Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -111,6 +111,7 @@ if st.session_state.df is not None:
|
|
| 111 |
"""Validate the SQL query syntax and structure before execution."""
|
| 112 |
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
|
| 113 |
|
|
|
|
| 114 |
sql_dev = Agent(
|
| 115 |
role="Senior Database Developer",
|
| 116 |
goal="Extract data using optimized SQL queries.",
|
|
@@ -119,6 +120,7 @@ if st.session_state.df is not None:
|
|
| 119 |
tools=[list_tables, tables_schema, execute_sql, check_sql],
|
| 120 |
)
|
| 121 |
|
|
|
|
| 122 |
data_analyst = Agent(
|
| 123 |
role="Senior Data Analyst",
|
| 124 |
goal="Analyze the data and produce insights.",
|
|
@@ -126,13 +128,23 @@ if st.session_state.df is not None:
|
|
| 126 |
llm=llm,
|
| 127 |
)
|
| 128 |
|
|
|
|
| 129 |
report_writer = Agent(
|
| 130 |
role="Technical Report Writer",
|
| 131 |
-
goal="
|
| 132 |
-
backstory="An expert in
|
| 133 |
llm=llm,
|
| 134 |
)
|
| 135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
extract_data = Task(
|
| 137 |
description="Extract data based on the query: {query}.",
|
| 138 |
expected_output="Database results matching the query.",
|
|
@@ -141,25 +153,40 @@ if st.session_state.df is not None:
|
|
| 141 |
|
| 142 |
analyze_data = Task(
|
| 143 |
description="Analyze the extracted data for query: {query}.",
|
| 144 |
-
expected_output="Provide
|
| 145 |
agent=data_analyst,
|
| 146 |
context=[extract_data],
|
| 147 |
)
|
| 148 |
|
| 149 |
write_report = Task(
|
| 150 |
-
description="
|
| 151 |
-
expected_output="Markdown report excluding
|
| 152 |
agent=report_writer,
|
| 153 |
context=[analyze_data],
|
| 154 |
)
|
| 155 |
|
| 156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
agents=[sql_dev, data_analyst, report_writer],
|
| 158 |
tasks=[extract_data, analyze_data, write_report],
|
| 159 |
process=Process.sequential,
|
| 160 |
verbose=True,
|
| 161 |
)
|
| 162 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
# Tabs for Query Results and General Insights
|
| 164 |
tab1, tab2 = st.tabs(["π Query Insights + Viz", "π Full Data Viz"])
|
| 165 |
|
|
@@ -168,15 +195,13 @@ if st.session_state.df is not None:
|
|
| 168 |
query = st.text_area("Enter Query:", value="Provide insights into the salary of a Principal Data Scientist.")
|
| 169 |
if st.button("Submit Query"):
|
| 170 |
with st.spinner("Processing query..."):
|
| 171 |
-
# Step 1: Generate the
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
report_result = crew.kickoff(inputs=inputs)
|
| 175 |
|
| 176 |
# Step 2: Generate ONLY the Conclusion
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
conclusion_result = crew.kickoff(inputs=conclusion_inputs)
|
| 180 |
|
| 181 |
st.markdown("### Analysis Report:")
|
| 182 |
|
|
@@ -198,7 +223,7 @@ if st.session_state.df is not None:
|
|
| 198 |
title="Salary Distribution by Employment Type")
|
| 199 |
visualizations.append(fig_employment)
|
| 200 |
|
| 201 |
-
# Step 4: Display
|
| 202 |
st.markdown(report_result)
|
| 203 |
|
| 204 |
# Step 5: Insert Visual Insights
|
|
@@ -232,6 +257,7 @@ if st.session_state.df is not None:
|
|
| 232 |
else:
|
| 233 |
st.info("Please load a dataset to proceed.")
|
| 234 |
|
|
|
|
| 235 |
# Sidebar Reference
|
| 236 |
with st.sidebar:
|
| 237 |
st.header("π Reference:")
|
|
|
|
| 111 |
"""Validate the SQL query syntax and structure before execution."""
