Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -20,7 +20,7 @@ from langchain_community.utilities.sql_database import SQLDatabase
|
|
| 20 |
from datasets import load_dataset
|
| 21 |
import tempfile
|
| 22 |
|
| 23 |
-
#
|
| 24 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
| 25 |
|
| 26 |
# LLM Callback Logger
|
|
@@ -37,17 +37,18 @@ class LLMCallbackHandler(BaseCallbackHandler):
|
|
| 37 |
with self.log_path.open("a", encoding="utf-8") as file:
|
| 38 |
file.write(json.dumps({"event": "llm_end", "text": generation, "timestamp": datetime.now().isoformat()}) + "\n")
|
| 39 |
|
| 40 |
-
# Initialize
|
| 41 |
llm = ChatGroq(
|
| 42 |
temperature=0,
|
| 43 |
model_name="mixtral-8x7b-32768",
|
| 44 |
callbacks=[LLMCallbackHandler(Path("prompts.jsonl"))],
|
| 45 |
)
|
| 46 |
|
|
|
|
| 47 |
st.title("SQL-RAG Using CrewAI π")
|
| 48 |
st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.")
|
| 49 |
|
| 50 |
-
# Input
|
| 51 |
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
|
| 52 |
df = None
|
| 53 |
|
|
@@ -55,13 +56,13 @@ if input_option == "Use Hugging Face Dataset":
|
|
| 55 |
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries")
|
| 56 |
if st.button("Load Dataset"):
|
| 57 |
try:
|
| 58 |
-
with st.spinner("Loading
|
| 59 |
dataset = load_dataset(dataset_name, split="train")
|
| 60 |
df = pd.DataFrame(dataset)
|
| 61 |
st.success(f"Dataset '{dataset_name}' loaded successfully!")
|
| 62 |
st.dataframe(df.head())
|
| 63 |
except Exception as e:
|
| 64 |
-
st.error(f"Error
|
| 65 |
else:
|
| 66 |
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
|
| 67 |
if uploaded_file:
|
|
@@ -77,79 +78,66 @@ if df is not None:
|
|
| 77 |
df.to_sql("salaries", connection, if_exists="replace", index=False)
|
| 78 |
db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
|
| 79 |
|
| 80 |
-
# Tools with proper docstrings
|
| 81 |
@tool("list_tables")
|
| 82 |
def list_tables() -> str:
|
| 83 |
-
"""List all tables in the
|
| 84 |
return ListSQLDatabaseTool(db=db).invoke("")
|
| 85 |
|
| 86 |
@tool("tables_schema")
|
| 87 |
def tables_schema(tables: str) -> str:
|
| 88 |
-
"""
|
| 89 |
-
Get the schema and sample rows for specific tables in the database.
|
| 90 |
-
|
| 91 |
-
Input: Comma-separated table names.
|
| 92 |
-
Example: 'salaries'
|
| 93 |
-
"""
|
| 94 |
return InfoSQLDatabaseTool(db=db).invoke(tables)
|
| 95 |
|
| 96 |
@tool("execute_sql")
|
| 97 |
def execute_sql(sql_query: str) -> str:
|
| 98 |
-
"""
|
| 99 |
-
Execute a valid SQL query on the database and return the results.
|
| 100 |
-
|
| 101 |
-
Input: A SQL query string.
|
| 102 |
-
Example: 'SELECT * FROM salaries LIMIT 5;'
|
| 103 |
-
"""
|
| 104 |
return QuerySQLDataBaseTool(db=db).invoke(sql_query)
|
| 105 |
|
| 106 |
@tool("check_sql")
|
| 107 |
def check_sql(sql_query: str) -> str:
|
| 108 |
-
"""
|
| 109 |
-
Check the validity of a SQL query before execution.
|
| 110 |
-
|
| 111 |
-
Input: A SQL query string.
