Spaces:
Build error
Build error
Delete mylab/gpt4o_dynamic_viz.py
Browse files- mylab/gpt4o_dynamic_viz.py +0 -472
mylab/gpt4o_dynamic_viz.py
DELETED
|
@@ -1,472 +0,0 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
import pandas as pd
|
| 3 |
-
import sqlite3
|
| 4 |
-
import tempfile
|
| 5 |
-
from fpdf import FPDF
|
| 6 |
-
import os
|
| 7 |
-
import re
|
| 8 |
-
import json
|
| 9 |
-
from pathlib import Path
|
| 10 |
-
import plotly.express as px
|
| 11 |
-
from datetime import datetime, timezone
|
| 12 |
-
from crewai import Agent, Crew, Process, Task
|
| 13 |
-
from crewai.tools import tool
|
| 14 |
-
from langchain_groq import ChatGroq
|
| 15 |
-
from langchain_openai import ChatOpenAI
|
| 16 |
-
from langchain.schema.output import LLMResult
|
| 17 |
-
from langchain_community.tools.sql_database.tool import (
|
| 18 |
-
InfoSQLDatabaseTool,
|
| 19 |
-
ListSQLDatabaseTool,
|
| 20 |
-
QuerySQLCheckerTool,
|
| 21 |
-
QuerySQLDataBaseTool,
|
| 22 |
-
)
|
| 23 |
-
from langchain_community.utilities.sql_database import SQLDatabase
|
| 24 |
-
from datasets import load_dataset
|
| 25 |
-
import tempfile
|
| 26 |
-
|
| 27 |
-
st.title("SQL-RAG Using CrewAI π")
|
| 28 |
-
st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.")
|
| 29 |
-
|
| 30 |
-
# Initialize LLM
|
| 31 |
-
llm = None
|
| 32 |
-
|
| 33 |
-
# Model Selection
|
| 34 |
-
model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True)
|
| 35 |
-
|
| 36 |
-
# API Key Validation and LLM Initialization
|
| 37 |
-
groq_api_key = os.getenv("GROQ_API_KEY")
|
| 38 |
-
openai_api_key = os.getenv("OPENAI_API_KEY")
|
| 39 |
-
|
| 40 |
-
if model_choice == "llama-3.3-70b":
|
| 41 |
-
if not groq_api_key:
|
| 42 |
-
st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.")
|
| 43 |
-
llm = None
|
| 44 |
-
else:
|
| 45 |
-
llm = ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile")
|
| 46 |
-
elif model_choice == "GPT-4o":
|
| 47 |
-
if not openai_api_key:
|
| 48 |
-
st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.")
|
| 49 |
-
llm = None
|
| 50 |
-
else:
|
| 51 |
-
llm = ChatOpenAI(api_key=openai_api_key, model="gpt-4o")
|
| 52 |
-
|
| 53 |
-
# Initialize session state for data persistence
|
| 54 |
-
if "df" not in st.session_state:
|
| 55 |
-
st.session_state.df = None
|
| 56 |
-
if "show_preview" not in st.session_state:
|
| 57 |
-
st.session_state.show_preview = False
|
| 58 |
-
|
| 59 |
-
# Dataset Input
|
| 60 |
-
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
|
| 61 |
-
|
| 62 |
-
if input_option == "Use Hugging Face Dataset":
|
| 63 |
-
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries")
|
| 64 |
-
if st.button("Load Dataset"):
|
| 65 |
-
try:
|
| 66 |
-
with st.spinner("Loading dataset..."):
|
| 67 |
-
dataset = load_dataset(dataset_name, split="train")
|
| 68 |
-
st.session_state.df = pd.DataFrame(dataset)
|
| 69 |
-
st.session_state.show_preview = True # Show preview after loading
|
| 70 |
-
st.success(f"Dataset '{dataset_name}' loaded successfully!")
