Spaces:
Runtime error
Runtime error
First commit
Browse files- app.py +221 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
import cv2
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import supervision as sv
|
| 7 |
+
from transformers import (
|
| 8 |
+
RTDetrForObjectDetection,
|
| 9 |
+
RTDetrImageProcessor,
|
| 10 |
+
VitPoseConfig,
|
| 11 |
+
VitPoseForPoseEstimation,
|
| 12 |
+
VitPoseImageProcessor,
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
KEYPOINT_LABEL_MAP = {
|
| 17 |
+
0: "Nose",
|
| 18 |
+
1: "L_Eye",
|
| 19 |
+
2: "R_Eye",
|
| 20 |
+
3: "L_Ear",
|
| 21 |
+
4: "R_Ear",
|
| 22 |
+
5: "L_Shoulder",
|
| 23 |
+
6: "R_Shoulder",
|
| 24 |
+
7: "L_Elbow",
|
| 25 |
+
8: "R_Elbow",
|
| 26 |
+
9: "L_Wrist",
|
| 27 |
+
10: "R_Wrist",
|
| 28 |
+
11: "L_Hip",
|
| 29 |
+
12: "R_Hip",
|
| 30 |
+
13: "L_Knee",
|
| 31 |
+
14: "R_Knee",
|
| 32 |
+
15: "L_Ankle",
|
| 33 |
+
16: "R_Ankle",
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class KeypointDetector:
|
| 38 |
+
def __init__(self):
|
| 39 |
+
self.person_detector = None
|
| 40 |
+
self.person_processor = None
|
| 41 |
+
self.pose_model = None
|
| 42 |
+
self.pose_processor = None
|
| 43 |
+
self.load_models()
|
| 44 |
+
|
| 45 |
+
def load_models(self):
|
| 46 |
+
"""Load all required models"""
|
| 47 |
+
# Object detection model
|
| 48 |
+
self.person_processor = RTDetrImageProcessor.from_pretrained("PekingU/rtdetr_r50vd_coco_o365")
|
| 49 |
+
self.person_detector = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd_coco_o365")
|
| 50 |
+
|
| 51 |
+
# Pose estimation model
|
| 52 |
+
self.pose_processor = VitPoseImageProcessor.from_pretrained("nielsr/vitpose-base-simple")
|
| 53 |
+
self.pose_model = VitPoseForPoseEstimation.from_pretrained("nielsr/vitpose-base-simple")
|
| 54 |
+
|
| 55 |
+
@staticmethod
|
| 56 |
+
def pascal_voc_to_coco(bboxes: np.ndarray) -> np.ndarray:
|
| 57 |
+
"""Convert Pascal VOC format to COCO format"""
|
| 58 |
+
bboxes = bboxes.copy() # Create a copy to avoid modifying the input
|
| 59 |
+
bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 0]
|
| 60 |
+
bboxes[:, 3] = bboxes[:, 3] - bboxes[:, 1]
|
| 61 |
+
return bboxes
|
| 62 |
+
|
| 63 |
+
@staticmethod
|
| 64 |
+
def coco_to_xyxy(bboxes: np.ndarray) -> np.ndarray:
|
| 65 |
+
"""Convert COCO format (x,y,w,h) to xyxy format (x1,y1,x2,y2)"""
|
| 66 |
+
bboxes = bboxes.copy()
|
| 67 |
+
bboxes[:, 2] = bboxes[:, 0] + bboxes[:, 2]
|
| 68 |
+
bboxes[:, 3] = bboxes[:, 1] + bboxes[:, 3]
|
| 69 |
+
return bboxes
|
| 70 |
+
|
| 71 |
+
def detect_persons(self, image: Image.Image):
|
| 72 |
+
"""Detect persons in the image"""
|
| 73 |
+
inputs = self.person_processor(images=image, return_tensors="pt")
|
| 74 |
+
with torch.no_grad():
|
| 75 |
+
outputs = self.person_detector(**inputs)
|
| 76 |
+
|
| 77 |
+
results = self.person_processor.post_process_object_detection(
|
| 78 |
+
outputs,
|
| 79 |
+
target_sizes=torch.tensor([(image.height, image.width)]),
|
| 80 |
+
threshold=0.3
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
# Get boxes and scores for human class (index 0 in COCO dataset)
|
| 84 |
+
boxes = results[0]["boxes"][results[0]["labels"] == 0]
|
| 85 |
+
scores = results[0]["scores"][results[0]["labels"] == 0]
|
| 86 |
+
return boxes.cpu().numpy(), scores.cpu().numpy()
|
| 87 |
+
|
| 88 |
+
def detect_keypoints(self, image: Image.Image):
|
| 89 |
+
"""Detect keypoints in the image"""
|
| 90 |
+
# Detect persons first
|
| 91 |
+
boxes, scores = self.detect_persons(image)
|
| 92 |
+
boxes_coco = [self.pascal_voc_to_coco(boxes)]
|
| 93 |
+
|
| 94 |
+
# Detect pose keypoints
|
| 95 |
+
pixel_values = self.pose_processor(image, boxes=boxes_coco, return_tensors="pt").pixel_values
|
| 96 |
+
with torch.no_grad():
|
| 97 |
+
outputs = self.pose_model(pixel_values)
|
| 98 |
+
|
| 99 |
+
pose_results = self.pose_processor.post_process_pose_estimation(outputs, boxes=boxes_coco)[0]
|
| 100 |
+
return pose_results, boxes, scores
|
| 101 |
+
|
| 102 |
+
def visualize_detections(self, image: Image.Image, pose_results, boxes, scores):
|
| 103 |
+
"""Visualize both bounding boxes and keypoints on the image"""
|
| 104 |
+
# Convert image to numpy array if needed
|
| 105 |
+
image_array = np.array(image)
|
| 106 |
+
|
| 107 |
+
# Setup detections for bounding boxes
|
| 108 |
+
detections = sv.Detections(
|
| 109 |
+
xyxy=self.coco_to_xyxy(boxes),
|
| 110 |
+
confidence=scores,
|
| 111 |
+
class_id=np.array([0]*len(scores))
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
