Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import pandas as pd | |
| import sqlite3 | |
| import tempfile | |
| from fpdf import FPDF | |
| import os | |
| import re | |
| import json | |
| from pathlib import Path | |
| import plotly.express as px | |
| from datetime import datetime, timezone | |
| from crewai import Agent, Crew, Process, Task | |
| from crewai.tools import tool | |
| from langchain_groq import ChatGroq | |
| from langchain_openai import ChatOpenAI | |
| from langchain.schema.output import LLMResult | |
| from langchain_community.tools.sql_database.tool import ( | |
| InfoSQLDatabaseTool, | |
| ListSQLDatabaseTool, | |
| QuerySQLCheckerTool, | |
| QuerySQLDataBaseTool, | |
| ) | |
| from langchain_community.utilities.sql_database import SQLDatabase | |
| from datasets import load_dataset | |
| import tempfile | |
| st.title("SQL-RAG Using CrewAI π") | |
| st.write("Analyze datasets using natural language queries.") | |
| # Initialize LLM | |
| llm = None | |
| # Model Selection | |
| model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True) | |
| # API Key Validation and LLM Initialization | |
| groq_api_key = os.getenv("GROQ_API_KEY") | |
| openai_api_key = os.getenv("OPENAI_API_KEY") | |
| if model_choice == "llama-3.3-70b": | |
| if not groq_api_key: | |
| st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.") | |
| llm = None | |
| else: | |
| llm = ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile") | |
| elif model_choice == "GPT-4o": | |
| if not openai_api_key: | |
| st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.") | |
| llm = None | |
| else: | |
| llm = ChatOpenAI(api_key=openai_api_key, model="gpt-4o") | |
| # Initialize session state for data persistence | |
| if "df" not in st.session_state: | |
| st.session_state.df = None | |
| if "show_preview" not in st.session_state: | |
| st.session_state.show_preview = False | |
| # Dataset Input | |
| input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"]) | |
| if input_option == "Use Hugging Face Dataset": | |
| dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries") | |
| if st.button("Load Dataset"): | |
| try: | |
| with st.spinner("Loading dataset..."): | |
| dataset = load_dataset(dataset_name, split="train") | |
| st.session_state.df = pd.DataFrame(dataset) | |
| st.session_state.show_preview = True # Show preview after loading | |
| st.success(f"Dataset '{dataset_name}' loaded successfully!") | |
| except Exception as e: | |
| st.error(f"Error: {e}") | |
| elif input_option == "Upload CSV File": | |
| uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"]) | |
| if uploaded_file: | |
| try: | |
| st.session_state.df = pd.read_csv(uploaded_file) | |
| st.session_state.show_preview = True # Show preview after loading | |
| st.success("File uploaded successfully!") | |
| except Exception as e: | |
| st.error(f"Error loading file: {e}") | |
| # Show Dataset Preview Only After Loading | |
| if st.session_state.df is not None and st.session_state.show_preview: | |
| st.subheader("π Dataset Preview") | |
| st.dataframe(st.session_state.df.head()) | |
| #def ask_gpt4o_for_visualization(query, df, llm): | |
| # columns = ', '.join(df.columns) | |
| # prompt = f""" | |
| # Analyze the query and suggest one or more relevant visualizations. | |
| # Query: "{query}" | |
| # Available Columns: {columns} | |
| # Respond in this JSON format (as a list if multiple suggestions): | |
| # [ | |
| # {{ | |
| # "chart_type": "bar/box/line/scatter", | |
| # "x_axis": "column_name", | |
| # "y_axis": "column_name", | |
| # "group_by": "optional_column_name" | |
| # }} | |
| # ] | |
| # """ | |
| # response = llm.generate(prompt) | |
