Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -109,14 +109,23 @@ def ask_gpt4o_for_visualization(query, df, llm):
|
|
| 109 |
return None
|
| 110 |
|
| 111 |
def add_stats_to_figure(fig, df, y_axis, chart_type):
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
min_val = df[y_axis].min()
|
| 114 |
max_val = df[y_axis].max()
|
| 115 |
avg_val = df[y_axis].mean()
|
| 116 |
median_val = df[y_axis].median()
|
| 117 |
std_dev_val = df[y_axis].std()
|
| 118 |
|
| 119 |
-
#
|
| 120 |
stats_text = (
|
| 121 |
f"π **Statistics**\n\n"
|
| 122 |
f"- **Min:** ${min_val:,.2f}\n"
|
|
@@ -126,42 +135,59 @@ def add_stats_to_figure(fig, df, y_axis, chart_type):
|
|
| 126 |
f"- **Std Dev:** ${std_dev_val:,.2f}"
|
| 127 |
)
|
| 128 |
|
| 129 |
-
#
|
| 130 |
-
if chart_type in ["bar", "line"
|
| 131 |
-
# Add annotation box
|
| 132 |
fig.add_annotation(
|
| 133 |
text=stats_text,
|
| 134 |
xref="paper", yref="paper",
|
| 135 |
-
x=1.
|
| 136 |
showarrow=False,
|
| 137 |
align="left",
|
| 138 |
font=dict(size=12, color="black"),
|
| 139 |
-
bordercolor="
|
| 140 |
borderwidth=1,
|
| 141 |
-
bgcolor="rgba(255, 255, 255, 0.
|
| 142 |
)
|
| 143 |
|
| 144 |
-
# Add horizontal lines
|
| 145 |
fig.add_hline(y=min_val, line_dash="dot", line_color="red", annotation_text="Min", annotation_position="bottom right")
|
| 146 |
fig.add_hline(y=median_val, line_dash="dash", line_color="orange", annotation_text="Median", annotation_position="top right")
|
| 147 |
fig.add_hline(y=avg_val, line_dash="dashdot", line_color="green", annotation_text="Avg", annotation_position="top right")
|
| 148 |
fig.add_hline(y=max_val, line_dash="dot", line_color="blue", annotation_text="Max", annotation_position="top right")
|
| 149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
elif chart_type == "box":
|
| 151 |
-
# Box plots
|
| 152 |
pass
|
| 153 |
|
| 154 |
elif chart_type == "pie":
|
| 155 |
-
# Pie charts
|
| 156 |
-
st.info("π Pie charts
|
| 157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
else:
|
| 159 |
-
st.warning(f"β οΈ No
|
| 160 |
|
| 161 |
return fig
|
| 162 |
|
| 163 |
|
| 164 |
-
|
| 165 |
# Dynamically generate Plotly visualizations based on GPT-4o suggestions
|
| 166 |
def generate_visualization(suggestion, df):
|
| 167 |
chart_type = suggestion.get("chart_type", "bar").lower()
|
|
|
|
| 109 |
return None
|
| 110 |
|
| 111 |
def add_stats_to_figure(fig, df, y_axis, chart_type):
|
| 112 |
+
"""
|
| 113 |
+
Add relevant statistical annotations to the visualization
|
| 114 |
+
based on the chart type.
|
| 115 |
+
"""
|
| 116 |
+
# Check if the y-axis column is numeric
|
| 117 |
+
if not pd.api.types.is_numeric_dtype(df[y_axis]):
|
| 118 |
+
st.warning(f"β οΈ Cannot compute statistics for non-numeric column: {y_axis}")
|
| 119 |
+
return fig
|
| 120 |
+
|
| 121 |
+
# Compute statistics for numeric data
|
| 122 |
min_val = df[y_axis].min()
|
| 123 |
max_val = df[y_axis].max()
|
| 124 |
avg_val = df[y_axis].mean()
|
| 125 |
median_val = df[y_axis].median()
|
| 126 |
std_dev_val = df[y_axis].std()
|
| 127 |
|
| 128 |
+
# Format the stats for display
|
| 129 |
stats_text = (
|
| 130 |
f"π **Statistics**\n\n"
|
| 131 |
f"- **Min:** ${min_val:,.2f}\n"
|
|
|
|
| 135 |
f"- **Std Dev:** ${std_dev_val:,.2f}"
|
| 136 |
)
|
| 137 |
|
| 138 |
+
# Apply stats only to relevant chart types
|
| 139 |
+
if chart_type in ["bar", "line"]:
|
| 140 |
+
# Add annotation box for bar and line charts
|
| 141 |
fig.add_annotation(
|
| 142 |
text=stats_text,
|
| 143 |
xref="paper", yref="paper",
|
| 144 |
+
x=1.02, y=1,
|
| 145 |
showarrow=False,
|
| 146 |
align="left",
|
| 147 |
font=dict(size=12, color="black"),
|
| 148 |
+
bordercolor="gray",
|
| 149 |
borderwidth=1,
|
| 150 |
+
bgcolor="rgba(255, 255, 255, 0.85)"
|
| 151 |
)
|
| 152 |
|
| 153 |
+
# Add horizontal reference lines
|
| 154 |
fig.add_hline(y=min_val, line_dash="dot", line_color="red", annotation_text="Min", annotation_position="bottom right")
|
| 155 |
fig.add_hline(y=median_val, line_dash="dash", line_color="orange", annotation_text="Median", annotation_position="top right")
|
| 156 |
fig.add_hline(y=avg_val, line_dash="dashdot", line_color="green", annotation_text="Avg", annotation_position="top right")
|
| 157 |
fig.add_hline(y=max_val, line_dash="dot", line_color="blue", annotation_text="Max", annotation_position="top right")
|
| 158 |
|
| 159 |
+
elif chart_type == "scatter":
|
| 160 |
+
# Add stats annotation only, no lines for scatter plots
|
| 161 |
+
fig.add_annotation(
|
| 162 |
+
text=stats_text,
|
| 163 |
+
xref="paper", yref="paper",
|
| 164 |
+
x=1.02, y=1,
|
| 165 |
+
showarrow=False,
|
| 166 |
+
align="left",
|
| 167 |
+
font=dict(size=12, color="black"),
|
| 168 |
+
bordercolor="gray",
|
| 169 |
+
borderwidth=1,
|
| 170 |
+
bgcolor="rgba(255, 255, 255, 0.85)"
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
elif chart_type == "box":
|
| 174 |
+
# Box plots inherently show distribution; no extra stats needed
|
| 175 |
pass
|
| 176 |
|
| 177 |
elif chart_type == "pie":
|
| 178 |
+
# Pie charts represent proportions, not suitable for stats
|
| 179 |
+
st.info("π Pie charts represent proportions. Additional stats are not applicable.")
|
| 180 |
+
|
| 181 |
+
elif chart_type == "heatmap":
|
| 182 |
+
# Heatmaps already reflect data intensity
|
| 183 |
+
st.info("π Heatmaps inherently reflect distribution. No additional stats added.")
|
| 184 |
+
|
| 185 |
else:
|
| 186 |
+
st.warning(f"β οΈ No statistical overlays applied for unsupported chart type: '{chart_type}'.")
|
| 187 |
|
| 188 |
return fig
|
| 189 |
|
| 190 |
|
|
|
|
| 191 |
# Dynamically generate Plotly visualizations based on GPT-4o suggestions
|
| 192 |
def generate_visualization(suggestion, df):
|
| 193 |
chart_type = suggestion.get("chart_type", "bar").lower()
|