Spaces:
Sleeping
Sleeping
Update dummy_funcs.py
Browse files- dummy_funcs.py +180 -15
dummy_funcs.py
CHANGED
|
@@ -1,12 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
def add_stats_to_figure(fig, df, y_axis, chart_type):
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
min_val = df[y_axis].min()
|
| 4 |
max_val = df[y_axis].max()
|
| 5 |
avg_val = df[y_axis].mean()
|
| 6 |
median_val = df[y_axis].median()
|
| 7 |
std_dev_val = df[y_axis].std()
|
| 8 |
|
| 9 |
-
#
|
| 10 |
stats_text = (
|
| 11 |
f"π **Statistics**\n\n"
|
| 12 |
f"- **Min:** ${min_val:,.2f}\n"
|
|
@@ -16,36 +48,169 @@ def add_stats_to_figure(fig, df, y_axis, chart_type):
|
|
| 16 |
f"- **Std Dev:** ${std_dev_val:,.2f}"
|
| 17 |
)
|
| 18 |
|
| 19 |
-
#
|
| 20 |
-
if chart_type in ["bar", "line"
|
| 21 |
-
# Add annotation box
|
| 22 |
fig.add_annotation(
|
| 23 |
text=stats_text,
|
| 24 |
xref="paper", yref="paper",
|
| 25 |
-
x=1.
|
| 26 |
showarrow=False,
|
| 27 |
align="left",
|
| 28 |
font=dict(size=12, color="black"),
|
| 29 |
-
bordercolor="
|
| 30 |
borderwidth=1,
|
| 31 |
-
bgcolor="rgba(255, 255, 255, 0.
|
| 32 |
)
|
| 33 |
|
| 34 |
-
# Add horizontal lines
|
| 35 |
fig.add_hline(y=min_val, line_dash="dot", line_color="red", annotation_text="Min", annotation_position="bottom right")
|
| 36 |
fig.add_hline(y=median_val, line_dash="dash", line_color="orange", annotation_text="Median", annotation_position="top right")
|
| 37 |
fig.add_hline(y=avg_val, line_dash="dashdot", line_color="green", annotation_text="Avg", annotation_position="top right")
|
| 38 |
fig.add_hline(y=max_val, line_dash="dot", line_color="blue", annotation_text="Max", annotation_position="top right")
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
elif chart_type == "box":
|
| 41 |
-
# Box plots
|
| 42 |
pass
|
| 43 |
|
| 44 |
elif chart_type == "pie":
|
| 45 |
-
# Pie charts
|
| 46 |
-
st.info("π Pie charts
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
else:
|
| 49 |
-
st.warning(f"β οΈ No
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
|
|
|
|
|
|
|
|
|
| 1 |
+
def ask_gpt4o_for_visualization(query, df, llm):
|
| 2 |
+
columns = ', '.join(df.columns)
|
| 3 |
+
prompt = f"""
|
| 4 |
+
Analyze the query and suggest one or more relevant visualizations.
|
| 5 |
+
Query: "{query}"
|
| 6 |
+
Available Columns: {columns}
|
| 7 |
+
Respond in this JSON format (as a list if multiple suggestions):
|
| 8 |
+
[
|
| 9 |
+
{{
|
| 10 |
+
"chart_type": "bar/box/line/scatter",
|
| 11 |
+
"x_axis": "column_name",
|
| 12 |
+
"y_axis": "column_name",
|
| 13 |
+
"group_by": "optional_column_name"
|
| 14 |
+
}}
|
| 15 |
+
]
|
| 16 |
+
"""
|
| 17 |
+
response = llm.generate(prompt)
|
| 18 |
+
try:
|
| 19 |
+
return json.loads(response)
|
| 20 |
+
except json.JSONDecodeError:
|
| 21 |
+
st.error("β οΈ GPT-4o failed to generate a valid suggestion.")
|
| 22 |
+
return None
|
| 23 |
+
|
| 24 |
def add_stats_to_figure(fig, df, y_axis, chart_type):
|
| 25 |
+
"""
|
| 26 |
+
Add relevant statistical annotations to the visualization
|
| 27 |
+
based on the chart type.
