Spaces:
Sleeping
Sleeping
| import random | |
| import time | |
| import gradio as gr | |
| from create_query_engine import * | |
| logo_filepath = 'Readable.png' | |
| robot_filepath = 'Robot.png' | |
| custom_css = """ | |
| .column { | |
| align-items: center; | |
| } | |
| .column_el { | |
| flex-grow: 1; | |
| } | |
| """ | |
| def respond(message, chat_history, query_engine, sql_engine): | |
| response = query_engine.query(message) | |
| bot_message = response.response | |
| chat_history.append((message, bot_message)) | |
| time.sleep(2) | |
| return "", chat_history, display_question_and_answer(chat_history), query(sql_engine, response.metadata['sql_query']), response.metadata['sql_query'] | |
| def display_question_and_answer(tuple_list): | |
| qa_history = "" | |
| for i, (q, a) in enumerate(tuple_list): | |
| qa_history += f"<details><summary>Q: {q}</summary><p>A: {a}</p></details>" | |
| return qa_history | |
| with gr.Blocks(css=custom_css) as demo: | |
| with gr.Tab("Home"): | |
| with gr.Row(variant='compact'): | |
| with gr.Column(scale=1, elem_classes='column'): | |
| logo = gr.Image(value=logo_filepath, type='pil', show_label=False, show_download_button=False, container=False, elem_classes='column_el') | |
| agent = gr.State() | |
| file = gr.File(file_types=['pdf'], file_count='single', show_label=False, elem_classes='column_el', height=75) | |
| SQLidx = gr.State() | |
| sql_engine = gr.State() | |
| # Connect to database + give context pane | |
| with gr.Accordion("Command String Details"): | |
| gr.Markdown("Enter command string details here") | |
| with gr.Row(): | |
| user = gr.Textbox(value='postgres', label="Username") | |
| password = gr.Textbox(value='aimfall23',label="Password") | |
| with gr.Row(): | |
| host = gr.Textbox(value='aim-23-text-to-sql.cv6cnzb0rcuo.us-east-1.rds.amazonaws.com',label="Host") | |
| port = gr.Textbox(value='5432', label="Port") | |
| myDB = gr.Textbox(value='sample_db', label="mydatabase") | |
| upload_status = gr.Textbox(value="Database not connected yet", label="Connect Status") | |
| submit_SQL_btn = gr.Button("Submit postgre details") | |
| submit_SQL_btn.click(fn=create_query_engine, inputs = [file, user, password, host, port, myDB], outputs=[SQLidx, sql_engine, upload_status]) | |
| robot = gr.Image(value=robot_filepath, type='pil', show_label=False, show_download_button=False, container=False, width=125, height=125, elem_classes='column_el') | |
| with gr.Column(scale=3, elem_classes='column'): | |
| df = gr.Dataframe() | |
| chatbot = gr.Chatbot(elem_classes='column_el') | |
| msg = gr.Textbox(show_label=False, elem_classes='column_el') | |
| with gr.Accordion("Executed SQL Query"): | |
| sql_statement = gr.Textbox(label="", lines=5) | |
| with gr.Tab("Chat History"): | |
| history = gr.HTML() | |
| msg.submit(respond, [msg, chatbot, SQLidx, sql_engine], [msg, chatbot, history, df, sql_statement]) | |
| demo.launch() |