Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import pandas as pd | |
| import sqlite3 | |
| import tempfile | |
| from fpdf import FPDF | |
| import os | |
| import re | |
| import json | |
| from pathlib import Path | |
| import plotly.express as px | |
| from datetime import datetime, timezone | |
| from crewai import Agent, Crew, Process, Task | |
| from crewai.tools import tool | |
| from langchain_groq import ChatGroq | |
| from langchain_openai import ChatOpenAI | |
| from langchain.schema.output import LLMResult | |
| from langchain_community.tools.sql_database.tool import ( | |
| InfoSQLDatabaseTool, | |
| ListSQLDatabaseTool, | |
| QuerySQLCheckerTool, | |
| QuerySQLDataBaseTool, | |
| ) | |
| from langchain_community.utilities.sql_database import SQLDatabase | |
| from datasets import load_dataset | |
| import tempfile | |
| st.title("SQL-RAG Using CrewAI π") | |
| st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.") | |
| # Initialize LLM | |
| llm = None | |
| # Model Selection | |
| model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True) | |
| # API Key Validation and LLM Initialization | |
| groq_api_key = os.getenv("GROQ_API_KEY") | |
| openai_api_key = os.getenv("OPENAI_API_KEY") | |
| if model_choice == "llama-3.3-70b": | |
| if not groq_api_key: | |
| st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.") | |
| llm = None | |
| else: | |
| llm = ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile") | |
| elif model_choice == "GPT-4o": | |
| if not openai_api_key: | |
| st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.") | |
| llm = None | |
| else: | |
| llm = ChatOpenAI(api_key=openai_api_key, model="gpt-4o") | |
| # Initialize session state for data persistence | |
| if "df" not in st.session_state: | |
| st.session_state.df = None | |
| if "show_preview" not in st.session_state: | |
| st.session_state.show_preview = False | |
| # Dataset Input | |
| input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"]) | |
| if input_option == "Use Hugging Face Dataset": | |
| dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries") | |
| if st.button("Load Dataset"): | |
| try: | |
| with st.spinner("Loading dataset..."): | |
| dataset = load_dataset(dataset_name, split="train") | |
| st.session_state.df = pd.DataFrame(dataset) | |
| st.session_state.show_preview = True # Show preview after loading | |
| st.success(f"Dataset '{dataset_name}' loaded successfully!") | |
| except Exception as e: | |
| st.error(f"Error: {e}") | |
| elif input_option == "Upload CSV File": | |
| uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"]) | |
| if uploaded_file: | |
| try: | |
| st.session_state.df = pd.read_csv(uploaded_file) | |
| st.session_state.show_preview = True # Show preview after loading | |
| st.success("File uploaded successfully!") | |
| except Exception as e: | |
| st.error(f"Error loading file: {e}") | |
| # Show Dataset Preview Only After Loading | |
| if st.session_state.df is not None and st.session_state.show_preview: | |
| st.subheader("π Dataset Preview") | |
| st.dataframe(st.session_state.df.head()) | |
| # Function to create TXT file | |
| def create_text_report_with_viz_temp(report, conclusion, visualizations): | |
| content = f"### Analysis Report\n\n{report}\n\n### Visualizations\n" | |
| for i, fig in enumerate(visualizations, start=1): | |
| fig_title = fig.layout.title.text if fig.layout.title.text else f"Visualization {i}" | |
| x_axis = fig.layout.xaxis.title.text if fig.layout.xaxis.title.text else "X-axis" | |
| y_axis = fig.layout.yaxis.title.text if fig.layout.yaxis.title.text else "Y-axis" | |
| content += f"\n{i}. {fig_title}\n" | |
| content += f" - X-axis: {x_axis}\n" | |
| content += f" - Y-axis: {y_axis}\n" | |
| if fig.data: | |
| trace_types = set(trace.type for trace in fig.data) | |
| content += f" - Chart Type(s): {', '.join(trace_types)}\n" | |
| else: | |
| content += " - No data available in this visualization.\n" | |
| content += f"\n\n\n{conclusion}" | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode='w', encoding='utf-8') as temp_txt: | |
| temp_txt.write(content) | |
| return temp_txt.name | |
| # Function to create PDF with report text and visualizations | |
| def create_pdf_report_with_viz(report, conclusion, visualizations): | |
| pdf = FPDF() | |
| pdf.set_auto_page_break(auto=True, margin=15) | |