| # try: | |
| # return json.loads(response) | |
| # except json.JSONDecodeError: | |
| # st.error("β οΈ GPT-4o failed to generate a valid suggestion.") | |
| # return None | |
| # Helper Function for Validation | |
| def is_valid_suggestion(suggestion): | |
| chart_type = suggestion.get("chart_type", "").lower() | |
| if chart_type in ["bar", "line", "box", "scatter"]: | |
| return all(k in suggestion for k in ["chart_type", "x_axis", "y_axis"]) | |
| elif chart_type == "pie": | |
| return all(k in suggestion for k in ["chart_type", "x_axis"]) | |
| elif chart_type == "heatmap": | |
| return all(k in suggestion for k in ["chart_type", "x_axis", "y_axis"]) | |
| else: | |
| return False | |
| def ask_gpt4o_for_visualization(query, df, llm, retries=2): | |
| import json | |
| # Identify numeric and categorical columns | |
| numeric_columns = df.select_dtypes(include='number').columns.tolist() | |
| categorical_columns = df.select_dtypes(exclude='number').columns.tolist() | |
| # Prompt with Dataset-Specific, Query-Based Examples | |
| prompt = f""" | |
| Analyze the following query and suggest the most suitable visualization(s) using the dataset. | |
| **Query:** "{query}" | |
| **Dataset Overview:** | |
| - **Numeric Columns (for Y-axis):** {', '.join(numeric_columns) if numeric_columns else 'None'} | |
| - **Categorical Columns (for X-axis or grouping):** {', '.join(categorical_columns) if categorical_columns else 'None'} | |
| Suggest visualizations in this exact JSON format: | |
| [ | |
| {{ | |
| "chdart_type": "bar/box/line/scatter/pie/heatmap", | |
| "x_axis": "categorical_or_time_column", | |
| "y_axis": "numeric_column", | |
| "group_by": "optional_column_for_grouping", | |
| "title": "Title of the chart", | |
| "description": "Why this chart is suitable" | |
| }} | |
| ] | |
| **Query-Based Examples:** | |
| - **Query:** "What is the salary distribution across different job titles?" | |
| **Suggested Visualization:** | |
| {{ | |
| "chart_type": "box", | |
| "x_axis": "job_title", | |
| "y_axis": "salary_in_usd", | |
| "group_by": "experience_level", | |
| "title": "Salary Distribution by Job Title and Experience", | |
| "description": "A box plot to show how salaries vary across different job titles and experience levels." | |
| }} | |
| - **Query:** "Show the average salary by company size and employment type." | |
| **Suggested Visualizations:** | |
| [ | |
| {{ | |
| "chart_type": "bar", | |
| "x_axis": "company_size", | |
| "y_axis": "salary_in_usd", | |
| "group_by": "employment_type", | |
| "title": "Average Salary by Company Size and Employment Type", | |
| "description": "A grouped bar chart comparing average salaries across company sizes and employment types." | |
| }}, | |
| {{ | |
| "chart_type": "heatmap", | |
| "x_axis": "company_size", | |
| "y_axis": "salary_in_usd", | |
| "group_by": "employment_type", | |
| "title": "Salary Heatmap by Company Size and Employment Type", | |
| "description": "A heatmap showing salary concentration across company sizes and employment types." | |
| }} | |
| ] | |
| - **Query:** "How has the average salary changed over the years?" | |
| **Suggested Visualization:** | |
| {{ | |
| "chart_type": "line", | |
| "x_axis": "work_year", | |
| "y_axis": "salary_in_usd", | |
| "group_by": "experience_level", | |
| "title": "Average Salary Trend Over Years", | |
| "description": "A line chart showing how the average salary has changed across different experience levels over the years." | |
| }} | |
| - **Query:** "What is the employee distribution by company location?" | |
| **Suggested Visualization:** | |
| {{ | |
| "chart_type": "pie", | |
| "x_axis": "company_location", | |