|
| 71 |
-
except Exception as e:
|
| 72 |
-
st.error(f"Error: {e}")
|
| 73 |
-
|
| 74 |
-
elif input_option == "Upload CSV File":
|
| 75 |
-
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
|
| 76 |
-
if uploaded_file:
|
| 77 |
-
try:
|
| 78 |
-
st.session_state.df = pd.read_csv(uploaded_file)
|
| 79 |
-
st.session_state.show_preview = True # Show preview after loading
|
| 80 |
-
st.success("File uploaded successfully!")
|
| 81 |
-
except Exception as e:
|
| 82 |
-
st.error(f"Error loading file: {e}")
|
| 83 |
-
|
| 84 |
-
# Show Dataset Preview Only After Loading
|
| 85 |
-
if st.session_state.df is not None and st.session_state.show_preview:
|
| 86 |
-
st.subheader("π Dataset Preview")
|
| 87 |
-
st.dataframe(st.session_state.df.head())
|
| 88 |
-
|
| 89 |
-
# Ask GPT-4o for Visualization Suggestions
|
| 90 |
-
def ask_gpt4o_for_visualization(query, df, llm):
|
| 91 |
-
columns = ', '.join(df.columns)
|
| 92 |
-
prompt = f"""
|
| 93 |
-
Analyze the query and suggest the best visualization.
|
| 94 |
-
Query: "{query}"
|
| 95 |
-
Available Columns: {columns}
|
| 96 |
-
Respond in this JSON format:
|
| 97 |
-
{{
|
| 98 |
-
"chart_type": "bar/box/line/scatter",
|
| 99 |
-
"x_axis": "column_name",
|
| 100 |
-
"y_axis": "column_name",
|
| 101 |
-
"group_by": "optional_column_name"
|
| 102 |
-
}}
|
| 103 |
-
"""
|
| 104 |
-
response = llm.generate(prompt)
|
| 105 |
-
try:
|
| 106 |
-
return json.loads(response)
|
| 107 |
-
except json.JSONDecodeError:
|
| 108 |
-
st.error("β οΈ GPT-4o failed to generate a valid suggestion.")
|
| 109 |
-
return None
|
| 110 |
-
|
| 111 |
-
# Dynamically generate Plotly visualizations based on GPT-4o suggestions
|
| 112 |
-
def generate_visualization(suggestion, df):
|
| 113 |
-
chart_type = suggestion.get("chart_type", "bar").lower()
|
| 114 |
-
x_axis = suggestion.get("x_axis")
|
| 115 |
-
y_axis = suggestion.get("y_axis")
|
| 116 |
-
group_by = suggestion.get("group_by")
|
| 117 |
-
|
| 118 |
-
# Dynamically determine the best Y-axis if GPT-4o doesn't suggest one
|
| 119 |
-
if not y_axis:
|
| 120 |
-
numeric_columns = df.select_dtypes(include='number').columns.tolist()
|
| 121 |
-
|
| 122 |
-
if x_axis in numeric_columns:
|
| 123 |
-
# Avoid using the same column for both axes
|
| 124 |
-
numeric_columns.remove(x_axis)
|
| 125 |
-
|
| 126 |
-
# Prioritize the first available numeric column for y-axis
|
| 127 |
-
y_axis = numeric_columns[0] if numeric_columns else None
|
| 128 |
-
|
| 129 |
-
# Ensure both axes are identified
|
| 130 |
-
if not x_axis or not y_axis:
|
| 131 |
-
st.warning("β οΈ Unable to determine relevant columns for visualization.")
|
| 132 |
-
return None
|
| 133 |
-
|
| 134 |
-
# Dynamically select the Plotly function
|
| 135 |
-
plotly_function = getattr(px, chart_type, None)
|
| 136 |
-
|
| 137 |
-
if not plotly_function:
|
| 138 |
-
st.warning(f"β οΈ Unsupported chart type '{chart_type}' suggested by GPT-4o.")
