|
|
import json |
|
|
from scipy.stats import multivariate_normal as mvn |
|
|
from scipy.stats import norm |
|
|
import numpy as np |
|
|
import gradio as gr |
|
|
|
|
|
from functions import * |
|
|
|
|
|
def main(file): |
|
|
|
|
|
|
|
|
with open(file.name) as json_file: |
|
|
data = json.load(json_file) |
|
|
|
|
|
|
|
|
team_stats = [person['attributes'] for person in data['team']] |
|
|
applicant_stats = [person['attributes'] for person in data['applicants']] |
|
|
if len(team_stats) < 2: |
|
|
print('Input file must have at least 2 team members to score applicants') |
|
|
return None |
|
|
if len(team_stats[0]) == 0: |
|
|
print('Team members must have at least 1 attribute') |
|
|
return None |
|
|
if not all_equal([tuple(person.keys()) for person in team_stats + applicant_stats]): |
|
|
print('Input file has incomplete data. Please input all attributes for all people') |
|
|
return None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attributes = tuple(team_stats[0].keys()) |
|
|
dist = [[person[attribute] for person in team_stats] for attribute in attributes] |
|
|
multivariate_normal_model = { |
|
|
"attributes": attributes, |
|
|
"distribution": dist, |
|
|
"means":[np.mean(feature) for feature in dist], |
|
|
"covariance_matrix": make_independent(np.cov(dist)) |
|
|
} |
|
|
model = mvn(mean=multivariate_normal_model['means'], |
|
|
cov=multivariate_normal_model['covariance_matrix'], allow_singular=True) |
|
|
|
|
|
|
|
|
scores = [{'name': applicant['name'], |
|
|
'score': compatibility(model, multivariate_normal_model['attributes'], applicant['attributes'])} |
|
|
for applicant in data['applicants']] |
|
|
|
|
|
|
|
|
|
|
|
json_object = json.dumps({"scoredApplicants": scores}, indent=4) |
|
|
with open("scores.json", "w") as outfile: |
|
|
outfile.write(json_object) |
|
|
|
|
|
return "scores.json" |
|
|
|
|
|
demo = gr.Interface(main, "file", "file") |
|
|
|
|
|
demo.launch() |