Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- README.md +2 -8
- app.py +93 -0
- requirement.txt +4 -0
- requirements.txt +4 -0
README.md
CHANGED
|
@@ -1,12 +1,6 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
|
| 4 |
-
colorFrom: gray
|
| 5 |
-
colorTo: gray
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.39.0
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
---
|
| 11 |
-
|
| 12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: visionbuddy
|
| 3 |
+
app_file: app.py
|
|
|
|
|
|
|
| 4 |
sdk: gradio
|
| 5 |
sdk_version: 5.39.0
|
|
|
|
|
|
|
| 6 |
---
|
|
|
|
|
|
app.py
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import (
|
| 3 |
+
PaliGemmaProcessor,
|
| 4 |
+
PaliGemmaForConditionalGeneration,
|
| 5 |
+
)
|
| 6 |
+
import torch
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import numpy as np
|
| 9 |
+
|
| 10 |
+
# Device
|
| 11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
+
print(f"Using device: {device}")
|
| 13 |
+
|
| 14 |
+
# Load model and processor
|
| 15 |
+
model_id = "google/paligemma2-3b-mix-448"
|
| 16 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained(
|
| 17 |
+
model_id,
|
| 18 |
+
torch_dtype=torch.float32,
|
| 19 |
+
device_map="auto",
|
| 20 |
+
low_cpu_mem_usage=True
|
| 21 |
+
).eval()
|
| 22 |
+
processor = PaliGemmaProcessor.from_pretrained(model_id)
|
| 23 |
+
print("Model and processor loaded successfully")
|
| 24 |
+
|
| 25 |
+
# Process image
|
| 26 |
+
def process_image(image, task_type, question="", objects=""):
|
| 27 |
+
try:
|
| 28 |
+
if task_type == "Describe Image":
|
| 29 |
+
prompt = "describe en"
|
| 30 |
+
elif task_type == "OCR Text Recognition":
|
| 31 |
+
prompt = "ocr"
|
| 32 |
+
elif task_type == "Answer Question":
|
| 33 |
+
prompt = f"answer en {question}"
|
| 34 |
+
elif task_type == "Detect Objects":
|
| 35 |
+
prompt = f"detect {objects}"
|
| 36 |
+
else:
|
| 37 |
+
return "Please select a valid task."
|
| 38 |
+
|
| 39 |
+
if isinstance(image, np.ndarray):
|
| 40 |
+
image = Image.fromarray(image)
|
| 41 |
+
|
| 42 |
+
model_inputs = processor(text=prompt, images=image, return_tensors="pt")
|
| 43 |
+
model_inputs = {k: v.to(device) for k, v in model_inputs.items()}
|
| 44 |
+
input_len = model_inputs["input_ids"].shape[-1]
|
| 45 |
+
|
| 46 |
+
with torch.inference_mode():
|
| 47 |
+
generation = model.generate(
|
| 48 |
+
**model_inputs,
|
| 49 |
+
max_new_tokens=100,
|
| 50 |
+
do_sample=False
|
| 51 |
+
)
|
| 52 |
+
generation = generation[0][input_len:]
|
| 53 |
+
result = processor.decode(generation, skip_special_tokens=True)
|
| 54 |
+
|
| 55 |
+
return result
|
| 56 |
+
except Exception as e:
|
| 57 |
+
return f"Error during processing: {str(e)}"
|
| 58 |
+
|
| 59 |
+
# Elegant website-style CSS
|
| 60 |
+
custom_css = """
|
| 61 |
+
|
| 62 |
+
"""
|
| 63 |
+
|
| 64 |
+
# Gradio app
|
| 65 |
+
with gr.Blocks(css=custom_css) as demo:
|
| 66 |
+
gr.Markdown("""<h1>PaliGemma 2 Visual AI Assistant</h1>""")
|
| 67 |
+
|
| 68 |
+
with gr.Row():
|
| 69 |
+
with gr.Column():
|
| 70 |
+
image_input = gr.Image(label="Upload Image", elem_classes="image-preview")
|
| 71 |
+
task_type = gr.Radio(
|
| 72 |
+
choices=["Describe Image", "OCR Text Recognition", "Answer Question", "Detect Objects"],
|
| 73 |
+
label="Choose Task",
|
| 74 |
+
value="Describe Image"
|
| 75 |
+
)
|
| 76 |
+
question_input = gr.Textbox(label="Question", placeholder="Type a question", visible=False)
|
| 77 |
+
objects_input = gr.Textbox(label="Objects to Detect", placeholder="e.g., cat; car", visible=False)
|
| 78 |
+
submit_btn = gr.Button("🔍 Analyze")
|
| 79 |
+
|
| 80 |
+
with gr.Column():
|
| 81 |
+
output_text = gr.Textbox(label="Result", lines=10)
|
| 82 |
+
|
| 83 |
+
def update_inputs(task):
|
| 84 |
+
return {
|
| 85 |
+
question_input: gr.update(visible=(task == "Answer Question")),
|
| 86 |
+
objects_input: gr.update(visible=(task == "Detect Objects"))
|
| 87 |
+
}
|
| 88 |
+
|
| 89 |
+
task_type.change(fn=update_inputs, inputs=[task_type], outputs=[question_input, objects_input])
|
| 90 |
+
submit_btn.click(fn=process_image, inputs=[image_input, task_type, question_input, objects_input], outputs=output_text)
|
| 91 |
+
|
| 92 |
+
if __name__ == "__main__":
|
| 93 |
+
demo.launch(share=True, inbrowser=True)
|
requirement.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
torch
|
| 3 |
+
transformers
|
| 4 |
+
Pillow
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
transformers
|
| 3 |
+
torch
|
| 4 |
+
Pillow
|