|
| 139 |
-
return None
|
| 140 |
-
|
| 141 |
-
# Prepare dynamic plot arguments
|
| 142 |
-
plot_args = {"data_frame": df, "x": x_axis, "y": y_axis}
|
| 143 |
-
if group_by and group_by in df.columns:
|
| 144 |
-
plot_args["color"] = group_by
|
| 145 |
-
|
| 146 |
-
try:
|
| 147 |
-
# Generate the dynamic visualization
|
| 148 |
-
fig = plotly_function(**plot_args)
|
| 149 |
-
fig.update_layout(
|
| 150 |
-
title=f"{chart_type.title()} Plot of {y_axis.replace('_', ' ').title()} by {x_axis.replace('_', ' ').title()}",
|
| 151 |
-
xaxis_title=x_axis.replace('_', ' ').title(),
|
| 152 |
-
yaxis_title=y_axis.replace('_', ' ').title(),
|
| 153 |
-
)
|
| 154 |
-
|
| 155 |
-
# Apply statistics intelligently
|
| 156 |
-
fig = add_stats_to_figure(fig, df, y_axis, chart_type)
|
| 157 |
-
|
| 158 |
-
return fig
|
| 159 |
-
|
| 160 |
-
except Exception as e:
|
| 161 |
-
st.error(f"β οΈ Failed to generate visualization: {e}")
|
| 162 |
-
return None
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
def add_stats_to_figure(fig, df, y_axis, chart_type):
|
| 166 |
-
# Calculate statistics
|
| 167 |
-
min_val = df[y_axis].min()
|
| 168 |
-
max_val = df[y_axis].max()
|
| 169 |
-
avg_val = df[y_axis].mean()
|
| 170 |
-
median_val = df[y_axis].median()
|
| 171 |
-
std_dev_val = df[y_axis].std()
|
| 172 |
-
|
| 173 |
-
# Stats summary text
|
| 174 |
-
stats_text = (
|
| 175 |
-
f"π **Statistics**\n\n"
|
| 176 |
-
f"- **Min:** ${min_val:,.2f}\n"
|
| 177 |
-
f"- **Max:** ${max_val:,.2f}\n"
|
| 178 |
-
f"- **Average:** ${avg_val:,.2f}\n"
|
| 179 |
-
f"- **Median:** ${median_val:,.2f}\n"
|
| 180 |
-
f"- **Std Dev:** ${std_dev_val:,.2f}"
|
| 181 |
-
)
|
| 182 |
-
|
| 183 |
-
# Charts suitable for stats annotations
|
| 184 |
-
if chart_type in ["bar", "line", "scatter"]:
|
| 185 |
-
# Add annotation box
|
| 186 |
-
fig.add_annotation(
|
| 187 |
-
text=stats_text,
|
| 188 |
-
xref="paper", yref="paper",
|
| 189 |
-
x=1.05, y=1,
|
| 190 |
-
showarrow=False,
|
| 191 |
-
align="left",
|
| 192 |
-
font=dict(size=12, color="black"),
|
| 193 |
-
bordercolor="black",
|
| 194 |
-
borderwidth=1,
|
| 195 |
-
bgcolor="rgba(255, 255, 255, 0.8)"
|
| 196 |
-
)
|
| 197 |
-
|
| 198 |
-
# Add horizontal lines for min, median, avg, max
|
| 199 |
-
fig.add_hline(y=min_val, line_dash="dot", line_color="red", annotation_text="Min", annotation_position="bottom right")
|
| 200 |
-
fig.add_hline(y=median_val, line_dash="dash", line_color="orange", annotation_text="Median", annotation_position="top right")
|
| 201 |
-
fig.add_hline(y=avg_val, line_dash="dashdot", line_color="green", annotation_text="Avg", annotation_position="top right")
|
| 202 |
-
fig.add_hline(y=max_val, line_dash="dot", line_color="blue", annotation_text="Max", annotation_position="top right")
|
| 203 |
-
|
| 204 |
-
elif chart_type == "box":
|
| 205 |
-
# Box plots already show distribution (no extra stats needed)
|
| 206 |
-
pass
|
| 207 |
-
|
| 208 |
-
elif chart_type == "pie":
|
| 209 |
-
# Pie charts don't need statistical overlays
|
| 210 |
-
st.info("π Pie charts focus on proportions. No additional stats displayed.")
