Spaces:
Paused
Paused
update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,51 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
-
import
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
"Asset management": "am",
|
| 8 |
"Annual report": "ar",
|
| 9 |
"Corporate action": "corporateAction",
|
|
@@ -14,87 +56,185 @@ DOMAINS = {
|
|
| 14 |
"Regulatory": "regulatory",
|
| 15 |
"General": "general",
|
| 16 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
# Helper functions
|
| 19 |
def language_token(lang):
|
| 20 |
return f"<lang_{lang}>"
|
| 21 |
|
|
|
|
| 22 |
def domain_token(dom):
|
| 23 |
return f"<dom_{dom}>"
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
def format_input(src, tgt_lang, src_lang, domain):
|
| 26 |
-
assert tgt_lang in LANGUAGES
|
| 27 |
tgt_lang_token = language_token(tgt_lang)
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
| 32 |
src_lang_token = language_token(src_lang)
|
| 33 |
base_input = f"{base_input}{src_lang_token}"
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
| 36 |
dom_token = domain_token(domain)
|
| 37 |
base_input = f"{base_input}{dom_token}"
|
|
|
|
| 38 |
return base_input
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
)
|
| 61 |
-
|
| 62 |
-
return translated_sentence
|
| 63 |
-
|
| 64 |
-
language_map = {
|
| 65 |
-
"English": "en",
|
| 66 |
-
"German": "de",
|
| 67 |
-
"Spanish": "es",
|
| 68 |
-
"French": "fr",
|
| 69 |
-
"Italian": "it",
|
| 70 |
-
"Dutch": "nl",
|
| 71 |
-
"Swedish": "sv",
|
| 72 |
-
"Portuguese": "pt"
|
| 73 |
-
}
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
]
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
+
import torch
|
| 4 |
+
import itertools
|
| 5 |
|
| 6 |
+
DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
| 7 |
+
MODEL_IDS = [
|
| 8 |
+
"70M",
|
| 9 |
+
# "160M",
|
| 10 |
+
]
|
| 11 |
+
MODEL_MAPPING = {
|
| 12 |
+
model_id: f"LinguaCustodia/multilingual-multidomain-fin-mt-{model_id}"
|
| 13 |
+
for model_id in MODEL_IDS
|
| 14 |
+
}
|
| 15 |
+
TOKENIZER = AutoTokenizer.from_pretrained(
|
| 16 |
+
MODEL_MAPPING["70M"],
|
| 17 |
+
pad_token="<pad>",
|
| 18 |
+
mask_token="<mask>",
|
| 19 |
+
eos_token="<eos>",
|
| 20 |
+
padding_side="left",
|
| 21 |
+
max_position_embeddings=512,
|
| 22 |
+
model_max_length=512,
|
| 23 |
+
)
|
| 24 |
+
MODELS = {
|
| 25 |
+
model_name: AutoModelForCausalLM.from_pretrained(
|
| 26 |
+
model_id,
|
| 27 |
+
max_position_embeddings=512,
|
| 28 |
+
device_map=DEVICE,
|
| 29 |
+
torch_dtype=torch.bfloat16,
|
| 30 |
+
)
|
| 31 |
+
for model_name, model_id in MODEL_MAPPING.items()
|
| 32 |
+
}
|
| 33 |
+
|
| 34 |
+
DOMAINS = [
|
| 35 |
+
"Auto",
|
| 36 |
+
"Asset manangement",
|
| 37 |
+
"Annual report",
|
| 38 |
+
"Corporate action",
|
| 39 |
+
"Equity research",
|
| 40 |
+
"Fund fact sheet",
|
| 41 |
+
"Kiid",
|
| 42 |
+
"Life insurance",
|
| 43 |
+
"Regulatory",
|
| 44 |
+
"General",
|
| 45 |
+
]
|
| 46 |
+
|
| 47 |
+
DOMAIN_MAPPING = {
|
| 48 |
+
"Auto": None,
|
| 49 |
"Asset management": "am",
|
| 50 |
"Annual report": "ar",
|
| 51 |
"Corporate action": "corporateAction",
|
|
|
|
| 56 |
"Regulatory": "regulatory",
|
| 57 |
"General": "general",
|
| 58 |
}
|
| 59 |
+
DOMAIN_MAPPING_REVERSED = {v: k for k, v in DOMAIN_MAPPING.items()}
|
| 60 |
+
|
| 61 |
+
LANG2CODE = {
|
| 62 |
+
"English": "en",
|
| 63 |
+
"German": "de",
|
| 64 |
+
"Spanish": "es",
|
| 65 |
+
"French": "fr",
