Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -20,10 +20,10 @@ from langchain_community.utilities.sql_database import SQLDatabase
|
|
| 20 |
from datasets import load_dataset
|
| 21 |
import tempfile
|
| 22 |
|
| 23 |
-
# Setup API
|
| 24 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
| 25 |
|
| 26 |
-
#
|
| 27 |
class LLMCallbackHandler(BaseCallbackHandler):
|
| 28 |
def __init__(self, log_path: Path):
|
| 29 |
self.log_path = log_path
|
|
@@ -44,33 +44,36 @@ llm = ChatGroq(
|
|
| 44 |
callbacks=[LLMCallbackHandler(Path("prompts.jsonl"))],
|
| 45 |
)
|
| 46 |
|
| 47 |
-
st.title("SQL-RAG
|
| 48 |
st.write("Analyze and summarize data using natural language queries with SQL-based retrieval.")
|
| 49 |
|
| 50 |
-
#
|
| 51 |
-
|
|
|
|
|
|
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
st.success("File uploaded successfully!")
|
| 58 |
-
else:
|
| 59 |
-
dataset_name = st.text_input("Enter Hugging Face dataset name:", placeholder="e.g., imdb, ag_news")
|
| 60 |
-
if dataset_name:
|
| 61 |
-
try:
|
| 62 |
dataset = load_dataset(dataset_name, split="train")
|
| 63 |
df = pd.DataFrame(dataset)
|
| 64 |
st.success(f"Dataset '{dataset_name}' loaded successfully!")
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
-
|
|
|
|
| 74 |
temp_dir = tempfile.TemporaryDirectory()
|
| 75 |
db_path = os.path.join(temp_dir.name, "data.db")
|
| 76 |
connection = sqlite3.connect(db_path)
|
|
@@ -146,7 +149,7 @@ if 'df' in locals() and not df.empty:
|
|
| 146 |
memory=False,
|
| 147 |
)
|
| 148 |
|
| 149 |
-
query = st.text_input("Enter your query:", placeholder="e.g., 'What
|
| 150 |
if query:
|
| 151 |
with st.spinner("Processing your query..."):
|
| 152 |
inputs = {"query": query}
|
|
@@ -156,4 +159,4 @@ if 'df' in locals() and not df.empty:
|
|
| 156 |
|
| 157 |
temp_dir.cleanup()
|
| 158 |
else:
|
| 159 |
-
st.warning("Please
|
|
|
|
| 20 |
from datasets import load_dataset
|
| 21 |
import tempfile
|
| 22 |
|
| 23 |
+
# Setup API Key
|
| 24 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
| 25 |
|
| 26 |
+
# LLM Logging
|
| 27 |
class LLMCallbackHandler(BaseCallbackHandler):
|
| 28 |
def __init__(self, log_path: Path):
|
| 29 |
self.log_path = log_path
|
|
|
|
| 44 |
callbacks=[LLMCallbackHandler(Path("prompts.jsonl"))],
|
| 45 |
)
|
| 46 |
|
| 47 |
+
st.title("SQL-RAG Using CrewAI π")
|
| 48 |
st.write("Analyze and summarize data using natural language queries with SQL-based retrieval.")
|
| 49 |
|
| 50 |
+
# Primary Option: Hugging Face Dataset
|
| 51 |
+
st.subheader("Option 1: Use a Hugging Face Dataset")
|
| 52 |
+
default_dataset = "Einstellung/demo-salaries"
|
| 53 |
+
dataset_name = st.text_input("Enter Hugging Face dataset name:", value=default_dataset)
|
| 54 |
|
| 55 |
+
df = None
|
| 56 |
+
if dataset_name:
|
| 57 |
+
try:
|
| 58 |
+
with st.spinner("Loading Hugging Face dataset..."):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
dataset = load_dataset(dataset_name, split="train")
|
| 60 |
df = pd.DataFrame(dataset)
|
| 61 |
st.success(f"Dataset '{dataset_name}' loaded successfully!")
|
| 62 |
+
st.dataframe(df.head())
|
| 63 |
+
except Exception as e:
|
| 64 |
+
st.error(f"Error loading Hugging Face dataset: {e}")
|
| 65 |
+
|
| 66 |
+
# Secondary Option: File Upload
|
| 67 |
+
st.subheader("Option 2: Upload Your CSV File")
|
| 68 |
+
uploaded_file = st.file_uploader("Upload your dataset (CSV format):", type=["csv"])
|
| 69 |
+
if uploaded_file and df is None:
|
| 70 |
+
with st.spinner("Loading uploaded file..."):
|
| 71 |
+
df = pd.read_csv(uploaded_file)
|
| 72 |
+
st.success("File uploaded successfully!")
|
| 73 |
+
st.dataframe(df.head())
|
| 74 |
|
| 75 |
+
if df is not None:
|
| 76 |
+
# Create SQLite database
|
| 77 |
temp_dir = tempfile.TemporaryDirectory()
|
| 78 |
db_path = os.path.join(temp_dir.name, "data.db")
|
| 79 |
connection = sqlite3.connect(db_path)
|
|
|
|
| 149 |
memory=False,
|
| 150 |
)
|
| 151 |
|
| 152 |
+
query = st.text_input("Enter your query:", placeholder="e.g., 'What is the average salary by experience level?'")
|
| 153 |
if query:
|
| 154 |
with st.spinner("Processing your query..."):
|
| 155 |
inputs = {"query": query}
|
|
|
|
| 159 |
|
| 160 |
temp_dir.cleanup()
|
| 161 |
else:
|
| 162 |
+
st.warning("Please load a Hugging Face dataset or upload a CSV file to proceed.")
|