|
| 211 |
-
|
| 212 |
-
else:
|
| 213 |
-
st.warning(f"β οΈ No stats added for unsupported chart type: {chart_type}")
|
| 214 |
-
|
| 215 |
-
return fig
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
# Function to create TXT file
|
| 219 |
-
def create_text_report_with_viz_temp(report, conclusion, visualizations):
|
| 220 |
-
content = f"### Analysis Report\n\n{report}\n\n### Visualizations\n"
|
| 221 |
-
|
| 222 |
-
for i, fig in enumerate(visualizations, start=1):
|
| 223 |
-
fig_title = fig.layout.title.text if fig.layout.title.text else f"Visualization {i}"
|
| 224 |
-
x_axis = fig.layout.xaxis.title.text if fig.layout.xaxis.title.text else "X-axis"
|
| 225 |
-
y_axis = fig.layout.yaxis.title.text if fig.layout.yaxis.title.text else "Y-axis"
|
| 226 |
-
|
| 227 |
-
content += f"\n{i}. {fig_title}\n"
|
| 228 |
-
content += f" - X-axis: {x_axis}\n"
|
| 229 |
-
content += f" - Y-axis: {y_axis}\n"
|
| 230 |
-
|
| 231 |
-
if fig.data:
|
| 232 |
-
trace_types = set(trace.type for trace in fig.data)
|
| 233 |
-
content += f" - Chart Type(s): {', '.join(trace_types)}\n"
|
| 234 |
-
else:
|
| 235 |
-
content += " - No data available in this visualization.\n"
|
| 236 |
-
|
| 237 |
-
content += f"\n\n\n{conclusion}"
|
| 238 |
-
|
| 239 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode='w', encoding='utf-8') as temp_txt:
|
| 240 |
-
temp_txt.write(content)
|
| 241 |
-
return temp_txt.name
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
# Function to create PDF with report text and visualizations
|
| 246 |
-
def create_pdf_report_with_viz(report, conclusion, visualizations):
|
| 247 |
-
pdf = FPDF()
|
| 248 |
-
pdf.set_auto_page_break(auto=True, margin=15)
|
| 249 |
-
pdf.add_page()
|
| 250 |
-
pdf.set_font("Arial", size=12)
|
| 251 |
-
|
| 252 |
-
# Title
|
| 253 |
-
pdf.set_font("Arial", style="B", size=18)
|
| 254 |
-
pdf.cell(0, 10, "π Analysis Report", ln=True, align="C")
|
| 255 |
-
pdf.ln(10)
|
| 256 |
-
|
| 257 |
-
# Report Content
|
| 258 |
-
pdf.set_font("Arial", style="B", size=14)
|
| 259 |
-
pdf.cell(0, 10, "Analysis", ln=True)
|
| 260 |
-
pdf.set_font("Arial", size=12)
|
| 261 |
-
pdf.multi_cell(0, 10, report)
|
| 262 |
-
|
| 263 |
-
pdf.ln(10)
|
| 264 |
-
pdf.set_font("Arial", style="B", size=14)
|
| 265 |
-
pdf.cell(0, 10, "Conclusion", ln=True)
|
| 266 |
-
pdf.set_font("Arial", size=12)
|
| 267 |
-
pdf.multi_cell(0, 10, conclusion)
|
| 268 |
-
|
| 269 |
-
# Add Visualizations
|
| 270 |
-
pdf.add_page()
|
| 271 |
-
pdf.set_font("Arial", style="B", size=16)
|
| 272 |
-
pdf.cell(0, 10, "π Visualizations", ln=True)
|
| 273 |
-
pdf.ln(5)
|
| 274 |
-
|
| 275 |
-
with tempfile.TemporaryDirectory() as temp_dir:
