Spaces:
Sleeping
Sleeping
| def ask_gpt4o_for_visualization(query, df, llm): | |
| columns = ', '.join(df.columns) | |
| prompt = f""" | |
| Analyze the query and suggest one or more relevant visualizations. | |
| Query: "{query}" | |
| Available Columns: {columns} | |
| Respond in this JSON format (as a list if multiple suggestions): | |
| [ | |
| {{ | |
| "chart_type": "bar/box/line/scatter", | |
| "x_axis": "column_name", | |
| "y_axis": "column_name", | |
| "group_by": "optional_column_name" | |
| }} | |
| ] | |
| """ | |
| response = llm.generate(prompt) | |
| try: | |
| return json.loads(response) | |
| except json.JSONDecodeError: | |
| st.error("β οΈ GPT-4o failed to generate a valid suggestion.") | |
| return None | |
| def add_stats_to_figure(fig, df, y_axis, chart_type): | |
| """ | |
| Add relevant statistical annotations to the visualization | |
| based on the chart type. | |
| """ | |
| # Check if the y-axis column is numeric | |
| if not pd.api.types.is_numeric_dtype(df[y_axis]): | |
| st.warning(f"β οΈ Cannot compute statistics for non-numeric column: {y_axis}") | |
| return fig | |
| # Compute statistics for numeric data | |
| min_val = df[y_axis].min() | |
| max_val = df[y_axis].max() | |
| avg_val = df[y_axis].mean() | |
| median_val = df[y_axis].median() | |
| std_dev_val = df[y_axis].std() | |
| # Format the stats for display | |
| stats_text = ( | |
| f"π **Statistics**\n\n" | |
| f"- **Min:** ${min_val:,.2f}\n" | |
| f"- **Max:** ${max_val:,.2f}\n" | |
| f"- **Average:** ${avg_val:,.2f}\n" | |
| f"- **Median:** ${median_val:,.2f}\n" | |
| f"- **Std Dev:** ${std_dev_val:,.2f}" | |
| ) | |
| # Apply stats only to relevant chart types | |
| if chart_type in ["bar", "line"]: | |
| # Add annotation box for bar and line charts | |
| fig.add_annotation( | |
| text=stats_text, | |
| xref="paper", yref="paper", | |
| x=1.02, y=1, | |
| showarrow=False, | |
| align="left", | |
| font=dict(size=12, color="black"), | |
| bordercolor="gray", | |
| borderwidth=1, | |
| bgcolor="rgba(255, 255, 255, 0.85)" | |
| ) | |
| # Add horizontal reference lines | |
| fig.add_hline(y=min_val, line_dash="dot", line_color="red", annotation_text="Min", annotation_position="bottom right") | |
| fig.add_hline(y=median_val, line_dash="dash", line_color="orange", annotation_text="Median", annotation_position="top right") | |
| fig.add_hline(y=avg_val, line_dash="dashdot", line_color="green", annotation_text="Avg", annotation_position="top right") | |
| fig.add_hline(y=max_val, line_dash="dot", line_color="blue", annotation_text="Max", annotation_position="top right") | |
| elif chart_type == "scatter": | |
| # Add stats annotation only, no lines for scatter plots | |
| fig.add_annotation( | |
| text=stats_text, | |
| xref="paper", yref="paper", | |
| x=1.02, y=1, | |
| showarrow=False, | |
| align="left", | |
| font=dict(size=12, color="black"), | |
| bordercolor="gray", | |
| borderwidth=1, | |
| bgcolor="rgba(255, 255, 255, 0.85)" | |
| ) | |
| elif chart_type == "box": | |
| # Box plots inherently show distribution; no extra stats needed | |
| pass | |
| elif chart_type == "pie": | |
| # Pie charts represent proportions, not suitable for stats | |
| st.info("π Pie charts represent proportions. Additional stats are not applicable.") | |
| elif chart_type == "heatmap": | |
| # Heatmaps already reflect data intensity | |
| st.info("π Heatmaps inherently reflect distribution. No additional stats added.") | |
| else: | |
| st.warning(f"β οΈ No statistical overlays applied for unsupported chart type: '{chart_type}'.") | |
| return fig | |
| # Dynamically generate Plotly visualizations based on GPT-4o suggestions | |
| def generate_visualization(suggestion, df): | |
| """ | |
| Generate a Plotly visualization based on GPT-4o's suggestion. | |
| If the Y-axis is missing, infer it intelligently. | |
| """ | |
| chart_type = suggestion.get("chart_type", "bar").lower() | |
| x_axis = suggestion.get("x_axis") | |
| y_axis = suggestion.get("y_axis") | |
| group_by = suggestion.get("group_by") | |
| # Step 1: Infer Y-axis if not provided | |
| if not y_axis: | |
| numeric_columns = df.select_dtypes(include='number').columns.tolist() | |
| # Avoid using the same column for both axes | |
| if x_axis in numeric_columns: | |
| numeric_columns.remove(x_axis) | |
