DunkingScamAI / app.py
DuyKien016's picture
Create app.py
96bae15 verified
# app.py
import os
import re
import io
import torch
from typing import List, Optional
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification
from PIL import Image, ImageEnhance, ImageOps
import torchvision.transforms as T
import gradio as gr
from fastapi import Request
from starlette.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
# ========== LOAD MODELS (once) ==========
print("Loading VinTern model...")
vintern_model = AutoModel.from_pretrained(
"5CD-AI/Vintern-1B-v3_5",
trust_remote_code=True,
torch_dtype="auto",
device_map="auto",
low_cpu_mem_usage=True
).eval()
vintern_tokenizer = AutoTokenizer.from_pretrained(
"5CD-AI/Vintern-1B-v3_5",
trust_remote_code=True
)
print("VinTern loaded!")
print("Loading PhoBERT model...")
phobert_path = "DuyKien016/phobert-scam-detector"
phobert_tokenizer = AutoTokenizer.from_pretrained(phobert_path, use_fast=False)
phobert_model = AutoModelForSequenceClassification.from_pretrained(phobert_path).eval()
phobert_model = phobert_model.to("cuda" if torch.cuda.is_available() else "cpu")
print("PhoBERT loaded!")
# ========== UTILS ==========
def process_image_pil(pil_img: Image.Image):
img = pil_img.convert("RGB")
img = ImageEnhance.Contrast(img).enhance(1.8)
img = ImageEnhance.Sharpness(img).enhance(1.3)
max_size = (448, 448)
img.thumbnail(max_size, Image.Resampling.LANCZOS)
img = ImageOps.pad(img, max_size, color=(245, 245, 245))
transform = T.Compose([
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
pixel_values = transform(img).unsqueeze(0).to(vintern_model.device)
return pixel_values
def extract_messages(pixel_values) -> List[str]:
prompt = """<image>
Đọc từng tin nhắn trong ảnh và xuất ra định dạng:
Tin nhắn 1: [nội dung]
Tin nhắn 2: [nội dung]
Tin nhắn 3: [nội dung]
Quy tắc:
- Mỗi ô chat = 1 tin nhắn
- Chỉ lấy nội dung văn bản
- Bỏ thời gian, tên người, emoji
- Đọc từ trên xuống dưới
Bắt đầu:"""
response, *_ = vintern_model.chat(
tokenizer=vintern_tokenizer,
pixel_values=pixel_values,
question=prompt,
generation_config=dict(max_new_tokens=1024, do_sample=False, num_beams=1, early_stopping=True),
history=None,
return_history=True
)
messages = re.findall(r"Tin nhắn \d+: (.+?)(?=\nTin nhắn|\Z)", response, re.S)
def quick_clean(msg):
msg = re.sub(r"\s+", " ", msg.strip())
msg = re.sub(r'^\d+[\.\)\-\s]+', '', msg)
return msg.strip()
return [quick_clean(msg) for msg in messages if msg.strip()]
def predict_phobert(texts: List[str]):
results = []
for text in texts:
encoded = phobert_tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=256)
encoded = {k: v.to(phobert_model.device) for k, v in encoded.items()}
with torch.no_grad():
logits = phobert_model(**encoded).logits
probs = torch.softmax(logits, dim=1).squeeze()
label = torch.argmax(probs).item()
results.append({
"text": text,
"prediction": "LỪA ĐẢO" if label == 1 else "BÌNH THƯỜNG",
"confidence": f"{probs[label]*100:.2f}%"
})
return results
# ========== CORE HANDLER ==========
def handle_inference(text: Optional[str], pil_image: Optional[Image.Image]):
if (not text) and (pil_image is None):
return {"error": "No valid input provided"}, 400
if pil_image is not None:
pixel_values = process_image_pil(pil_image)
messages = extract_messages(pixel_values)
phobert_results = predict_phobert(messages)
return {"messages": phobert_results}, 200
# text only
texts = [text] if isinstance(text, str) else text
if isinstance(texts, list):
phobert_results = predict_phobert(texts)
return {"messages": phobert_results}, 200
return {"error": "Invalid input format"}, 400
# ========== GRADIO APP (UI + API) ==========
demo = gr.Blocks()
with demo:
gr.Markdown("## dunkingscam backend (HF Space) — test nhanh")
with gr.Row():
txt = gr.Textbox(label="Text (tùy chọn)")
img = gr.Image(label="Ảnh chat (tùy chọn)", type="pil")
out = gr.JSON(label="Kết quả")
def ui_process(text, image):
data, _ = handle_inference(text, image)
return data
btn = gr.Button("Process")
btn.click(fn=ui_process, inputs=[txt, img], outputs=out)
# Lấy FastAPI app bên trong Gradio để thêm CORS + custom route
app = demo.server_app
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # cần mở cho Replit
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Custom REST endpoint /process (FormData hoặc JSON)
@demo.add_server_route("/process", methods=["POST"])
async def process_endpoint(request: Request):
try:
ct = request.headers.get("content-type", "")
if "multipart/form-data" in ct:
form = await request.form()
text = form.get("text")
file = form.get("image") # UploadFile hoặc None
pil_image = None
if file is not None:
# đọc bytes -> PIL
content = await file.read()
pil_image = Image.open(io.BytesIO(content))
data, status = handle_inference(text, pil_image)
elif "application/json" in ct:
payload = await request.json()
text = payload.get("text")
data, status = handle_inference(text, None)
else:
data, status = {"error": "Unsupported Content-Type"}, 400
return JSONResponse(
content=data,
status_code=status,
headers={"Access-Control-Allow-Origin": "*"}
)
except Exception as e:
return JSONResponse(
content={"error": f"Server error: {str(e)}"},
status_code=500,
headers={"Access-Control-Allow-Origin": "*"}
)