{round(100 *
|
| 159 |
{
|
| 160 |
-
"female":
|
| 161 |
-
"male":
|
| 162 |
-
"child":
|
| 163 |
},
|
| 164 |
expression_file,
|
| 165 |
)
|
|
|
|
| 1 |
import typing
|
| 2 |
+
import types # fusion of forward() of Wav2Vec2
|
| 3 |
import gradio as gr
|
| 4 |
import matplotlib.pyplot as plt
|
| 5 |
import numpy as np
|
|
|
|
| 58 |
|
| 59 |
def forward(
|
| 60 |
self,
|
| 61 |
+
frozen_cnn7,
|
| 62 |
):
|
| 63 |
|
| 64 |
+
hidden_states = self.wav2vec2(frozen_cnn7=frozen_cnn7) # runs only Transformer layers
|
| 65 |
+
|
| 66 |
hidden_states = torch.mean(hidden_states, dim=1)
|
| 67 |
logits_age = self.age(hidden_states)
|
| 68 |
logits_gender = torch.softmax(self.gender(hidden_states), dim=1)
|
| 69 |
|
| 70 |
return hidden_states, logits_age, logits_gender
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
# == Fusion = Define Age Wav2Vec2Model's forward to accept already computed CNN7 features from Emotion
|
| 75 |
+
def _forward(
|
| 76 |
+
self,
|
| 77 |
+
extract_features,
|
| 78 |
+
attention_mask=None):
|
| 79 |
+
# extract_features : CNN7 fetures of wav2vec2 as they are calc. from CNN7 feature extractor
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
if attention_mask is not None:
|
| 83 |
+
# compute reduced attention_mask corresponding to feature vectors
|
| 84 |
+
attention_mask = self._get_feature_vector_attention_mask(
|
| 85 |
+
extract_features.shape[1], attention_mask, add_adapter=False
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
hidden_states, extract_features = self.feature_projection(extract_features)
|
| 89 |
+
hidden_states = self._mask_hidden_states(
|
| 90 |
+
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
encoder_outputs = self.encoder(
|
| 94 |
+
hidden_states,
|
| 95 |
+
attention_mask=attention_mask,
|
| 96 |
+
output_attentions=output_attentions,
|
| 97 |
+
output_hidden_states=output_hidden_states,
|
| 98 |
+
return_dict=return_dict,
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
hidden_states = encoder_outputs[0]
|
| 102 |
+
|
| 103 |
+
if self.adapter is not None:
|
| 104 |
+
raise ValueError
|
| 105 |
+
hidden_states = self.adapter(hidden_states)
|
| 106 |
+
|
| 107 |
+
return hidden_states
|
| 108 |
+
# ===============================================
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
# ================== Foward & CNN features
|
| 112 |
+
def _forward_and_cnn7(
|
| 113 |
+
self,
|
| 114 |
+
input_values,
|
| 115 |
+
attention_mask=None
|
| 116 |
+
):
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
frozen_cnn7 = self.feature_extractor(input_values)
|
| 120 |
+
frozen_cnn7 = frozen_cnn7.transpose(1, 2)
|
| 121 |
+
|
| 122 |
+
if attention_mask is not None:
|
| 123 |
+
# compute reduced attention_mask corresponding to feature vectors
|
| 124 |
+
attention_mask = self._get_feature_vector_attention_mask(
|
| 125 |
+
frozen_cnn7.shape[1], attention_mask, add_adapter=False
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
hidden_states, extract_features = self.feature_projection(frozen_cnn7) # grad=True non frozen
|
| 129 |
+
hidden_states = self._mask_hidden_states(
|
| 130 |
+
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
encoder_outputs = self.encoder(
|
| 134 |
+
hidden_states,
|
| 135 |
+
attention_mask=attention_mask,
|
| 136 |
+
output_attentions=output_attentions,
|
| 137 |
+
output_hidden_states=output_hidden_states,
|
| 138 |
+
return_dict=return_dict,
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
hidden_states = encoder_outputs[0]
|
| 142 |
+
|
| 143 |
+
if self.adapter is not None:
|
| 144 |
+
raise ValueError
|
| 145 |
+
hidden_states = self.adapter(hidden_states)
|
| 146 |
+
|
| 147 |
+
return hidden_states, frozen_cnn7 # feature_projection is trainable thus we are unable to use the projected hidden states from official wav2vev2.forward
|
| 148 |
+
|
| 149 |
+
# =============================
|
| 150 |
|
| 151 |
|
| 152 |
class ExpressionHead(nn.Module):
|
|
|
|
| 185 |
self.init_weights()
|
| 186 |
|
| 187 |
def forward(self, input_values):
|
| 188 |
+
hidden_states, frozen_cnn7 = self.wav2vec2(input_values)
|
|
|
|
| 189 |
hidden_states = torch.mean(hidden_states, dim=1)
|
| 190 |
logits = self.classifier(hidden_states)
|
| 191 |
|
| 192 |
+
return hidden_states, logits, frozen_cnn7
|
| 193 |
|
| 194 |
|
| 195 |
# Load models from hub
|
|
|
|
| 198 |
expression_processor = Wav2Vec2Processor.from_pretrained(expression_model_name)
|
| 199 |
expression_model = ExpressionModel.from_pretrained(expression_model_name)
|
| 200 |
|
| 201 |
+
# Emotion Calc. CNN features
|
| 202 |
+
|
| 203 |
+
age_gender_model.wav2vec2.forward = types.MethodType(_forward, age_gender_model)
|
| 204 |
+
expression_model.wav2vec2.forward = types.MethodType(_forward_and_cnn7, expression_model)
|
| 205 |
|
| 206 |
def process_func(x: np.ndarray, sampling_rate: int) -> typing.Tuple[str, dict, str]:
|
| 207 |
+
|
| 208 |
+
# batch audio
|
| 209 |
+
y = expression_processor(x, sampling_rate=sampling_rate)
|
| 210 |
+
y = y['input_values'][0]
|
| 211 |
+
y = y.reshape(1, -1)
|
| 212 |
+
y = torch.from_numpy(y).to(device)
|
| 213 |
+
|
| 214 |
+
# run through expression model
|
| 215 |
+
with torch.no_grad():
|
| 216 |
+
_, logits_expression, frozen_cnn7 = expression_model(y)
|
| 217 |
+
|
| 218 |
+
_, logits_age, logits_gender = age_gender_model(frozen_cnn7=frozen_cnn7)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
|
| 220 |
# Plot A/D/V values
|
| 221 |
+
plot_expression(logits_expression[0, 0].item(), # implicit detach().cpu().numpy()
|
| 222 |
+
logits_expression[0, 1].item(),
|
| 223 |
+
logits_expression[0, 2].item())
|
| 224 |
expression_file = "expression.png"
|
| 225 |
plt.savefig(expression_file)
|
| 226 |
return (
|
| 227 |
+
f"{round(100 * logits_age[0, 0].item())} years", # age
|
| 228 |
{
|
| 229 |
+
"female": logits_gender[0, 0].item(),
|
| 230 |
+
"male": logits_gender[0, 1].item(),
|
| 231 |
+
"child": logits_gender[0, 2].item(),
|
| 232 |
},
|
| 233 |
expression_file,
|
| 234 |
)
|