|
| 112 |
-
Example: 'SELECT salary FROM salaries WHERE salary > 10000;'
|
| 113 |
-
"""
|
| 114 |
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
|
| 115 |
|
| 116 |
# Agents
|
| 117 |
sql_dev = Agent(
|
| 118 |
-
role="Database Developer",
|
| 119 |
-
goal="Extract
|
|
|
|
| 120 |
llm=llm,
|
| 121 |
tools=[list_tables, tables_schema, execute_sql, check_sql],
|
| 122 |
)
|
| 123 |
|
| 124 |
data_analyst = Agent(
|
| 125 |
-
role="Data Analyst",
|
| 126 |
-
goal="Analyze the
|
|
|
|
| 127 |
llm=llm,
|
| 128 |
)
|
| 129 |
|
| 130 |
report_writer = Agent(
|
| 131 |
-
role="Report Writer",
|
| 132 |
-
goal="Summarize the
|
|
|
|
| 133 |
llm=llm,
|
| 134 |
)
|
| 135 |
|
| 136 |
# Tasks
|
| 137 |
extract_data = Task(
|
| 138 |
-
description="Extract data
|
| 139 |
-
expected_output="Database query
|
| 140 |
agent=sql_dev,
|
| 141 |
)
|
| 142 |
|
| 143 |
analyze_data = Task(
|
| 144 |
-
description="Analyze the
|
| 145 |
-
expected_output="Analysis
|
| 146 |
agent=data_analyst,
|
| 147 |
context=[extract_data],
|
| 148 |
)
|
| 149 |
|
| 150 |
write_report = Task(
|
| 151 |
-
description="Summarize the analysis into an executive
|
| 152 |
-
expected_output="Markdown
|
| 153 |
agent=report_writer,
|
| 154 |
context=[analyze_data],
|
| 155 |
)
|
|
@@ -161,9 +149,9 @@ if df is not None:
|
|
| 161 |
verbose=True,
|
| 162 |
)
|
| 163 |
|
| 164 |
-
query = st.text_area("Enter Query:", placeholder="e.g., 'What is the average salary
|
| 165 |
if st.button("Submit Query"):
|
| 166 |
-
with st.spinner("Processing
|
| 167 |
inputs = {"query": query}
|
| 168 |
result = crew.kickoff(inputs=inputs)
|
| 169 |
st.markdown("### Analysis Report:")
|
|
@@ -171,4 +159,4 @@ if df is not None:
|
|
| 171 |
|
| 172 |
temp_dir.cleanup()
|
| 173 |
else:
|
| 174 |
-
st.info("
|
|
|
|
| 20 |
from datasets import load_dataset
|
| 21 |
import tempfile
|
| 22 |
|
| 23 |
+
# API Key
|
| 24 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
| 25 |
|
| 26 |
# LLM Callback Logger
|
|
|
|
| 37 |
with self.log_path.open("a", encoding="utf-8") as file:
|
| 38 |
file.write(json.dumps({"event": "llm_end", "text": generation, "timestamp": datetime.now().isoformat()}) + "\n")
|
| 39 |
|
| 40 |
+
# Initialize LLM
|
| 41 |
llm = ChatGroq(
|
| 42 |
temperature=0,
|
| 43 |
model_name="mixtral-8x7b-32768",
|
| 44 |
callbacks=[LLMCallbackHandler(Path("prompts.jsonl"))],
|
| 45 |
)
|
| 46 |
|
| 47 |
+
# Streamlit UI
|
| 48 |
st.title("SQL-RAG Using CrewAI π")
|
| 49 |
st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.")
|
| 50 |
|
| 51 |
+
# Dataset Input
|
| 52 |
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
|
| 53 |
df = None
|
| 54 |
|
|
|
|
| 56 |
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries")
|
| 57 |
if st.button("Load Dataset"):
|
| 58 |
try:
|
| 59 |
+
with st.spinner("Loading dataset..."):
|
| 60 |
dataset = load_dataset(dataset_name, split="train")
|
| 61 |
df = pd.DataFrame(dataset)
|
| 62 |
st.success(f"Dataset '{dataset_name}' loaded successfully!")