|
| 66 |
+
"Italian": "it",
|
| 67 |
+
"Dutch": "nl",
|
| 68 |
+
"Swedish": "sv",
|
| 69 |
+
"Portuguese": "pt",
|
| 70 |
+
}
|
| 71 |
+
CODE2LANG = {v: k for k, v in LANG2CODE.items()}
|
| 72 |
+
LANGUAGES = sorted(LANG2CODE.keys())
|
| 73 |
+
|
| 74 |
|
|
|
|
| 75 |
def language_token(lang):
|
| 76 |
return f"<lang_{lang}>"
|
| 77 |
|
| 78 |
+
|
| 79 |
def domain_token(dom):
|
| 80 |
return f"<dom_{dom}>"
|
| 81 |
|
| 82 |
+
|
| 83 |
+
def language_token_to_str(token):
|
| 84 |
+
return token[6:-1]
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def domain_token_to_str(token):
|
| 88 |
+
return token[5:-1]
|
| 89 |
+
|
| 90 |
+
|
| 91 |
def format_input(src, tgt_lang, src_lang, domain):
|
|
|
|
| 92 |
tgt_lang_token = language_token(tgt_lang)
|
| 93 |
+
|
| 94 |
+
prefix = TOKENIZER.eos_token
|
| 95 |
+
|
| 96 |
+
base_input = f"{prefix}{src}</src>{tgt_lang_token}"
|
| 97 |
+
if src_lang is None:
|
| 98 |
+
return base_input
|
| 99 |
+
else:
|
| 100 |
src_lang_token = language_token(src_lang)
|
| 101 |
base_input = f"{base_input}{src_lang_token}"
|
| 102 |
+
|
| 103 |
+
if domain is None:
|
| 104 |
+
return base_input
|
| 105 |
+
else:
|
| 106 |
dom_token = domain_token(domain)
|
| 107 |
base_input = f"{base_input}{dom_token}"
|
| 108 |
+
|
| 109 |
return base_input
|
| 110 |
|
| 111 |
+
|
| 112 |
+
def translate_with_model(model_name, text, tgt_lang, src_lang, domain):
|
| 113 |
+
model = MODELS[model_name]
|
| 114 |
+
formatted_text = format_input(text, tgt_lang, src_lang, domain)
|
| 115 |
+
|
| 116 |
+
inputs = TOKENIZER(formatted_text, return_tensors="pt", return_token_type_ids=False)
|
| 117 |
+
for k, v in inputs.items():
|
| 118 |
+
inputs[k] = v.to(DEVICE)
|
| 119 |
+
|
| 120 |
+
if src_lang is None:
|
| 121 |
+
domain_token_pos = inputs["input_ids"].size(1) + 1
|
| 122 |
+
elif domain is None:
|
| 123 |
+
domain_token_pos = inputs["input_ids"].size(1)
|
| 124 |
+
else:
|
| 125 |
+
domain_token_pos = inputs["input_ids"].size(1) - 1
|
| 126 |
+
src_lang_token_pos = domain_token_pos - 1
|
| 127 |
+
_tgt_lang_token_pos = src_lang_token_pos - 1
|
| 128 |
+
|
| 129 |
+
outputs = model.generate(
|
| 130 |
+
**inputs,
|
| 131 |
+
num_beams=5,
|
| 132 |
+
length_penalty=0.65,
|
| 133 |
+
max_new_tokens=500,
|
| 134 |
+
pad_token_id=TOKENIZER.pad_token_id,
|
| 135 |
+
eos_token_id=TOKENIZER.eos_token_id,
|
| 136 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
+
generated_translation = TOKENIZER.decode(
|
| 139 |
+
outputs[0, domain_token_pos + 1 :], skip_special_tokens=True
|
| 140 |
+
)
|
| 141 |
|
| 142 |
+
source_language_token = TOKENIZER.convert_ids_to_tokens(
|
| 143 |
+
outputs[0, src_lang_token_pos].item()
|
| 144 |
+
)
|
| 145 |
+
domain_token = TOKENIZER.convert_ids_to_tokens(outputs[0, domain_token_pos].item())
|
|
|
|
| 146 |
|
| 147 |
+
return {
|
| 148 |
+
"model": model_name,
|
| 149 |
+
"source_lang": CODE2LANG[language_token_to_str(source_language_token)],
|
| 150 |
+
"domain": DOMAIN_MAPPING_REVERSED[domain_token_to_str(domain_token)],
|
| 151 |
+
"translation": generated_translation,
|
| 152 |
+
}
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def translate_with_all_models(text, tgt_lang, src_lang, domain):
|
| 156 |
+
tgt_lang = LANG2CODE[tgt_lang]
|
| 157 |
+
src_lang = None if src_lang == "Auto" else LANG2CODE.get(src_lang)
|
| 158 |
+
domain = DOMAIN_MAPPING[domain]
|
| 159 |
+
|
| 160 |
+
res = {
|