| # Smart guess: prioritize salary or relevant metrics if available | |
| priority_columns = ["salary_in_usd", "income", "earnings", "revenue"] | |
| for col in priority_columns: | |
| if col in numeric_columns: | |
| y_axis = col | |
| break | |
| # Fallback to the first numeric column if no priority columns exist | |
| if not y_axis and numeric_columns: | |
| y_axis = numeric_columns[0] | |
| # Step 2: Validate axes | |
| if not x_axis or not y_axis: | |
| st.warning("β οΈ Unable to determine appropriate columns for visualization.") | |
| return None | |
| # Step 3: Dynamically select the Plotly function | |
| plotly_function = getattr(px, chart_type, None) | |
| if not plotly_function: | |
| st.warning(f"β οΈ Unsupported chart type '{chart_type}' suggested by GPT-4o.") | |
| return None | |
| # Step 4: Prepare dynamic plot arguments | |
| plot_args = {"data_frame": df, "x": x_axis, "y": y_axis} | |
| if group_by and group_by in df.columns: | |
| plot_args["color"] = group_by | |
| try: | |
| # Step 5: Generate the visualization | |
| fig = plotly_function(**plot_args) | |
| fig.update_layout( | |
| title=f"{chart_type.title()} Plot of {y_axis.replace('_', ' ').title()} by {x_axis.replace('_', ' ').title()}", | |
| xaxis_title=x_axis.replace('_', ' ').title(), | |
| yaxis_title=y_axis.replace('_', ' ').title(), | |
| ) | |
| # Step 6: Apply statistics intelligently | |
| fig = add_statistics_to_visualization(fig, df, y_axis, chart_type) | |
| return fig | |
| except Exception as e: | |
| st.error(f"β οΈ Failed to generate visualization: {e}") | |
| return None | |
| def generate_multiple_visualizations(suggestions, df): | |
| """ | |
| Generates one or more visualizations based on GPT-4o's suggestions. | |
| Handles both single and multiple suggestions. | |
| """ | |
| visualizations = [] | |
| for suggestion in suggestions: | |
| fig = generate_visualization(suggestion, df) | |
| if fig: | |
| # Apply chart-specific statistics | |
| fig = add_stats_to_figure(fig, df, suggestion["y_axis"], suggestion["chart_type"]) | |
| visualizations.append(fig) | |
| if not visualizations and suggestions: | |
| st.warning("β οΈ No valid visualization found. Displaying the most relevant one.") | |
| best_suggestion = suggestions[0] | |
| fig = generate_visualization(best_suggestion, df) | |
| fig = add_stats_to_figure(fig, df, best_suggestion["y_axis"], best_suggestion["chart_type"]) | |
| visualizations.append(fig) | |
| return visualizations | |
| def handle_visualization_suggestions(suggestions, df): | |
| """ | |
| Determines whether to generate a single or multiple visualizations. | |
| """ | |
| visualizations = [] | |
| # If multiple suggestions, generate multiple plots | |
| if isinstance(suggestions, list) and len(suggestions) > 1: | |
| visualizations = generate_multiple_visualizations(suggestions, df) | |
| # If only one suggestion, generate a single plot | |
| elif isinstance(suggestions, dict) or (isinstance(suggestions, list) and len(suggestions) == 1): | |
| suggestion = suggestions[0] if isinstance(suggestions, list) else suggestions | |
| fig = generate_visualization(suggestion, df) | |
| if fig: | |
| visualizations.append(fig) | |
| # Handle cases when no visualization could be generated | |
| if not visualizations: | |
| st.warning("β οΈ Unable to generate any visualization based on the suggestion.") | |
| # Display all generated visualizations | |
| for fig in visualizations: | |
| st.plotly_chart(fig, use_container_width=True) | |
| ----------------- | |
| def ask_gpt4o_for_visualization(query, df, llm, retries=2): | |
| import json | |
| # Identify numeric and categorical columns | |
| numeric_columns = df.select_dtypes(include='number').columns.tolist() | |
| categorical_columns = df.select_dtypes(exclude='number').columns.tolist() | |
| # Enhanced Prompt with Dataset-Specific, Query-Based Examples | |
| prompt = f""" | |
| Analyze the following query and suggest the most suitable visualization(s) using the dataset. | |
| **Query:** "{query}" | |
| **Dataset Overview:** | |
| - **Numeric Columns (for Y-axis):** {', '.join(numeric_columns) if numeric_columns else 'None'} | |
| - **Categorical Columns (for X-axis or grouping):** {', '.join(categorical_columns) if categorical_columns else 'None'} | |
| **Expected JSON Response:** | |
| [ | |
| {{ | |
| "chart_type": "bar/box/line/scatter/pie/heatmap", | |