| pdf.add_page() | |
| pdf.set_font("Arial", size=12) | |
| # Title | |
| pdf.set_font("Arial", style="B", size=18) | |
| pdf.cell(0, 10, "π Analysis Report", ln=True, align="C") | |
| pdf.ln(10) | |
| # Report Content | |
| pdf.set_font("Arial", style="B", size=14) | |
| pdf.cell(0, 10, "Analysis", ln=True) | |
| pdf.set_font("Arial", size=12) | |
| pdf.multi_cell(0, 10, report) | |
| pdf.ln(10) | |
| pdf.set_font("Arial", style="B", size=14) | |
| pdf.cell(0, 10, "Conclusion", ln=True) | |
| pdf.set_font("Arial", size=12) | |
| pdf.multi_cell(0, 10, conclusion) | |
| # Add Visualizations | |
| pdf.add_page() | |
| pdf.set_font("Arial", style="B", size=16) | |
| pdf.cell(0, 10, "π Visualizations", ln=True) | |
| pdf.ln(5) | |
| with tempfile.TemporaryDirectory() as temp_dir: | |
| for i, fig in enumerate(visualizations, start=1): | |
| fig_title = fig.layout.title.text if fig.layout.title.text else f"Visualization {i}" | |
| x_axis = fig.layout.xaxis.title.text if fig.layout.xaxis.title.text else "X-axis" | |
| y_axis = fig.layout.yaxis.title.text if fig.layout.yaxis.title.text else "Y-axis" | |
| # Save each visualization as a PNG image | |
| img_path = os.path.join(temp_dir, f"viz_{i}.png") | |
| fig.write_image(img_path) | |
| # Insert Title and Description | |
| pdf.set_font("Arial", style="B", size=14) | |
| pdf.multi_cell(0, 10, f"{i}. {fig_title}") | |
| pdf.set_font("Arial", size=12) | |
| pdf.multi_cell(0, 10, f"X-axis: {x_axis} | Y-axis: {y_axis}") | |
| pdf.ln(3) | |
| # Embed Visualization | |
| pdf.image(img_path, w=170) | |
| pdf.ln(10) | |
| # Save PDF | |
| temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") | |
| pdf.output(temp_pdf.name) | |
| return temp_pdf | |
| def escape_markdown(text): | |
| # Ensure text is a string | |
| text = str(text) | |
| # Escape Markdown characters: *, _, `, ~ | |
| escape_chars = r"(\*|_|`|~)" | |
| return re.sub(escape_chars, r"\\\1", text) | |
| # SQL-RAG Analysis | |
| if st.session_state.df is not None: | |
| temp_dir = tempfile.TemporaryDirectory() | |
| db_path = os.path.join(temp_dir.name, "data.db") | |
| connection = sqlite3.connect(db_path) | |
| st.session_state.df.to_sql("salaries", connection, if_exists="replace", index=False) | |
| db = SQLDatabase.from_uri(f"sqlite:///{db_path}") | |
| def list_tables() -> str: | |
| """List all tables in the database.""" | |
| return ListSQLDatabaseTool(db=db).invoke("") | |
| def tables_schema(tables: str) -> str: | |
| """Get the schema and sample rows for the specified tables.""" | |
| return InfoSQLDatabaseTool(db=db).invoke(tables) | |
| def execute_sql(sql_query: str) -> str: | |
| """Execute a SQL query against the database and return the results.""" | |
| return QuerySQLDataBaseTool(db=db).invoke(sql_query) | |
| def check_sql(sql_query: str) -> str: | |
| """Validate the SQL query syntax and structure before execution.""" | |
| return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query}) | |
| # Agents for SQL data extraction and analysis | |
| sql_dev = Agent( | |
| role="Senior Database Developer", | |
| goal="Extract data using optimized SQL queries.", | |
| backstory="An expert in writing optimized SQL queries for complex databases.", | |
| llm=llm, | |
| tools=[list_tables, tables_schema, execute_sql, check_sql], | |
| ) | |
| data_analyst = Agent( | |
| role="Senior Data Analyst", | |
| goal="Analyze the data and produce insights.", | |
| backstory="A seasoned analyst who identifies trends and patterns in datasets.", | |
| llm=llm, | |
| ) | |
| report_writer = Agent( | |
| role="Technical Report Writer", | |
| goal="Write a structured report with Introduction and Key Insights. DO NOT include any Conclusion or Summary.", | |
| backstory="Specializes in detailed analytical reports without conclusions.", | |
| llm=llm, | |
| ) | |
| conclusion_writer = Agent( | |
| role="Conclusion Specialist", | |
| goal="Summarize findings into a clear and concise 3-5 line Conclusion highlighting only the most important insights.", | |
| backstory="An expert in crafting impactful and clear conclusions.", | |
| llm=llm, | |
| ) | |
| # Define tasks for report and conclusion | |
| extract_data = Task( | |
| description="Extract data based on the query: {query}.", | |
| expected_output="Database results matching the query.", | |
| agent=sql_dev, | |
| ) | |
| analyze_data = Task( | |