|
| 276 |
-
for i, fig in enumerate(visualizations, start=1):
|
| 277 |
-
fig_title = fig.layout.title.text if fig.layout.title.text else f"Visualization {i}"
|
| 278 |
-
x_axis = fig.layout.xaxis.title.text if fig.layout.xaxis.title.text else "X-axis"
|
| 279 |
-
y_axis = fig.layout.yaxis.title.text if fig.layout.yaxis.title.text else "Y-axis"
|
| 280 |
-
|
| 281 |
-
# Save each visualization as a PNG image
|
| 282 |
-
img_path = os.path.join(temp_dir, f"viz_{i}.png")
|
| 283 |
-
fig.write_image(img_path)
|
| 284 |
-
|
| 285 |
-
# Insert Title and Description
|
| 286 |
-
pdf.set_font("Arial", style="B", size=14)
|
| 287 |
-
pdf.multi_cell(0, 10, f"{i}. {fig_title}")
|
| 288 |
-
pdf.set_font("Arial", size=12)
|
| 289 |
-
pdf.multi_cell(0, 10, f"X-axis: {x_axis} | Y-axis: {y_axis}")
|
| 290 |
-
pdf.ln(3)
|
| 291 |
-
|
| 292 |
-
# Embed Visualization
|
| 293 |
-
pdf.image(img_path, w=170)
|
| 294 |
-
pdf.ln(10)
|
| 295 |
-
|
| 296 |
-
# Save PDF
|
| 297 |
-
temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
|
| 298 |
-
pdf.output(temp_pdf.name)
|
| 299 |
-
|
| 300 |
-
return temp_pdf
|
| 301 |
-
|
| 302 |
-
def escape_markdown(text):
|
| 303 |
-
# Ensure text is a string
|
| 304 |
-
text = str(text)
|
| 305 |
-
# Escape Markdown characters: *, _, `, ~
|
| 306 |
-
escape_chars = r"(\*|_|`|~)"
|
| 307 |
-
return re.sub(escape_chars, r"\\\1", text)
|
| 308 |
-
|
| 309 |
-
# SQL-RAG Analysis
|
| 310 |
-
if st.session_state.df is not None:
|
| 311 |
-
temp_dir = tempfile.TemporaryDirectory()
|
| 312 |
-
db_path = os.path.join(temp_dir.name, "data.db")
|
| 313 |
-
connection = sqlite3.connect(db_path)
|
| 314 |
-
st.session_state.df.to_sql("salaries", connection, if_exists="replace", index=False)
|
| 315 |
-
db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
|
| 316 |
-
|
| 317 |
-
@tool("list_tables")
|
| 318 |
-
def list_tables() -> str:
|
| 319 |
-
"""List all tables in the database."""
|
| 320 |
-
return ListSQLDatabaseTool(db=db).invoke("")
|
| 321 |
-
|
| 322 |
-
@tool("tables_schema")
|
| 323 |
-
def tables_schema(tables: str) -> str:
|
| 324 |
-
"""Get the schema and sample rows for the specified tables."""
|
| 325 |
-
return InfoSQLDatabaseTool(db=db).invoke(tables)
|
| 326 |
-
|
| 327 |
-
@tool("execute_sql")
|
| 328 |
-
def execute_sql(sql_query: str) -> str:
|
| 329 |
-
"""Execute a SQL query against the database and return the results."""
|
| 330 |
-
return QuerySQLDataBaseTool(db=db).invoke(sql_query)
|
| 331 |
-
|
| 332 |
-
@tool("check_sql")
|
| 333 |
-
def check_sql(sql_query: str) -> str:
|
| 334 |
-
"""Validate the SQL query syntax and structure before execution."""