| "y_axis": null, | |
| "group_by": null, | |
| "title": "Employee Distribution by Company Location", | |
| "description": "A pie chart showing the distribution of employees across company locations." | |
| }} | |
| - **Query:** "Is there a relationship between remote work ratio and salary?" | |
| **Suggested Visualization:** | |
| {{ | |
| "chart_type": "scatter", | |
| "x_axis": "remote_ratio", | |
| "y_axis": "salary_in_usd", | |
| "group_by": "experience_level", | |
| "title": "Remote Work Ratio vs Salary", | |
| "description": "A scatter plot to analyze the relationship between remote work ratio and salary." | |
| }} | |
| - **Query:** "Which job titles have the highest salaries across regions?" | |
| **Suggested Visualization:** | |
| {{ | |
| "chart_type": "heatmap", | |
| "x_axis": "job_title", | |
| "y_axis": "employee_residence", | |
| "group_by": null, | |
| "title": "Salary Heatmap by Job Title and Region", | |
| "description": "A heatmap showing the concentration of high-paying job titles across regions." | |
| }} | |
| Only suggest visualizations that logically match the query and dataset. | |
| """ | |
| for attempt in range(retries + 1): | |
| try: | |
| response = llm.generate(prompt) | |
| suggestions = json.loads(response) | |
| if isinstance(suggestions, list): | |
| valid_suggestions = [s for s in suggestions if is_valid_suggestion(s)] | |
| if valid_suggestions: | |
| return valid_suggestions | |
| else: | |
| st.warning("β οΈ GPT-4o did not suggest valid visualizations.") | |
| return None | |
| elif isinstance(suggestions, dict): | |
| if is_valid_suggestion(suggestions): | |
| return [suggestions] | |
| else: | |
| st.warning("β οΈ GPT-4o's suggestion is incomplete or invalid.") | |
| return None | |
| except json.JSONDecodeError: | |
| st.warning(f"β οΈ Attempt {attempt + 1}: GPT-4o returned invalid JSON.") | |
| except Exception as e: | |
| st.error(f"β οΈ Error during GPT-4o call: {e}") | |
| if attempt < retries: | |
| st.info("π Retrying visualization suggestion...") | |
| st.error("β Failed to generate a valid visualization after multiple attempts.") | |
| return None | |
| def add_stats_to_figure(fig, df, y_axis, chart_type): | |
| """ | |
| Add relevant statistical annotations to the visualization | |
| based on the chart type. | |
| """ | |
| # Check if the y-axis column is numeric | |
| if not pd.api.types.is_numeric_dtype(df[y_axis]): | |
| st.warning(f"β οΈ Cannot compute statistics for non-numeric column: {y_axis}") | |
| return fig | |
| # Compute statistics for numeric data | |
| min_val = df[y_axis].min() | |
| max_val = df[y_axis].max() | |
| avg_val = df[y_axis].mean() | |
| median_val = df[y_axis].median() | |
| std_dev_val = df[y_axis].std() | |
| # Format the stats for display | |
| stats_text = ( | |
| f"π **Statistics**\n\n" | |
| f"- **Min:** ${min_val:,.2f}\n" | |
| f"- **Max:** ${max_val:,.2f}\n" | |
| f"- **Average:** ${avg_val:,.2f}\n" | |
| f"- **Median:** ${median_val:,.2f}\n" | |
| f"- **Std Dev:** ${std_dev_val:,.2f}" | |
| ) | |
| # Apply stats only to relevant chart types | |
| if chart_type in ["bar", "line"]: | |
| # Add annotation box for bar and line charts | |
| fig.add_annotation( | |
| text=stats_text, | |
| xref="paper", yref="paper", | |
| x=1.02, y=1, | |
| showarrow=False, | |
| align="left", | |
| font=dict(size=12, color="black"), | |
| bordercolor="gray", | |
| borderwidth=1, | |
| bgcolor="rgba(255, 255, 255, 0.85)" | |
| ) | |
| # Add horizontal reference lines | |
| fig.add_hline(y=min_val, line_dash="dot", line_color="red", annotation_text="Min", annotation_position="bottom right") | |
| fig.add_hline(y=median_val, line_dash="dash", line_color="orange", annotation_text="Median", annotation_position="top right") | |