| 161 |
+
model_name: translate_with_model(model_name, text, tgt_lang, src_lang, domain)
|
| 162 |
+
for model_name in MODEL_IDS
|
| 163 |
+
}
|
| 164 |
+
return list(
|
| 165 |
+
itertools.chain.from_iterable(
|
| 166 |
+
[res[model_id][k] for k in ("translation", "source_lang", "domain")]
|
| 167 |
+
for model_id in MODEL_IDS
|
| 168 |
+
)
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
with gr.Blocks() as demo:
|
| 173 |
+
with gr.Row(variant="default"):
|
| 174 |
+
title = "🌐 Multilingual Multidomain Financial Translator"
|
| 175 |
+
description = """<p>Specialized Translation for Financial Documents across 8 Languages and 9 Domains</p>"""
|
| 176 |
+
gr.HTML(f"<h1>{title}</h1>\n<p>{description}</p>")
|
| 177 |
+
|
| 178 |
+
with gr.Row(variant="panel"):
|
| 179 |
+
with gr.Column(variant="default"):
|
| 180 |
+
source_text = gr.Textbox(lines=3, label="Source sentence")
|
| 181 |
+
with gr.Column(variant="default"):
|
| 182 |
+
target_language = gr.Dropdown(
|
| 183 |
+
LANGUAGES, value="French", label="Target language"
|
| 184 |
+
)
|
| 185 |
+
source_language = gr.Dropdown(
|
| 186 |
+
LANGUAGES + ["Auto"], value="Auto", label="Source language"
|
| 187 |
+
)
|
| 188 |
+
with gr.Column(variant="default"):
|
| 189 |
+
domain = gr.Radio(DOMAINS, value="Auto", label="Domain")
|
| 190 |
+
|
| 191 |
+
with gr.Row():
|
| 192 |
+
translate_btn = gr.Button("Translate", variant="primary")
|
| 193 |
+
|
| 194 |
+
with gr.Row(variant="panel"):
|
| 195 |
+
outputs = {}
|
| 196 |
+
for model_id in MODEL_IDS:
|
| 197 |
+
with gr.Tab(model_id):
|
| 198 |
+
outputs[model_id] = {
|
| 199 |
+
"translation": gr.Textbox(lines=2, label="Translation"),
|
| 200 |
+
"source_lang": gr.Textbox(
|
| 201 |
+
label="Predicted source language",
|
| 202 |
+
info='This is the predicted source language, if "Auto" is selected.',
|
| 203 |
+
),
|
| 204 |
+
"domain": gr.Textbox(
|
| 205 |
+
label="Predicted domain",
|
| 206 |
+
info='This is the predicted domain, if "Auto" is checked.',
|
| 207 |
+
),
|
| 208 |
+
}
|
| 209 |
+
gr.HTML(
|
| 210 |
+
f"<p>Model: <a href='https://huggingface.co/LinguaCustodia/multilingual-multidomain-fin-mt-{model_id}' target='_blank'>LinguaCustodia/multilingual-multidomain-fin-mt-{model_id}</a></p>"
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
with gr.Row(variant="panel"):
|
| 214 |
+
gr.HTML(
|
| 215 |
+
"""<p><strong>Please cite this work as:</strong>\n\n<pre>@inproceedings{DBLP:conf/wmt/CaillautNQLB24,
|
| 216 |
+
author = {Ga{\"{e}}tan Caillaut and
|
| 217 |
+
Mariam Nakhl{\'{e}} and
|
| 218 |
+
Raheel Qader and
|
| 219 |
+
Jingshu Liu and
|
| 220 |
+
Jean{-}Gabriel Barthelemy},
|
| 221 |
+
title = {Scaling Laws of Decoder-Only Models on the Multilingual Machine Translation Task},
|
| 222 |
+
booktitle = {{WMT}},
|
| 223 |
+
pages = {1318--1331},
|
| 224 |
+
publisher = {Association for Computational Linguistics},
|
| 225 |
+
year = {2024}
|
| 226 |
+
}</pre></p>"""
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
translate_btn.click(
|
| 230 |
+
fn=translate_with_all_models,
|
| 231 |
+
inputs=[source_text, target_language, source_language, domain],
|
| 232 |
+
outputs=list(
|
| 233 |
+
itertools.chain.from_iterable(
|
| 234 |
+
[outputs[model_id][k] for k in ("translation", "source_lang", "domain")]
|
| 235 |
+
for model_id in MODEL_IDS
|
| 236 |
+
)
|
| 237 |
+
),
|
| 238 |
+
)
|
| 239 |
|
| 240 |
+
demo.launch()
|