|
| 28 |
+
"""
|
| 29 |
+
# Check if the y-axis column is numeric
|
| 30 |
+
if not pd.api.types.is_numeric_dtype(df[y_axis]):
|
| 31 |
+
st.warning(f"β οΈ Cannot compute statistics for non-numeric column: {y_axis}")
|
| 32 |
+
return fig
|
| 33 |
+
|
| 34 |
+
# Compute statistics for numeric data
|
| 35 |
min_val = df[y_axis].min()
|
| 36 |
max_val = df[y_axis].max()
|
| 37 |
avg_val = df[y_axis].mean()
|
| 38 |
median_val = df[y_axis].median()
|
| 39 |
std_dev_val = df[y_axis].std()
|
| 40 |
|
| 41 |
+
# Format the stats for display
|
| 42 |
stats_text = (
|
| 43 |
f"π **Statistics**\n\n"
|
| 44 |
f"- **Min:** ${min_val:,.2f}\n"
|
|
|
|
| 48 |
f"- **Std Dev:** ${std_dev_val:,.2f}"
|
| 49 |
)
|
| 50 |
|
| 51 |
+
# Apply stats only to relevant chart types
|
| 52 |
+
if chart_type in ["bar", "line"]:
|
| 53 |
+
# Add annotation box for bar and line charts
|
| 54 |
fig.add_annotation(
|
| 55 |
text=stats_text,
|
| 56 |
xref="paper", yref="paper",
|
| 57 |
+
x=1.02, y=1,
|
| 58 |
showarrow=False,
|
| 59 |
align="left",
|
| 60 |
font=dict(size=12, color="black"),
|
| 61 |
+
bordercolor="gray",
|
| 62 |
borderwidth=1,
|
| 63 |
+
bgcolor="rgba(255, 255, 255, 0.85)"
|
| 64 |
)
|
| 65 |
|
| 66 |
+
# Add horizontal reference lines
|
| 67 |
fig.add_hline(y=min_val, line_dash="dot", line_color="red", annotation_text="Min", annotation_position="bottom right")
|
| 68 |
fig.add_hline(y=median_val, line_dash="dash", line_color="orange", annotation_text="Median", annotation_position="top right")
|
| 69 |
fig.add_hline(y=avg_val, line_dash="dashdot", line_color="green", annotation_text="Avg", annotation_position="top right")
|
| 70 |
fig.add_hline(y=max_val, line_dash="dot", line_color="blue", annotation_text="Max", annotation_position="top right")
|
| 71 |
|
| 72 |
+
elif chart_type == "scatter":
|
| 73 |
+
# Add stats annotation only, no lines for scatter plots
|
| 74 |
+
fig.add_annotation(
|
| 75 |
+
text=stats_text,
|
| 76 |
+
xref="paper", yref="paper",
|
| 77 |
+
x=1.02, y=1,
|
| 78 |
+
showarrow=False,
|
| 79 |
+
align="left",
|
| 80 |
+
font=dict(size=12, color="black"),
|
| 81 |
+
bordercolor="gray",
|
| 82 |
+
borderwidth=1,
|
| 83 |
+
bgcolor="rgba(255, 255, 255, 0.85)"
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
elif chart_type == "box":
|
| 87 |
+
# Box plots inherently show distribution; no extra stats needed
|
| 88 |
pass
|
| 89 |
|
| 90 |
elif chart_type == "pie":
|
| 91 |
+
# Pie charts represent proportions, not suitable for stats
|
| 92 |
+
st.info("π Pie charts represent proportions. Additional stats are not applicable.")
|
| 93 |
+
|
| 94 |
+
elif chart_type == "heatmap":
|
| 95 |
+
# Heatmaps already reflect data intensity
|
| 96 |
+
st.info("π Heatmaps inherently reflect distribution. No additional stats added.")
|
| 97 |
+
|
| 98 |
else:
|
| 99 |
+
st.warning(f"β οΈ No statistical overlays applied for unsupported chart type: '{chart_type}'.")
|
| 100 |
+
|
| 101 |
+
return fig
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
# Dynamically generate Plotly visualizations based on GPT-4o suggestions
|
| 105 |
+
def generate_visualization(suggestion, df):
|
| 106 |
+
"""
|
| 107 |
+
Generate a Plotly visualization based on GPT-4o's suggestion.
|
| 108 |
+
If the Y-axis is missing, infer it intelligently.
|
| 109 |
+
"""
|
| 110 |
+
chart_type = suggestion.get("chart_type", "bar").lower()
|
| 111 |
+
x_axis = suggestion.get("x_axis")
|
| 112 |
+
y_axis = suggestion.get("y_axis")
|
| 113 |
+
group_by = suggestion.get("group_by")
|
| 114 |
+
|
| 115 |
+
# Step 1: Infer Y-axis if not provided
|
| 116 |
+
if not y_axis:
|
| 117 |
+
numeric_columns = df.select_dtypes(include='number').columns.tolist()
|
| 118 |
+
|
| 119 |
+
# Avoid using the same column for both axes
|
| 120 |
+
if x_axis in numeric_columns:
|
| 121 |
+
numeric_columns.remove(x_axis)
|
| 122 |
+
|
| 123 |
+
# Smart guess: prioritize salary or relevant metrics if available
|
| 124 |
+
priority_columns = ["salary_in_usd", "income", "earnings", "revenue"]
|
| 125 |
+
for col in priority_columns:
|
| 126 |
+
if col in numeric_columns:
|
| 127 |
+
y_axis = col
|
| 128 |
+
break
|
| 129 |
+
|
| 130 |
+
# Fallback to the first numeric column if no priority columns exist
|
| 131 |
+
if not y_axis and numeric_columns:
|
| 132 |
+
y_axis = numeric_columns[0]
|
| 133 |
+
|
| 134 |
+
# Step 2: Validate axes
|
| 135 |
+
if not x_axis or not y_axis:
|
| 136 |
+
st.warning("β οΈ Unable to determine appropriate columns for visualization.")