| fig.add_hline(y=avg_val, line_dash="dashdot", line_color="green", annotation_text="Avg", annotation_position="top right") | |
| fig.add_hline(y=max_val, line_dash="dot", line_color="blue", annotation_text="Max", annotation_position="top right") | |
| elif chart_type == "scatter": | |
| # Add stats annotation only, no lines for scatter plots | |
| fig.add_annotation( | |
| text=stats_text, | |
| xref="paper", yref="paper", | |
| x=1.02, y=1, | |
| showarrow=False, | |
| align="left", | |
| font=dict(size=12, color="black"), | |
| bordercolor="gray", | |
| borderwidth=1, | |
| bgcolor="rgba(255, 255, 255, 0.85)" | |
| ) | |
| elif chart_type == "box": | |
| # Box plots inherently show distribution; no extra stats needed | |
| pass | |
| elif chart_type == "pie": | |
| # Pie charts represent proportions, not suitable for stats | |
| st.info("π Pie charts represent proportions. Additional stats are not applicable.") | |
| elif chart_type == "heatmap": | |
| # Heatmaps already reflect data intensity | |
| st.info("π Heatmaps inherently reflect distribution. No additional stats added.") | |
| else: | |
| st.warning(f"β οΈ No statistical overlays applied for unsupported chart type: '{chart_type}'.") | |
| return fig | |
| # Dynamically generate Plotly visualizations based on GPT-4o suggestions | |
| def generate_visualization(suggestion, df): | |
| """ | |
| Generate a Plotly visualization based on GPT-4o's suggestion. | |
| If the Y-axis is missing, infer it intelligently. | |
| """ | |
| chart_type = suggestion.get("chart_type", "bar").lower() | |
| x_axis = suggestion.get("x_axis") | |
| y_axis = suggestion.get("y_axis") | |
| group_by = suggestion.get("group_by") | |
| # Step 1: Infer Y-axis if not provided | |
| if not y_axis: | |
| numeric_columns = df.select_dtypes(include='number').columns.tolist() | |
| # Avoid using the same column for both axes | |
| if x_axis in numeric_columns: | |
| numeric_columns.remove(x_axis) | |
| # Smart guess: prioritize salary or relevant metrics if available | |
| priority_columns = ["salary_in_usd", "income", "earnings", "revenue"] | |
| for col in priority_columns: | |
| if col in numeric_columns: | |
| y_axis = col | |
| break | |
| # Fallback to the first numeric column if no priority columns exist | |
| if not y_axis and numeric_columns: | |
| y_axis = numeric_columns[0] | |
| # Step 2: Validate axes | |
| if not x_axis or not y_axis: | |
| st.warning("β οΈ Unable to determine appropriate columns for visualization.") | |
| return None | |
| # Step 3: Dynamically select the Plotly function | |
| plotly_function = getattr(px, chart_type, None) | |
| if not plotly_function: | |
| st.warning(f"β οΈ Unsupported chart type '{chart_type}' suggested by GPT-4o.") | |
| return None | |
| # Step 4: Prepare dynamic plot arguments | |
| plot_args = {"data_frame": df, "x": x_axis, "y": y_axis} | |
| if group_by and group_by in df.columns: | |
| plot_args["color"] = group_by | |
| try: | |
| # Step 5: Generate the visualization | |
| fig = plotly_function(**plot_args) | |
| fig.update_layout( | |
| title=f"{chart_type.title()} Plot of {y_axis.replace('_', ' ').title()} by {x_axis.replace('_', ' ').title()}", | |
| xaxis_title=x_axis.replace('_', ' ').title(), | |
| yaxis_title=y_axis.replace('_', ' ').title(), | |
| ) | |
| # Step 6: Apply statistics intelligently | |
| fig = add_statistics_to_visualization(fig, df, y_axis, chart_type) | |
| return fig | |
| except Exception as e: | |
| st.error(f"β οΈ Failed to generate visualization: {e}") | |
| return None | |
| def generate_multiple_visualizations(suggestions, df): | |
| """ | |
