Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| import torch.nn.functional as F | |
| from facenet_pytorch import MTCNN, InceptionResnetV1 | |
| import os | |
| import numpy as np | |
| from PIL import Image | |
| import zipfile | |
| import cv2 | |
| from pytorch_grad_cam import GradCAM | |
| from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget | |
| from pytorch_grad_cam.utils.image import show_cam_on_image | |
| with zipfile.ZipFile("examples.zip","r") as zip_ref: | |
| zip_ref.extractall(".") | |
| DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu' | |
| mtcnn = MTCNN( | |
| select_largest=False, | |
| post_process=False, | |
| device=DEVICE | |
| ).to(DEVICE).eval() | |
| model = InceptionResnetV1( | |
| pretrained="vggface2", | |
| classify=True, | |
| num_classes=1, | |
| device=DEVICE | |
| ) | |
| checkpoint = torch.load("resnetinceptionv1_epoch_32.pth", map_location=torch.device('cpu')) | |
| model.load_state_dict(checkpoint['model_state_dict']) | |
| model.to(DEVICE) | |
| model.eval() | |
| EXAMPLES_FOLDER = 'examples' | |
| examples_names = os.listdir(EXAMPLES_FOLDER) | |
| examples = [] | |
| for example_name in examples_names: | |
| example_path = os.path.join(EXAMPLES_FOLDER, example_name) | |
| label = example_name.split('_')[0] | |
| example = { | |
| 'path': example_path, | |
| 'label': label | |
| } | |
| examples.append(example) | |
| np.random.shuffle(examples) # shuffle | |
| def predict(input_image:Image.Image, true_label:str): | |
| """Predict the label of the input_image""" | |
| face = mtcnn(input_image) | |
| if face is None: | |
| raise Exception('No face detected') | |
| face = face.unsqueeze(0) # add the batch dimension | |
| face = F.interpolate(face, size=(256, 256), mode='bilinear', align_corners=False) | |
| # convert the face into a numpy array to be able to plot it | |
| prev_face = face.squeeze(0).permute(1, 2, 0).cpu().detach().int().numpy() | |
| prev_face = prev_face.astype('uint8') | |
| face = face.to(DEVICE) | |
| face = face.to(torch.float32) | |
| face = face / 255.0 | |
| face_image_to_plot = face.squeeze(0).permute(1, 2, 0).cpu().detach().int().numpy() | |
| target_layers=[model.block8.branch1[-1]] | |
| cam = GradCAM(model=model, target_layers=target_layers) | |
| targets = [ClassifierOutputTarget(0)] | |
| grayscale_cam = cam(input_tensor=face, targets=targets, eigen_smooth=True) | |
| grayscale_cam = grayscale_cam[0, :] | |
| visualization = show_cam_on_image(face_image_to_plot, grayscale_cam, use_rgb=True) | |
| face_with_mask = cv2.addWeighted(prev_face, 1, visualization, 0.5, 0) | |
| with torch.no_grad(): | |
| output = torch.sigmoid(model(face).squeeze(0)) | |
| prediction = "real" if output.item() < 0.5 else "fake" | |
| real_prediction = 1 - output.item() | |
| fake_prediction = output.item() | |
| confidences = { | |
| 'real': real_prediction, | |
| 'fake': fake_prediction | |
| } | |
| return confidences, true_label, face_with_mask | |
| interface = gr.Interface( | |
| fn=predict, | |
| inputs=[ | |
| gr.components.Image(label="Input Image", type="pil"), # Updated component import and type | |
| gr.components.Text(label="Your Text Input") # Updated component import | |
| ], | |
| outputs=[ | |
| gr.components.Label(label="Class"), # Updated component import | |
| gr.components.Text(label="Your Text Output"), # Updated component import | |
| gr.components.Image(label="Face with Explainability", type="numpy") # Updated component import and type | |
| ], | |
| examples=[[examples[i]["path"], examples[i]["label"]] for i in range(10)], | |
| cache_examples=True # Adjusted according to the new parameter for caching examples if needed | |
| ).launch() |