|
| 137 |
+
return None
|
| 138 |
+
|
| 139 |
+
# Step 3: Dynamically select the Plotly function
|
| 140 |
+
plotly_function = getattr(px, chart_type, None)
|
| 141 |
+
if not plotly_function:
|
| 142 |
+
st.warning(f"β οΈ Unsupported chart type '{chart_type}' suggested by GPT-4o.")
|
| 143 |
+
return None
|
| 144 |
+
|
| 145 |
+
# Step 4: Prepare dynamic plot arguments
|
| 146 |
+
plot_args = {"data_frame": df, "x": x_axis, "y": y_axis}
|
| 147 |
+
if group_by and group_by in df.columns:
|
| 148 |
+
plot_args["color"] = group_by
|
| 149 |
+
|
| 150 |
+
try:
|
| 151 |
+
# Step 5: Generate the visualization
|
| 152 |
+
fig = plotly_function(**plot_args)
|
| 153 |
+
fig.update_layout(
|
| 154 |
+
title=f"{chart_type.title()} Plot of {y_axis.replace('_', ' ').title()} by {x_axis.replace('_', ' ').title()}",
|
| 155 |
+
xaxis_title=x_axis.replace('_', ' ').title(),
|
| 156 |
+
yaxis_title=y_axis.replace('_', ' ').title(),
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
# Step 6: Apply statistics intelligently
|
| 160 |
+
fig = add_statistics_to_visualization(fig, df, y_axis, chart_type)
|
| 161 |
+
|
| 162 |
+
return fig
|
| 163 |
+
|
| 164 |
+
except Exception as e:
|
| 165 |
+
st.error(f"β οΈ Failed to generate visualization: {e}")
|
| 166 |
+
return None
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
def generate_multiple_visualizations(suggestions, df):
|
| 170 |
+
"""
|
| 171 |
+
Generates one or more visualizations based on GPT-4o's suggestions.
|
| 172 |
+
Handles both single and multiple suggestions.
|
| 173 |
+
"""
|
| 174 |
+
visualizations = []
|
| 175 |
+
|
| 176 |
+
for suggestion in suggestions:
|
| 177 |
+
fig = generate_visualization(suggestion, df)
|
| 178 |
+
if fig:
|
| 179 |
+
# Apply chart-specific statistics
|
| 180 |
+
fig = add_stats_to_figure(fig, df, suggestion["y_axis"], suggestion["chart_type"])
|
| 181 |
+
visualizations.append(fig)
|
| 182 |
+
|
| 183 |
+
if not visualizations and suggestions:
|
| 184 |
+
st.warning("β οΈ No valid visualization found. Displaying the most relevant one.")
|
| 185 |
+
best_suggestion = suggestions[0]
|
| 186 |
+
fig = generate_visualization(best_suggestion, df)
|
| 187 |
+
fig = add_stats_to_figure(fig, df, best_suggestion["y_axis"], best_suggestion["chart_type"])
|
| 188 |
+
visualizations.append(fig)
|
| 189 |
+
|
| 190 |
+
return visualizations
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
def handle_visualization_suggestions(suggestions, df):
|
| 194 |
+
"""
|
| 195 |
+
Determines whether to generate a single or multiple visualizations.
|
| 196 |
+
"""
|
| 197 |
+
visualizations = []
|
| 198 |
+
|
| 199 |
+
# If multiple suggestions, generate multiple plots
|
| 200 |
+
if isinstance(suggestions, list) and len(suggestions) > 1:
|
| 201 |
+
visualizations = generate_multiple_visualizations(suggestions, df)
|
| 202 |
+
|
| 203 |
+
# If only one suggestion, generate a single plot
|
| 204 |
+
elif isinstance(suggestions, dict) or (isinstance(suggestions, list) and len(suggestions) == 1):
|
| 205 |
+
suggestion = suggestions[0] if isinstance(suggestions, list) else suggestions
|
| 206 |
+
fig = generate_visualization(suggestion, df)
|
| 207 |
+
if fig:
|
| 208 |
+
visualizations.append(fig)
|
| 209 |
+
|
| 210 |
+
# Handle cases when no visualization could be generated
|
| 211 |
+
if not visualizations:
|
| 212 |
+
st.warning("β οΈ Unable to generate any visualization based on the suggestion.")
|
| 213 |
|
| 214 |
+
# Display all generated visualizations
|
| 215 |
+
for fig in visualizations:
|
| 216 |
+
st.plotly_chart(fig, use_container_width=True)
|