Spaces:
Runtime error
Runtime error
| import os | |
| import random | |
| import time | |
| import pickle | |
| import math | |
| from argparse import ArgumentParser | |
| from collections import defaultdict | |
| import string | |
| import csv | |
| from tqdm import tqdm | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline, set_seed, GPT2Tokenizer, GPT2Model | |
| from data import Dataset | |
| from model import Model | |
| from util import save_checkpoint, ProgressMeter, AverageMeter, num_params, pad_mask | |
| from predict_topic import predict | |
| from constants import * | |
| def main(args): | |
| with open(args.dataset_info, 'rb') as rf: | |
| dataset_info = pickle.load(rf) | |
| gpt_tokenizer = AutoTokenizer.from_pretrained(args.model_string) | |
| gpt_tokenizer.add_special_tokens({'pad_token': PAD_TOKEN}) | |
| gpt_pad_id = gpt_tokenizer.encode(PAD_TOKEN)[0] | |
| gpt_model = AutoModelWithLMHead.from_pretrained(args.model_string).to(args.device) | |
| gpt_model.eval() | |
| checkpoint = torch.load(args.ckpt, map_location=args.device) | |
| model_args = checkpoint['args'] | |
| conditioning_model = Model(model_args, gpt_pad_id, len(dataset_info.index2word)) # no need to get the glove embeddings when reloading since they're saved in model ckpt anyway | |
| conditioning_model.load_state_dict(checkpoint['state_dict']) | |
| conditioning_model = conditioning_model.to(args.device) | |
| conditioning_model.eval() | |
| if args.verbose: | |
| print("=> loaded checkpoint '{}' (epoch {})" | |
| .format(args.ckpt, checkpoint['epoch'])) | |
| print('num params', num_params(conditioning_model)) | |
| input_texts, conditions, categories = [], [], [] | |
| if args.condition_file is not None: | |
| with open(args.condition_file, 'r') as rf: | |
| for line in rf: | |
| input_texts.append(line.strip().split('\t')[0]) | |
| conditions.append(line.strip().split('\t')[1]) | |
| categories.append(None) | |
| for cw in conditions[-1].split(): | |
| assert cw in dataset_info.word2index | |
| else: | |
| prefixes = [] | |
| with open(args.prefix_file, 'r') as rf: | |
| for line in rf: | |
| prefixes.append(line.strip()) | |
| condition_wordlists = [] | |
| for root, _, files in os.walk(args.wordlist_dir): | |
| for fname in files: | |
| words = [] | |
| with open(os.path.join(root, fname), 'r') as rf: | |
| for line in rf: | |
| word = line.strip() | |
| if word in dataset_info.word2index: | |
| words.append(word) | |
| else: | |
| if args.verbose: | |
| print('word not found:', word) | |
| condition_wordlists.append((' '.join(words), fname.split('.')[0])) | |
| for p in prefixes: | |
| for c, category in condition_wordlists: | |
| input_texts.append(p) | |
| conditions.append(c) | |
| categories.append(category) | |
| all_cr = [] | |
| pair_num = 0 | |
| for input_text, condition_words, category in tqdm(zip(input_texts, conditions, categories), total=len(conditions)): | |
| predict_function = predict | |
| condition_results = [] | |
| for i in range(0, args.sample_size, args.max_sample_batch): | |
| num_samples = min(args.max_sample_batch, args.sample_size - i) | |
| condition_results += predict_function(gpt_model, | |
| gpt_tokenizer, | |
| conditioning_model, | |
| [input_text for _ in range(num_samples)], | |
| condition_words, | |
| dataset_info, | |
| args.precondition_topk, | |
| args.topk, | |
| args.length_cutoff, | |
| condition_lambda=args.condition_lambda, | |
| device=args.device) | |
| all_cr.append((input_text, category, condition_results)) | |
| pair_num += 1 | |
| if args.max_pairs > 0 and pair_num >= args.max_pairs: | |
| break | |
| with open(args.log_file, 'w') as wf: | |
| writer = csv.DictWriter(wf, fieldnames=['category', 'input_text', 'generation']) | |
| writer.writeheader() | |
| for cr_group in all_cr: | |
| for cr in cr_group[2]: | |
| writer.writerow({'category': cr_group[1], 'input_text': cr_group[0], 'generation': cr}) | |
| if __name__=='__main__': | |
| parser = ArgumentParser() | |
| # DATA | |
| parser.add_argument('--ckpt', type=str, required=True) | |
| parser.add_argument('--log_file', type=str, required=True, help='file to write outputs to (csv format)') | |
| parser.add_argument('--dataset_info', type=str, required=True, help='saved dataset info') | |
| parser.add_argument('--model_string', type=str, default='gpt2-medium') | |
| parser.add_argument('--condition_file', type=str, default=None, help='file of inputs and conditions') | |
| parser.add_argument('--prefix_file', type=str, default=None, help='prefix set') | |
| parser.add_argument('--wordlist_dir', type=str, default=None, help='dir of bow wordlists for categories') | |
| parser.add_argument('--sample_size', type=int, default=3, help='samples per input text-condition pair') | |
| parser.add_argument('--max_sample_batch', type=int, default=3, help='max samples at a time') | |
| parser.add_argument('--max_pairs', type=int, default=-1, help='max input-condition pairs, for debugging quickly') | |
| parser.add_argument('--precondition_topk', type=int, default=200, help='consider top k outputs from gpt at each step before conditioning and re-pruning') | |
| parser.add_argument('--topk', type=int, default=10, help='consider top k outputs from gpt at each step') | |
| parser.add_argument('--condition_lambda', type=float, default=1.0, help='lambda weight on conditioning model') | |
| parser.add_argument('--length_cutoff', type=int, default=80, help='max length') | |
| parser.add_argument('--seed', type=int, default=1, help='random seed') | |
| parser.add_argument('--device', type=str, default='cuda', choices=['cpu', 'cuda']) | |
| parser.add_argument('--debug', action='store_true', default=False) | |
| parser.add_argument('--verbose', action='store_true', default=False) | |
| args = parser.parse_args() | |
| assert (args.condition_file is not None) != (args.prefix_file is not None and args.wordlist_dir is not None) # one of two interfaces for specifying | |
| random.seed(args.seed) | |
| np.random.seed(args.seed) | |
| torch.manual_seed(args.seed) | |
| main(args) |