| "x_axis": "categorical_or_time_column", | |
| "y_axis": "numeric_column", | |
| "group_by": "optional_column_for_grouping", | |
| "title": "Title of the chart", | |
| "description": "Why this chart is suitable" | |
| }} | |
| ] | |
| **Query-Based Examples:** | |
| - **Query:** "What is the salary distribution across different job titles?" | |
| **Suggested Visualization:** | |
| {{ | |
| "chart_type": "box", | |
| "x_axis": "job_title", | |
| "y_axis": "salary_in_usd", | |
| "group_by": "experience_level", | |
| "title": "Salary Distribution by Job Title and Experience", | |
| "description": "A box plot to show how salaries vary across different job titles and experience levels." | |
| }} | |
| - **Query:** "Show the average salary by company size and employment type." | |
| **Suggested Visualizations:** | |
| [ | |
| {{ | |
| "chart_type": "bar", | |
| "x_axis": "company_size", | |
| "y_axis": "salary_in_usd", | |
| "group_by": "employment_type", | |
| "title": "Average Salary by Company Size and Employment Type", | |
| "description": "A grouped bar chart comparing average salaries across company sizes and employment types." | |
| }}, | |
| {{ | |
| "chart_type": "heatmap", | |
| "x_axis": "company_size", | |
| "y_axis": "salary_in_usd", | |
| "group_by": "employment_type", | |
| "title": "Salary Heatmap by Company Size and Employment Type", | |
| "description": "A heatmap showing salary concentration across company sizes and employment types." | |
| }} | |
| ] | |
| - **Query:** "How has the average salary changed over the years?" | |
| **Suggested Visualization:** | |
| {{ | |
| "chart_type": "line", | |
| "x_axis": "work_year", | |
| "y_axis": "salary_in_usd", | |
| "group_by": "experience_level", | |
| "title": "Average Salary Trend Over Years", | |
| "description": "A line chart showing how the average salary has changed across different experience levels over the years." | |
| }} | |
| - **Query:** "What is the employee distribution by company location?" | |
| **Suggested Visualization:** | |
| {{ | |
| "chart_type": "pie", | |
| "x_axis": "company_location", | |
| "y_axis": null, | |
| "group_by": null, | |
| "title": "Employee Distribution by Company Location", | |
| "description": "A pie chart showing the distribution of employees across company locations." | |
| }} | |
| - **Query:** "Is there a relationship between remote work ratio and salary?" | |
| **Suggested Visualization:** | |
| {{ | |
| "chart_type": "scatter", | |
| "x_axis": "remote_ratio", | |
| "y_axis": "salary_in_usd", | |
| "group_by": "experience_level", | |
| "title": "Remote Work Ratio vs Salary", | |
| "description": "A scatter plot to analyze the relationship between remote work ratio and salary." | |
| }} | |
| - **Query:** "Which job titles have the highest salaries across regions?" | |
| **Suggested Visualization:** | |
| {{ | |
| "chart_type": "heatmap", | |
| "x_axis": "job_title", | |
| "y_axis": "employee_residence", | |
| "group_by": null, | |
| "title": "Salary Heatmap by Job Title and Region", | |
| "description": "A heatmap showing the concentration of high-paying job titles across regions." | |
| }} | |
| Only suggest visualizations that logically match the query and dataset. | |
| """ | |
| # Attempt LLM Response with Retry | |
| for attempt in range(retries + 1): | |
| try: | |
| response = llm.generate(prompt) | |
| suggestions = json.loads(response) | |
| # Validate suggestions using helper | |
| if isinstance(suggestions, list): | |
| valid_suggestions = [s for s in suggestions if is_valid_suggestion(s)] | |
| if valid_suggestions: | |
| return valid_suggestions | |
| else: | |
| st.warning("β οΈ GPT-4o did not suggest valid visualizations.") | |
| return None | |
| elif isinstance(suggestions, dict): | |
| if is_valid_suggestion(suggestions): | |
| return [suggestions] | |
| else: | |
| st.warning("β οΈ GPT-4o's suggestion is incomplete or invalid.") | |
| return None | |
| except json.JSONDecodeError: | |
| st.warning(f"β οΈ Attempt {attempt + 1}: GPT-4o returned invalid JSON.") | |
| except Exception as e: | |
| st.error(f"β οΈ Error during GPT-4o call: {e}") | |
| if attempt < retries: | |
| st.info("π Retrying visualization suggestion...") | |
| st.error("β Failed to generate a valid visualization after multiple attempts.") | |
| return None | |