| description="Analyze the extracted data for query: {query}.", | |
| expected_output="Key Insights and Analysis without any Introduction or Conclusion.", | |
| agent=data_analyst, | |
| context=[extract_data], | |
| ) | |
| write_report = Task( | |
| description="Write the analysis report with Introduction and Key Insights. DO NOT include any Conclusion or Summary.", | |
| expected_output="Markdown-formatted report excluding Conclusion.", | |
| agent=report_writer, | |
| context=[analyze_data], | |
| ) | |
| write_conclusion = Task( | |
| description="Summarize the key findings in 3-5 impactful lines, highlighting the maximum, minimum, and average salaries." | |
| "Emphasize significant insights on salary distribution and influential compensation trends for strategic decision-making.", | |
| expected_output="Markdown-formatted Conclusion section with key insights and statistics.", | |
| agent=conclusion_writer, | |
| context=[analyze_data], | |
| ) | |
| # Separate Crews for report and conclusion | |
| crew_report = Crew( | |
| agents=[sql_dev, data_analyst, report_writer], | |
| tasks=[extract_data, analyze_data, write_report], | |
| process=Process.sequential, | |
| verbose=True, | |
| ) | |
| crew_conclusion = Crew( | |
| agents=[data_analyst, conclusion_writer], | |
| tasks=[write_conclusion], | |
| process=Process.sequential, | |
| verbose=True, | |
| ) | |
| # Tabs for Query Results and Visualizations | |
| tab1, tab2 = st.tabs(["π Query Insights + Viz", "π Full Data Viz"]) | |
| # Query Insights + Visualization | |
| with tab1: | |
| query = st.text_area("Enter Query:", value="Provide insights into the salary of a Principal Data Scientist.") | |
| if st.button("Submit Query"): | |
| with st.spinner("Processing query..."): | |
| # Step 1: Generate the analysis report | |
| report_inputs = {"query": query + " Provide detailed analysis but DO NOT include Conclusion."} | |
| report_result = crew_report.kickoff(inputs=report_inputs) | |
| # Step 2: Generate only the concise conclusion | |
| conclusion_inputs = {"query": query + " Provide ONLY the most important insights in 3-5 concise lines."} | |
| conclusion_result = crew_conclusion.kickoff(inputs=conclusion_inputs) | |
| # Step 3: Display the report | |
| #st.markdown("### Analysis Report:") | |
| st.markdown(report_result if report_result else "β οΈ No Report Generated.") | |
| # Step 4: Generate Visualizations | |
| visualizations = [] | |
| fig_salary = px.box(st.session_state.df, x="job_title", y="salary_in_usd", | |
| title="Salary Distribution by Job Title") | |
| visualizations.append(fig_salary) | |
| fig_experience = px.bar( | |
| st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(), | |
| x="experience_level", y="salary_in_usd", | |
| title="Average Salary by Experience Level" | |
| ) | |
| visualizations.append(fig_experience) | |
| fig_employment = px.box(st.session_state.df, x="employment_type", y="salary_in_usd", | |
| title="Salary Distribution by Employment Type") | |
| visualizations.append(fig_employment) | |
| # Step 5: Insert Visual Insights | |
| st.markdown("### Visual Insights") | |
| for fig in visualizations: | |
| st.plotly_chart(fig, use_container_width=True) | |
| # Step 6: Display Concise Conclusion | |
| #st.markdown("#### Conclusion") | |
| safe_conclusion = escape_markdown(conclusion_result if conclusion_result else "β οΈ No Conclusion Generated.") | |
| st.markdown(safe_conclusion) | |
| # Full Data Visualization Tab | |
| with tab2: | |
| st.subheader("π Comprehensive Data Visualizations") | |
| fig1 = px.histogram(st.session_state.df, x="job_title", title="Job Title Frequency") | |
| st.plotly_chart(fig1) | |
| fig2 = px.bar( | |
| st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(), | |
| x="experience_level", y="salary_in_usd", | |
| title="Average Salary by Experience Level" | |
| ) | |
| st.plotly_chart(fig2) | |
| fig3 = px.box(st.session_state.df, x="employment_type", y="salary_in_usd", | |
| title="Salary Distribution by Employment Type") | |
| st.plotly_chart(fig3) | |
| temp_dir.cleanup() | |
| else: | |
| st.info("Please load a dataset to proceed.") | |
| # Sidebar Reference | |
| with st.sidebar: | |
| st.header("π Reference:") | |
| st.markdown("[SQL Agents w CrewAI & Llama 3 - Plaban Nayak](https://github.com/plaban1981/Agents/blob/main/SQL_Agents_with_CrewAI_and_Llama_3.ipynb)") | |