| Generates one or more visualizations based on GPT-4o's suggestions. | |
| Handles both single and multiple suggestions. | |
| """ | |
| visualizations = [] | |
| for suggestion in suggestions: | |
| fig = generate_visualization(suggestion, df) | |
| if fig: | |
| # Apply chart-specific statistics | |
| fig = add_stats_to_figure(fig, df, suggestion["y_axis"], suggestion["chart_type"]) | |
| visualizations.append(fig) | |
| if not visualizations and suggestions: | |
| st.warning("β οΈ No valid visualization found. Displaying the most relevant one.") | |
| best_suggestion = suggestions[0] | |
| fig = generate_visualization(best_suggestion, df) | |
| fig = add_stats_to_figure(fig, df, best_suggestion["y_axis"], best_suggestion["chart_type"]) | |
| visualizations.append(fig) | |
| return visualizations | |
| def handle_visualization_suggestions(suggestions, df): | |
| """ | |
| Determines whether to generate a single or multiple visualizations. | |
| """ | |
| visualizations = [] | |
| # If multiple suggestions, generate multiple plots | |
| if isinstance(suggestions, list) and len(suggestions) > 1: | |
| visualizations = generate_multiple_visualizations(suggestions, df) | |
| # If only one suggestion, generate a single plot | |
| elif isinstance(suggestions, dict) or (isinstance(suggestions, list) and len(suggestions) == 1): | |
| suggestion = suggestions[0] if isinstance(suggestions, list) else suggestions | |
| fig = generate_visualization(suggestion, df) | |
| if fig: | |
| visualizations.append(fig) | |
| # Handle cases when no visualization could be generated | |
| if not visualizations: | |
| st.warning("β οΈ Unable to generate any visualization based on the suggestion.") | |
| # Display all generated visualizations | |
| for fig in visualizations: | |
| st.plotly_chart(fig, use_container_width=True) | |
| # Function to create TXT file | |
| def create_text_report_with_viz_temp(report, conclusion, visualizations): | |
| content = f"### Analysis Report\n\n{report}\n\n### Visualizations\n" | |
| for i, fig in enumerate(visualizations, start=1): | |
| fig_title = fig.layout.title.text if fig.layout.title.text else f"Visualization {i}" | |
| x_axis = fig.layout.xaxis.title.text if fig.layout.xaxis.title.text else "X-axis" | |
| y_axis = fig.layout.yaxis.title.text if fig.layout.yaxis.title.text else "Y-axis" | |
| content += f"\n{i}. {fig_title}\n" | |
| content += f" - X-axis: {x_axis}\n" | |
| content += f" - Y-axis: {y_axis}\n" | |
| if fig.data: | |
| trace_types = set(trace.type for trace in fig.data) | |
| content += f" - Chart Type(s): {', '.join(trace_types)}\n" | |
| else: | |
| content += " - No data available in this visualization.\n" | |
| content += f"\n\n\n{conclusion}" | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode='w', encoding='utf-8') as temp_txt: | |
| temp_txt.write(content) | |
| return temp_txt.name | |
| # Function to create PDF with report text and visualizations | |
| def create_pdf_report_with_viz(report, conclusion, visualizations): | |
| pdf = FPDF() | |
| pdf.set_auto_page_break(auto=True, margin=15) | |
| pdf.add_page() | |
| pdf.set_font("Arial", size=12) | |
| # Title | |
| pdf.set_font("Arial", style="B", size=18) | |
| pdf.cell(0, 10, "π Analysis Report", ln=True, align="C") | |
| pdf.ln(10) | |
| # Report Content | |
| pdf.set_font("Arial", style="B", size=14) | |
| pdf.cell(0, 10, "Analysis", ln=True) | |
| pdf.set_font("Arial", size=12) | |
| pdf.multi_cell(0, 10, report) | |
| pdf.ln(10) | |
| pdf.set_font("Arial", style="B", size=14) | |
| pdf.cell(0, 10, "Conclusion", ln=True) | |
| pdf.set_font("Arial", size=12) | |
| pdf.multi_cell(0, 10, conclusion) | |
| # Add Visualizations | |
| pdf.add_page() | |
