Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import pandas as pd | |
| import sqlite3 | |
| import os | |
| import json | |
| from pathlib import Path | |
| from datetime import datetime, timezone | |
| from crewai import Agent, Crew, Process, Task | |
| from crewai_tools import tool | |
| from langchain_groq import ChatGroq | |
| from langchain.schema.output import LLMResult | |
| from langchain_core.callbacks.base import BaseCallbackHandler | |
| from langchain_community.tools.sql_database.tool import ( | |
| InfoSQLDatabaseTool, | |
| ListSQLDatabaseTool, | |
| QuerySQLCheckerTool, | |
| QuerySQLDataBaseTool, | |
| ) | |
| from langchain_community.utilities.sql_database import SQLDatabase | |
| from datasets import load_dataset | |
| import tempfile | |
| # API Key | |
| os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "") | |
| # Initialize LLM | |
| class LLMCallbackHandler(BaseCallbackHandler): | |
| def __init__(self, log_path: Path): | |
| self.log_path = log_path | |
| def on_llm_start(self, serialized, prompts, **kwargs): | |
| with self.log_path.open("a", encoding="utf-8") as file: | |
| file.write(json.dumps({"event": "llm_start", "text": prompts[0], "timestamp": datetime.now().isoformat()}) + "\n") | |
| def on_llm_end(self, response: LLMResult, **kwargs): | |
| generation = response.generations[-1][-1].message.content | |
| with self.log_path.open("a", encoding="utf-8") as file: | |
| file.write(json.dumps({"event": "llm_end", "text": generation, "timestamp": datetime.now().isoformat()}) + "\n") | |
| llm = ChatGroq( | |
| temperature=0, | |
| model_name="groq/llama-3.3-70b-versatile", | |
| max_tokens=1024, | |
| callbacks=[LLMCallbackHandler(Path("prompts.jsonl"))], | |
| ) | |
| st.title("SQL-RAG Using CrewAI π") | |
| st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.") | |
| # Initialize session state for data persistence | |
| if "df" not in st.session_state: | |
| st.session_state.df = None | |
| # Dataset Input | |
| input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"]) | |
| if input_option == "Use Hugging Face Dataset": | |
| dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries") | |
| if st.button("Load Dataset"): | |
| try: | |
| with st.spinner("Loading dataset..."): | |
| dataset = load_dataset(dataset_name, split="train") | |
| st.session_state.df = pd.DataFrame(dataset) | |
| st.success(f"Dataset '{dataset_name}' loaded successfully!") | |
| st.dataframe(st.session_state.df.head()) | |
| except Exception as e: | |
| st.error(f"Error: {e}") | |
| elif input_option == "Upload CSV File": | |
| uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"]) | |
| if uploaded_file: | |
| st.session_state.df = pd.read_csv(uploaded_file) | |
| st.success("File uploaded successfully!") | |
| st.dataframe(st.session_state.df.head()) | |
| # SQL-RAG Analysis | |
| if st.session_state.df is not None: | |
| temp_dir = tempfile.TemporaryDirectory() | |
| db_path = os.path.join(temp_dir.name, "data.db") | |
| connection = sqlite3.connect(db_path) | |
| st.session_state.df.to_sql("salaries", connection, if_exists="replace", index=False) | |
| db = SQLDatabase.from_uri(f"sqlite:///{db_path}") | |
| def list_tables() -> str: | |
| """List all tables in the database.""" | |
| return ListSQLDatabaseTool(db=db).invoke("") | |
| def tables_schema(tables: str) -> str: | |
| """Get schema and sample rows for given tables.""" | |
| return InfoSQLDatabaseTool(db=db).invoke(tables) | |
| def execute_sql(sql_query: str) -> str: | |
| """Execute a SQL query against the database.""" | |
| return QuerySQLDataBaseTool(db=db).invoke(sql_query) | |
| def check_sql(sql_query: str) -> str: | |
| """Check the validity of a SQL query.""" | |
| return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query}) | |
| sql_dev = Agent( | |
| role="Senior Database Developer", | |
| goal="Extract data using optimized SQL queries.", | |
| backstory="An expert in writing optimized SQL queries for complex databases.", | |
| llm=llm, | |
| tools=[list_tables, tables_schema, execute_sql, check_sql], | |
| ) | |
| data_analyst = Agent( | |
| role="Senior Data Analyst", | |
| goal="Analyze the data and produce insights.", | |
| backstory="A seasoned analyst who identifies trends and patterns in datasets.", | |
| llm=llm, | |
| ) | |
| report_writer = Agent( | |
| role="Technical Report Writer", | |
| goal="Summarize the insights into a clear report.", | |
| backstory="An expert in summarizing data insights into readable reports.", | |
| llm=llm, | |
| ) | |
| extract_data = Task( | |
| description="Extract data based on the query: {query}.", | |
| expected_output="Database results matching the query.", | |
| agent=sql_dev, | |
| ) | |
| analyze_data = Task( | |
| description="Analyze the extracted data for query: {query}.", | |
| expected_output="Analysis text summarizing findings.", | |
| agent=data_analyst, | |
| context=[extract_data], | |
| ) | |
| write_report = Task( | |
| description="Summarize the analysis into an executive report.", | |
| expected_output="Markdown report of insights.", | |
| agent=report_writer, | |
| context=[analyze_data], | |
| ) | |
| crew = Crew( | |
| agents=[sql_dev, data_analyst, report_writer], | |
| tasks=[extract_data, analyze_data, write_report], | |
| process=Process.sequential, | |
| verbose=True, | |
| ) | |
| query = st.text_area("Enter Query:", placeholder="e.g., 'What is the average salary for senior employees?'") | |
| if st.button("Submit Query"): | |
| with st.spinner("Processing query..."): | |
| inputs = {"query": query} | |
| result = crew.kickoff(inputs=inputs) | |
| st.markdown("### Analysis Report:") | |
| st.markdown(result) | |
| temp_dir.cleanup() | |
| else: | |
| st.info("Please load a dataset to proceed.") |