|
| 335 |
-
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
|
| 336 |
-
|
| 337 |
-
# Agents for SQL data extraction and analysis
|
| 338 |
-
sql_dev = Agent(
|
| 339 |
-
role="Senior Database Developer",
|
| 340 |
-
goal="Extract data using optimized SQL queries.",
|
| 341 |
-
backstory="An expert in writing optimized SQL queries for complex databases.",
|
| 342 |
-
llm=llm,
|
| 343 |
-
tools=[list_tables, tables_schema, execute_sql, check_sql],
|
| 344 |
-
)
|
| 345 |
-
|
| 346 |
-
data_analyst = Agent(
|
| 347 |
-
role="Senior Data Analyst",
|
| 348 |
-
goal="Analyze the data and produce insights.",
|
| 349 |
-
backstory="A seasoned analyst who identifies trends and patterns in datasets.",
|
| 350 |
-
llm=llm,
|
| 351 |
-
)
|
| 352 |
-
|
| 353 |
-
report_writer = Agent(
|
| 354 |
-
role="Technical Report Writer",
|
| 355 |
-
goal="Write a structured report with Introduction and Key Insights. DO NOT include any Conclusion or Summary.",
|
| 356 |
-
backstory="Specializes in detailed analytical reports without conclusions.",
|
| 357 |
-
llm=llm,
|
| 358 |
-
)
|
| 359 |
-
|
| 360 |
-
conclusion_writer = Agent(
|
| 361 |
-
role="Conclusion Specialist",
|
| 362 |
-
goal="Summarize findings into a clear and concise 3-5 line Conclusion highlighting only the most important insights.",
|
| 363 |
-
backstory="An expert in crafting impactful and clear conclusions.",
|
| 364 |
-
llm=llm,
|
| 365 |
-
)
|
| 366 |
-
|
| 367 |
-
# Define tasks for report and conclusion
|
| 368 |
-
extract_data = Task(
|
| 369 |
-
description="Extract data based on the query: {query}.",
|
| 370 |
-
expected_output="Database results matching the query.",
|
| 371 |
-
agent=sql_dev,
|
| 372 |
-
)
|
| 373 |
-
|
| 374 |
-
analyze_data = Task(
|
| 375 |
-
description="Analyze the extracted data for query: {query}.",
|
| 376 |
-
expected_output="Key Insights and Analysis without any Introduction or Conclusion.",
|
| 377 |
-
agent=data_analyst,
|
| 378 |
-
context=[extract_data],
|
| 379 |
-
)
|
| 380 |
-
|
| 381 |
-
write_report = Task(
|
| 382 |
-
description="Write the analysis report with Introduction and Key Insights. DO NOT include any Conclusion or Summary.",
|
| 383 |
-
expected_output="Markdown-formatted report excluding Conclusion.",
|
| 384 |
-
agent=report_writer,
|
| 385 |
-
context=[analyze_data],
|
| 386 |
-
)
|
| 387 |
-
|
| 388 |
-
write_conclusion = Task(
|
| 389 |
-
description="Summarize the key findings in 3-5 impactful lines, highlighting the maximum, minimum, and average salaries."