| pdf.set_font("Arial", style="B", size=16) | |
| pdf.cell(0, 10, "π Visualizations", ln=True) | |
| pdf.ln(5) | |
| with tempfile.TemporaryDirectory() as temp_dir: | |
| for i, fig in enumerate(visualizations, start=1): | |
| fig_title = fig.layout.title.text if fig.layout.title.text else f"Visualization {i}" | |
| x_axis = fig.layout.xaxis.title.text if fig.layout.xaxis.title.text else "X-axis" | |
| y_axis = fig.layout.yaxis.title.text if fig.layout.yaxis.title.text else "Y-axis" | |
| # Save each visualization as a PNG image | |
| img_path = os.path.join(temp_dir, f"viz_{i}.png") | |
| fig.write_image(img_path) | |
| # Insert Title and Description | |
| pdf.set_font("Arial", style="B", size=14) | |
| pdf.multi_cell(0, 10, f"{i}. {fig_title}") | |
| pdf.set_font("Arial", size=12) | |
| pdf.multi_cell(0, 10, f"X-axis: {x_axis} | Y-axis: {y_axis}") | |
| pdf.ln(3) | |
| # Embed Visualization | |
| pdf.image(img_path, w=170) | |
| pdf.ln(10) | |
| # Save PDF | |
| temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") | |
| pdf.output(temp_pdf.name) | |
| return temp_pdf | |
| def escape_markdown(text): | |
| # Ensure text is a string | |
| text = str(text) | |
| # Escape Markdown characters: *, _, `, ~ | |
| escape_chars = r"(\*|_|`|~)" | |
| return re.sub(escape_chars, r"\\\1", text) | |
| # SQL-RAG Analysis | |
| if st.session_state.df is not None: | |
| temp_dir = tempfile.TemporaryDirectory() | |
| db_path = os.path.join(temp_dir.name, "data.db") | |
| connection = sqlite3.connect(db_path) | |
| st.session_state.df.to_sql("salaries", connection, if_exists="replace", index=False) | |
| db = SQLDatabase.from_uri(f"sqlite:///{db_path}") | |
| def list_tables() -> str: | |
| """List all tables in the database.""" | |
| return ListSQLDatabaseTool(db=db).invoke("") | |
| def tables_schema(tables: str) -> str: | |
| """Get the schema and sample rows for the specified tables.""" | |
| return InfoSQLDatabaseTool(db=db).invoke(tables) | |
| def execute_sql(sql_query: str) -> str: | |
| """Execute a SQL query against the database and return the results.""" | |
| return QuerySQLDataBaseTool(db=db).invoke(sql_query) | |
| def check_sql(sql_query: str) -> str: | |
| """Validate the SQL query syntax and structure before execution.""" | |
| return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query}) | |
| # Agents for SQL data extraction and analysis | |
| sql_dev = Agent( | |
| role="Senior Database Developer", | |
| goal="Extract data using optimized SQL queries.", | |
| backstory="An expert in writing optimized SQL queries for complex databases.", | |
| llm=llm, | |
| tools=[list_tables, tables_schema, execute_sql, check_sql], | |
| ) | |
| data_analyst = Agent( | |
| role="Senior Data Analyst", | |
| goal="Analyze the data and produce insights.", | |
| backstory="A seasoned analyst who identifies trends and patterns in datasets.", | |
| llm=llm, | |
| ) | |
| report_writer = Agent( | |
| role="Technical Report Writer", | |
| goal="Write a structured report with Introduction and Key Insights. DO NOT include any Conclusion or Summary.", | |
| backstory="Specializes in detailed analytical reports without conclusions.", | |
| llm=llm, | |
| ) | |
| conclusion_writer = Agent( | |
| role="Conclusion Specialist", | |
| goal="Summarize findings into a clear and concise 3-5 line Conclusion highlighting only the most important insights.", | |
| backstory="An expert in crafting impactful and clear conclusions.", | |
| llm=llm, | |
| ) | |
| # Define tasks for report and conclusion | |
| extract_data = Task( | |
| description="Extract data based on the query: {query}.", | |
| expected_output="Database results matching the query.", | |
| agent=sql_dev, | |