# Create box annotator
|
| 115 |
+
box_annotator = sv.BoxAnnotator(
|
| 116 |
+
color=sv.ColorPalette.DEFAULT,
|
| 117 |
+
thickness=2
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
# Create edge annotator for keypoints
|
| 121 |
+
edge_annotator = sv.EdgeAnnotator(
|
| 122 |
+
color=sv.Color.GREEN,
|
| 123 |
+
thickness=3
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
# Convert keypoints to supervision format
|
| 127 |
+
key_points = sv.KeyPoints(
|
| 128 |
+
xy=torch.cat([pose_result['keypoints'].unsqueeze(0) for pose_result in pose_results]).cpu().numpy()
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
# Annotate image with boxes first
|
| 132 |
+
annotated_frame = box_annotator.annotate(
|
| 133 |
+
scene=image_array.copy(),
|
| 134 |
+
detections=detections
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
# Then add keypoints
|
| 138 |
+
annotated_frame = edge_annotator.annotate(
|
| 139 |
+
scene=annotated_frame,
|
| 140 |
+
key_points=key_points
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
return Image.fromarray(annotated_frame)
|
| 144 |
+
|
| 145 |
+
def process_image(self, input_image):
|
| 146 |
+
"""Process image and return visualization"""
|
| 147 |
+
if input_image is None:
|
| 148 |
+
return None, ""
|
| 149 |
+
|
| 150 |
+
# Convert to PIL Image if necessary
|
| 151 |
+
if isinstance(input_image, np.ndarray):
|
| 152 |
+
image = Image.fromarray(input_image)
|
| 153 |
+
else:
|
| 154 |
+
image = input_image
|
| 155 |
+
|
| 156 |
+
# Detect keypoints and boxes
|
| 157 |
+
pose_results, boxes, scores = self.detect_keypoints(image)
|
| 158 |
+
|
| 159 |
+
# Visualize results
|
| 160 |
+
result_image = self.visualize_detections(image, pose_results, boxes, scores)
|
| 161 |
+
|
| 162 |
+
# Create detection information text
|
| 163 |
+
info_text = []
|
| 164 |
+
|
| 165 |
+
# Box information
|
| 166 |
+
for i, (box, score) in enumerate(zip(boxes, scores)):
|
| 167 |
+
info_text.append(f"\nPerson {i + 1} (confidence: {score:.2f})")
|
| 168 |
+
info_text.append(f"Bounding Box: x1={box[0]:.1f}, y1={box[1]:.1f}, x2={box[2]:.1f}, y2={box[3]:.1f}")
|
| 169 |
+
|
| 170 |
+
# Add keypoint information for this person
|
| 171 |
+
pose_result = pose_results[i]
|
| 172 |
+
for j, keypoint in enumerate(pose_result["keypoints"]):
|
| 173 |
+
x, y, confidence = keypoint
|
| 174 |
+
info_text.append(f"Keypoint {KEYPOINT_LABEL_MAP[j]}: x={x:.1f}, y={y:.1f}, confidence={confidence:.2f}")
|
| 175 |
+
|
| 176 |
+
return result_image, "\n".join(info_text)
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
def create_gradio_interface():
|
| 180 |
+
"""Create Gradio interface"""
|
| 181 |
+
detector = KeypointDetector()
|
| 182 |
+
|
| 183 |
+
with gr.Blocks() as interface:
|
| 184 |
+
gr.Markdown("# Human Detection and Keypoint Estimation using VitPose")
|
| 185 |
+
gr.Markdown("Upload an image to detect people and their keypoints. The model will:")
|
| 186 |
+
gr.Markdown("1. Detect people in the image (shown as bounding boxes)")
|
| 187 |
+
gr.Markdown("2. Identify keypoints for each detected person (shown as connected green lines)")
|
| 188 |
+
gr.Markdown("Huge shoutout to @NielsRogge and @SangbumChoi for this work!")
|
| 189 |
+
|
| 190 |
+
with gr.Row():
|
| 191 |
+
with gr.Column():
|
| 192 |
+
input_image = gr.Image(label="Input Image")
|
| 193 |
+
process_button = gr.Button("Detect People & Keypoints")
|
| 194 |
+
|
| 195 |
+
with gr.Column():
|
| 196 |
+
output_image = gr.Image(label="Detection Results")
|
| 197 |
+
detection_info = gr.Textbox(
|
| 198 |
+
label="Detection Information",
|
| 199 |
+
lines=10,
|
| 200 |
+
placeholder="Detection details will appear here..."
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
process_button.click(
|
| 204 |
+
fn=detector.process_image,
|
| 205 |
+
inputs=input_image,
|
| 206 |
+
outputs=[output_image, detection_info]
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
gr.Examples(
|
| 210 |
+
examples=[
|
| 211 |
+
"http://images.cocodataset.org/val2017/000000000139.jpg"
|
| 212 |
+
],
|
| 213 |
+
inputs=input_image
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
return interface
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
if __name__ == "__main__":
|
| 220 |
+
interface = create_gradio_interface()
|
| 221 |
+
interface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
git+https://github.com/NielsRogge/transformers.git@add_vitpose_autobackbone
|
| 2 |
+
supervision==0.24.0
|
| 3 |
+
torch==2.5.1
|
| 4 |
+
gradio==4.44.1
|