|
| 112 |
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
|
| 113 |
|
| 114 |
+
# Agent for SQL data extraction
|
| 115 |
sql_dev = Agent(
|
| 116 |
role="Senior Database Developer",
|
| 117 |
goal="Extract data using optimized SQL queries.",
|
|
|
|
| 120 |
tools=[list_tables, tables_schema, execute_sql, check_sql],
|
| 121 |
)
|
| 122 |
|
| 123 |
+
# Agent for data analysis
|
| 124 |
data_analyst = Agent(
|
| 125 |
role="Senior Data Analyst",
|
| 126 |
goal="Analyze the data and produce insights.",
|
|
|
|
| 128 |
llm=llm,
|
| 129 |
)
|
| 130 |
|
| 131 |
+
# Agent for generating the main report (without Conclusion)
|
| 132 |
report_writer = Agent(
|
| 133 |
role="Technical Report Writer",
|
| 134 |
+
goal="Write a clear, structured report containing ONLY Key Insights and Analysis. NO Introduction, Summary, or Conclusion.",
|
| 135 |
+
backstory="An expert in crafting data-driven reports with clear insights.",
|
| 136 |
llm=llm,
|
| 137 |
)
|
| 138 |
|
| 139 |
+
# New Agent for generating ONLY the Conclusion
|
| 140 |
+
conclusion_writer = Agent(
|
| 141 |
+
role="Conclusion Specialist",
|
| 142 |
+
goal="Summarize findings into a clear and concise Conclusion section.",
|
| 143 |
+
backstory="An expert in crafting well-structured and insightful conclusions.",
|
| 144 |
+
llm=llm,
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
# Tasks for each agent
|
| 148 |
extract_data = Task(
|
| 149 |
description="Extract data based on the query: {query}.",
|
| 150 |
expected_output="Database results matching the query.",
|
|
|
|
| 153 |
|
| 154 |
analyze_data = Task(
|
| 155 |
description="Analyze the extracted data for query: {query}.",
|
| 156 |
+
expected_output="Provide ONLY Key Insights and Analysis. Exclude Introduction and Conclusion.",
|
| 157 |
agent=data_analyst,
|
| 158 |
context=[extract_data],
|
| 159 |
)
|
| 160 |
|
| 161 |
write_report = Task(
|
| 162 |
+
description="Write the report with ONLY Key Insights and Analysis. DO NOT include Introduction or Conclusion.",
|
| 163 |
+
expected_output="Markdown report excluding Introduction and Conclusion.",
|
| 164 |
agent=report_writer,
|
| 165 |
context=[analyze_data],
|
| 166 |
)
|
| 167 |
|
| 168 |
+
write_conclusion = Task(
|
| 169 |
+
description="Summarize the findings into a concise Conclusion.",
|
| 170 |
+
expected_output="Markdown-formatted Conclusion section.",
|
| 171 |
+
agent=conclusion_writer,
|
| 172 |
+
context=[analyze_data],
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
# Crew with separate tasks for report and conclusion
|
| 176 |
+
crew_report = Crew(
|
| 177 |
agents=[sql_dev, data_analyst, report_writer],
|
| 178 |
tasks=[extract_data, analyze_data, write_report],
|
| 179 |
process=Process.sequential,
|
| 180 |
verbose=True,
|
| 181 |
)
|
| 182 |
|
| 183 |
+
crew_conclusion = Crew(
|
| 184 |
+
agents=[data_analyst, conclusion_writer],
|
| 185 |
+
tasks=[write_conclusion],
|
| 186 |
+
process=Process.sequential,
|
| 187 |
+
verbose=True,
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
# Tabs for Query Results and General Insights
|
| 191 |
tab1, tab2 = st.tabs(["π Query Insights + Viz", "π Full Data Viz"])
|
| 192 |
|
|
|
|
| 195 |
query = st.text_area("Enter Query:", value="Provide insights into the salary of a Principal Data Scientist.")
|
| 196 |
if st.button("Submit Query"):
|
| 197 |
with st.spinner("Processing query..."):
|
| 198 |
+
# Step 1: Generate the main report (without Conclusion)
|
| 199 |
+
report_inputs = {"query": query}
|
| 200 |
+
report_result = crew_report.kickoff(inputs=report_inputs)
|
|
|
|
| 201 |
|
| 202 |
# Step 2: Generate ONLY the Conclusion
|
| 203 |
+
conclusion_inputs = {"query": query}
|
| 204 |
+
conclusion_result = crew_conclusion.kickoff(inputs=conclusion_inputs)
|
|
|
|
| 205 |
|
| 206 |
st.markdown("### Analysis Report:")
|
| 207 |
|
|
|
|
| 223 |
title="Salary Distribution by Employment Type")
|
| 224 |
visualizations.append(fig_employment)
|
| 225 |
|
| 226 |
+
# Step 4: Display the main report
|
| 227 |
st.markdown(report_result)
|
| 228 |
|
| 229 |
# Step 5: Insert Visual Insights
|
|
|
|
| 257 |
else:
|
| 258 |
st.info("Please load a dataset to proceed.")
|
| 259 |
|
| 260 |
+
|
| 261 |
# Sidebar Reference
|
| 262 |
with st.sidebar:
|
| 263 |
st.header("π Reference:")
|