| ) | |
| analyze_data = Task( | |
| description="Analyze the extracted data for query: {query}.", | |
| expected_output="Key Insights and Analysis without any Introduction or Conclusion.", | |
| agent=data_analyst, | |
| context=[extract_data], | |
| ) | |
| write_report = Task( | |
| description="Write the analysis report with Introduction and Key Insights. DO NOT include any Conclusion or Summary.", | |
| expected_output="Markdown-formatted report excluding Conclusion.", | |
| agent=report_writer, | |
| context=[analyze_data], | |
| ) | |
| write_conclusion = Task( | |
| description="Summarize the key findings in 3-5 impactful lines, highlighting the maximum, minimum, and average salaries." | |
| "Emphasize significant insights on salary distribution and influential compensation trends for strategic decision-making.", | |
| expected_output="Markdown-formatted Conclusion section with key insights and statistics.", | |
| agent=conclusion_writer, | |
| context=[analyze_data], | |
| ) | |
| # Separate Crews for report and conclusion | |
| crew_report = Crew( | |
| agents=[sql_dev, data_analyst, report_writer], | |
| tasks=[extract_data, analyze_data, write_report], | |
| process=Process.sequential, | |
| verbose=True, | |
| ) | |
| crew_conclusion = Crew( | |
| agents=[data_analyst, conclusion_writer], | |
| tasks=[write_conclusion], | |
| process=Process.sequential, | |
| verbose=True, | |
| ) | |
| # Tabs for Query Results and Visualizations | |
| tab1, tab2 = st.tabs(["π Query Insights + Viz", "π Full Data Viz"]) | |
| # Query Insights + Visualization | |
| with tab1: | |
| query = st.text_area("Enter Query:", value="Provide insights into the salary of a Principal Data Scientist.") | |
| if st.button("Submit Query"): | |
| with st.spinner("Processing query..."): | |
| # Step 1: Generate the analysis report | |
| report_inputs = {"query": query + " Provide detailed analysis but DO NOT include Conclusion."} | |
| report_result = crew_report.kickoff(inputs=report_inputs) | |
| # Step 2: Generate only the concise conclusion | |
| conclusion_inputs = {"query": query + " Provide ONLY the most important insights in 3-5 concise lines."} | |
| conclusion_result = crew_conclusion.kickoff(inputs=conclusion_inputs) | |
| # Step 3: Display the report | |
| #st.markdown("### Analysis Report:") | |
| st.markdown(report_result if report_result else "β οΈ No Report Generated.") | |
| # Step 4: Generate Visualizations | |
| # Step 5: Insert Visual Insights | |
| st.markdown("### Visual Insights") | |
| # Step 6: Display Concise Conclusion | |
| #st.markdown("#### Conclusion") | |
| safe_conclusion = escape_markdown(conclusion_result if conclusion_result else "β οΈ No Conclusion Generated.") | |
| st.markdown(safe_conclusion) | |
| # Full Data Visualization Tab | |
| with tab2: | |
| st.subheader("π Comprehensive Data Visualizations") | |
| fig1 = px.histogram(st.session_state.df, x="job_title", title="Job Title Frequency") | |
| st.plotly_chart(fig1) | |
| fig2 = px.bar( | |
| st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(), | |
| x="experience_level", y="salary_in_usd", | |
| title="Average Salary by Experience Level" | |
| ) | |
| st.plotly_chart(fig2) | |
| fig3 = px.box(st.session_state.df, x="employment_type", y="salary_in_usd", | |
| title="Salary Distribution by Employment Type") | |
| st.plotly_chart(fig3) | |
| temp_dir.cleanup() | |
| else: | |
| st.info("Please load a dataset to proceed.") | |
| # Sidebar Reference | |
| with st.sidebar: | |
| st.header("π Reference:") | |
| st.markdown("[SQL Agents w CrewAI & Llama 3 - Plaban Nayak](https://github.com/plaban1981/Agents/blob/main/SQL_Agents_with_CrewAI_and_Llama_3.ipynb)") |