|
| 390 |
-
"Emphasize significant insights on salary distribution and influential compensation trends for strategic decision-making.",
|
| 391 |
-
expected_output="Markdown-formatted Conclusion section with key insights and statistics.",
|
| 392 |
-
agent=conclusion_writer,
|
| 393 |
-
context=[analyze_data],
|
| 394 |
-
)
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
# Separate Crews for report and conclusion
|
| 399 |
-
crew_report = Crew(
|
| 400 |
-
agents=[sql_dev, data_analyst, report_writer],
|
| 401 |
-
tasks=[extract_data, analyze_data, write_report],
|
| 402 |
-
process=Process.sequential,
|
| 403 |
-
verbose=True,
|
| 404 |
-
)
|
| 405 |
-
|
| 406 |
-
crew_conclusion = Crew(
|
| 407 |
-
agents=[data_analyst, conclusion_writer],
|
| 408 |
-
tasks=[write_conclusion],
|
| 409 |
-
process=Process.sequential,
|
| 410 |
-
verbose=True,
|
| 411 |
-
)
|
| 412 |
-
|
| 413 |
-
# Tabs for Query Results and Visualizations
|
| 414 |
-
tab1, tab2 = st.tabs(["π Query Insights + Viz", "π Full Data Viz"])
|
| 415 |
-
|
| 416 |
-
# Query Insights + Visualization
|
| 417 |
-
with tab1:
|
| 418 |
-
query = st.text_area("Enter Query:", value="Provide insights into the salary of a Principal Data Scientist.")
|
| 419 |
-
if st.button("Submit Query"):
|
| 420 |
-
with st.spinner("Processing query..."):
|
| 421 |
-
# Step 1: Generate the analysis report
|
| 422 |
-
report_inputs = {"query": query + " Provide detailed analysis but DO NOT include Conclusion."}
|
| 423 |
-
report_result = crew_report.kickoff(inputs=report_inputs)
|
| 424 |
-
|
| 425 |
-
# Step 2: Generate only the concise conclusion
|
| 426 |
-
conclusion_inputs = {"query": query + " Provide ONLY the most important insights in 3-5 concise lines."}
|
| 427 |
-
conclusion_result = crew_conclusion.kickoff(inputs=conclusion_inputs)
|
| 428 |
-
|
| 429 |
-
# Step 3: Display the report
|
| 430 |
-
#st.markdown("### Analysis Report:")
|
| 431 |
-
st.markdown(report_result if report_result else "β οΈ No Report Generated.")
|
| 432 |
-
|
| 433 |
-
# Step 4: Generate Visualizations
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
# Step 5: Insert Visual Insights
|
| 437 |
-
st.markdown("### Visual Insights")
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
# Step 6: Display Concise Conclusion
|
| 441 |
-
#st.markdown("#### Conclusion")
|
| 442 |
-
|
| 443 |
-
safe_conclusion = escape_markdown(conclusion_result if conclusion_result else "β οΈ No Conclusion Generated.")
|
| 444 |
-
st.markdown(safe_conclusion)
|
| 445 |
-
|
| 446 |
-
# Full Data Visualization Tab
|
| 447 |
-
with tab2:
|
| 448 |
-
st.subheader("π Comprehensive Data Visualizations")
|
| 449 |
-
|
| 450 |
-
fig1 = px.histogram(st.session_state.df, x="job_title", title="Job Title Frequency")
|
| 451 |
-
st.plotly_chart(fig1)
|
| 452 |
-
|
| 453 |
-
fig2 = px.bar(
|
| 454 |
-
st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(),
|
| 455 |
-
x="experience_level", y="salary_in_usd",
|
| 456 |
-
title="Average Salary by Experience Level"
|
| 457 |
-
)
|
| 458 |
-
st.plotly_chart(fig2)
|
| 459 |
-
|
| 460 |
-
fig3 = px.box(st.session_state.df, x="employment_type", y="salary_in_usd",
|
| 461 |
-
title="Salary Distribution by Employment Type")
|
| 462 |
-
st.plotly_chart(fig3)
|
| 463 |
-
|
| 464 |
-
temp_dir.cleanup()
|
| 465 |
-
else:
|
| 466 |
-
st.info("Please load a dataset to proceed.")
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
# Sidebar Reference
|
| 470 |
-
with st.sidebar:
|
| 471 |
-
st.header("π Reference:")
|
| 472 |
-
st.markdown("[SQL Agents w CrewAI & Llama 3 - Plaban Nayak](https://github.com/plaban1981/Agents/blob/main/SQL_Agents_with_CrewAI_and_Llama_3.ipynb)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|