|
| 63 |
st.dataframe(df.head())
|
| 64 |
except Exception as e:
|
| 65 |
+
st.error(f"Error: {e}")
|
| 66 |
else:
|
| 67 |
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
|
| 68 |
if uploaded_file:
|
|
|
|
| 78 |
df.to_sql("salaries", connection, if_exists="replace", index=False)
|
| 79 |
db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
|
| 80 |
|
|
|
|
| 81 |
@tool("list_tables")
|
| 82 |
def list_tables() -> str:
|
| 83 |
+
"""List all tables in the database."""
|
| 84 |
return ListSQLDatabaseTool(db=db).invoke("")
|
| 85 |
|
| 86 |
@tool("tables_schema")
|
| 87 |
def tables_schema(tables: str) -> str:
|
| 88 |
+
"""Get schema and sample rows for given tables."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
return InfoSQLDatabaseTool(db=db).invoke(tables)
|
| 90 |
|
| 91 |
@tool("execute_sql")
|
| 92 |
def execute_sql(sql_query: str) -> str:
|
| 93 |
+
"""Execute a SQL query against the database."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
return QuerySQLDataBaseTool(db=db).invoke(sql_query)
|
| 95 |
|
| 96 |
@tool("check_sql")
|
| 97 |
def check_sql(sql_query: str) -> str:
|
| 98 |
+
"""Check the validity of a SQL query."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
|
| 100 |
|
| 101 |
# Agents
|
| 102 |
sql_dev = Agent(
|
| 103 |
+
role="Senior Database Developer",
|
| 104 |
+
goal="Extract data using optimized SQL queries.",
|
| 105 |
+
backstory="An expert in writing optimized SQL queries for complex databases.",
|
| 106 |
llm=llm,
|
| 107 |
tools=[list_tables, tables_schema, execute_sql, check_sql],
|
| 108 |
)
|
| 109 |
|
| 110 |
data_analyst = Agent(
|
| 111 |
+
role="Senior Data Analyst",
|
| 112 |
+
goal="Analyze the data and produce insights.",
|
| 113 |
+
backstory="A seasoned analyst who identifies trends and patterns in datasets.",
|
| 114 |
llm=llm,
|
| 115 |
)
|
| 116 |
|
| 117 |
report_writer = Agent(
|
| 118 |
+
role="Technical Report Writer",
|
| 119 |
+
goal="Summarize the insights into a clear report.",
|
| 120 |
+
backstory="An expert in summarizing data insights into readable reports.",
|
| 121 |
llm=llm,
|
| 122 |
)
|
| 123 |
|
| 124 |
# Tasks
|
| 125 |
extract_data = Task(
|
| 126 |
+
description="Extract data based on the query: {query}.",
|
| 127 |
+
expected_output="Database results matching the query.",
|
| 128 |
agent=sql_dev,
|
| 129 |
)
|
| 130 |
|
| 131 |
analyze_data = Task(
|
| 132 |
+
description="Analyze the extracted data for query: {query}.",
|
| 133 |
+
expected_output="Analysis text summarizing findings.",
|
| 134 |
agent=data_analyst,
|
| 135 |
context=[extract_data],
|
| 136 |
)
|
| 137 |
|
| 138 |
write_report = Task(
|
| 139 |
+
description="Summarize the analysis into an executive report.",
|
| 140 |
+
expected_output="Markdown report of insights.",
|
| 141 |
agent=report_writer,
|
| 142 |
context=[analyze_data],
|
| 143 |
)
|
|
|
|
| 149 |
verbose=True,
|
| 150 |
)
|
| 151 |
|
| 152 |
+
query = st.text_area("Enter Query:", placeholder="e.g., 'What is the average salary for senior employees?'")
|
| 153 |
if st.button("Submit Query"):
|
| 154 |
+
with st.spinner("Processing query..."):
|
| 155 |
inputs = {"query": query}
|
| 156 |
result = crew.kickoff(inputs=inputs)
|
| 157 |
st.markdown("### Analysis Report:")
|
|
|
|
| 159 |
|
| 160 |
temp_dir.cleanup()
|
| 161 |
else:
|
| 162 |
+
st.info("Please load a dataset to proceed.")
|