Spaces:
Sleeping
Sleeping
SURIAPRAKASH1
commited on
Commit
Β·
4318cac
1
Parent(s):
42ecf43
model and gradio ui implemented
Browse files
app.py
CHANGED
|
@@ -1,24 +1,189 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
from typing import List, Dict
|
| 3 |
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
if __name__ == "__main__":
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
|
|
|
| 2 |
import json
|
| 3 |
+
from typing import Any, List, Dict, Union
|
| 4 |
+
import torch
|
| 5 |
+
from sentence_transformers import SentenceTransformer
|
| 6 |
+
from huggingface_hub import login
|
| 7 |
+
import os
|
| 8 |
|
| 9 |
+
# Get currently avilable device
|
| 10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 11 |
+
|
| 12 |
+
# SimilarityModel Config's
|
| 13 |
+
class Config:
|
| 14 |
+
"""Configuration settings for the application."""
|
| 15 |
+
EMBEDDING_MODEL_ID = "google/embeddinggemma-300M"
|
| 16 |
+
QUERY_PROMPT_NAME = "query"
|
| 17 |
+
TOOL_PROMPT_NAME = "document"
|
| 18 |
+
TOP_K = 3
|
| 19 |
+
HF_TOKEN = os.getenv('HF_TOKEN')
|
| 20 |
+
DEVICE = device
|
| 21 |
+
|
| 22 |
+
# Encapsulated Similarity Model
|
| 23 |
+
class SimilarityModel:
|
| 24 |
+
"""
|
| 25 |
+
A class for finding similar tools for given query using Sentence Transformer embeddings.
|
| 26 |
+
"""
|
| 27 |
+
def __init__(self, config: Config):
|
| 28 |
+
self.config = config
|
| 29 |
+
self._login_to_hf()
|
| 30 |
+
self.model = self._load_model()
|
| 31 |
+
self.tool_embeddings_cache = {}
|
| 32 |
+
|
| 33 |
+
def _login_to_hf(self):
|
| 34 |
+
"""Logs into Hugging Face Hub if a token is provided."""
|
| 35 |
+
if self.config.HF_TOKEN:
|
| 36 |
+
print("Logging into Hugging Face Hub...")
|
| 37 |
+
login(token=self.config.HF_TOKEN)
|
| 38 |
+
else:
|
| 39 |
+
print("HF_TOKEN not found. Proceeding without login.")
|
| 40 |
+
print("Note: This may fail if the model is gated.")
|
| 41 |
+
|
| 42 |
+
def _load_model(self) -> SentenceTransformer:
|
| 43 |
+
"""Loads the Sentence Transformer model."""
|
| 44 |
+
print(f"Initializing embedding model: {self.config.EMBEDDING_MODEL_ID}...")
|
| 45 |
+
try:
|
| 46 |
+
return SentenceTransformer(self.config.EMBEDDING_MODEL_ID).to(self.config.DEVICE)
|
| 47 |
+
except Exception as e:
|
| 48 |
+
print(f"Error loading model: {e}")
|
| 49 |
+
raise
|
| 50 |
+
|
| 51 |
+
def _validate_query_tools(self, query: Union[str, Any], tools_list: Union[List[Dict], Any]) -> Union[str, List[Dict]]:
|
| 52 |
+
"""
|
| 53 |
+
Validates the query and tools data to ensure formats.
|
| 54 |
+
|
| 55 |
+
Args:
|
| 56 |
+
query: The user query string.
|
| 57 |
+
tools_list: JSON instance, list of dict where each dict represents a tool declaration.
|
| 58 |
+
Returns:
|
| 59 |
+
True If the query and tools data are valid, then returns tools_data as converted from JSON to list of dict.
|
| 60 |
+
False string saying invalid query or tools data.
|
| 61 |
+
"""
|
| 62 |
+
is_valid_query = isinstance(query, str) and len(query.strip()) > 0
|
| 63 |
+
if not is_valid_query:
|
| 64 |
+
return "Invalid query. It should be a non-empty string."
|
| 65 |
+
|
| 66 |
+
# If tools_list are already in format of list of dict.
|
| 67 |
+
is_already_valid_tools = isinstance(tools_list, list) and all(isinstance(d, dict) for d in tools_list)
|
| 68 |
+
if is_already_valid_tools:
|
| 69 |
+
return tools_list
|
| 70 |
+
|
| 71 |
+
# If tools_list is string but it's list of dict, then json loads will parse
|
| 72 |
+
try:
|
| 73 |
+
tools_data = json.loads(tools_list)
|
| 74 |
+
except json.JSONDecodeError:
|
| 75 |
+
return "Invalid JSON format for tools data."
|
| 76 |
+
|
| 77 |
+
is_valid_tools = isinstance(tools_data, list) and all(isinstance(d, dict) for d in tools_data)
|
| 78 |
+
if not is_valid_tools:
|
| 79 |
+
return "Invalid tools data. It should be a list of dictionaries."
|
| 80 |
+
|
| 81 |
+
return tools_data
|
| 82 |
+
|
| 83 |
+
def cache_tool_embeddings(self, tools_data: List[Dict], tools_cache_key: str, cache_tool: float = True)-> torch.Tensor:
|
| 84 |
+
"""
|
| 85 |
+
If already tools embeddings are cached returns. If not cached computes tools embeddings and caches.
|
| 86 |
+
|
| 87 |
+
Args:
|
| 88 |
+
tools_data: List of JSON like format, where each dict represents a tool declaration.
|
| 89 |
+
tools_cache_key: Unique key for caching based on the tools data.
|
| 90 |
+
cache_tool: Whether to cache the tools embeddings or not.
|
| 91 |
+
"""
|
| 92 |
+
if tools_cache_key in self.tool_embeddings_cache:
|
| 93 |
+
tool_description_embeddings = self.tool_embeddings_cache[tools_cache_key]
|
| 94 |
+
else:
|
| 95 |
+
tool_descriptions = [tool["description"] for tool in tools_data]
|
| 96 |
+
tool_description_embeddings = self.model.encode(tool_descriptions, normalize_embeddings=True, prompt_name= self.config.TOOL_PROMPT_NAME)
|
| 97 |
+
if cache_tool:
|
| 98 |
+
self.tool_embeddings_cache[tools_cache_key] = tool_description_embeddings
|
| 99 |
+
|
| 100 |
+
return tool_description_embeddings
|
| 101 |
+
|
| 102 |
+
def find_similar_tools(self, query: str, tools_list: List[Dict], top_k: int, cache_tool_embs: bool= True):
|
| 103 |
+
"""
|
| 104 |
+
Finds the top_k most similar tools to a given query using Sentence Transformer embeddings.
|
| 105 |
+
|
| 106 |
+
Args:
|
| 107 |
+
query: The user query string.
|
| 108 |
+
tools_list: JSON instance, list of dict where each dict represents a tool declaration.
|
| 109 |
+
top_k: The number of top similar tools to return.
|
| 110 |
+
|
| 111 |
+
Returns:
|
| 112 |
+
A string containing the names and descriptions of the top_k similar tools, formatted for clarity.
|
| 113 |
+
"""
|
| 114 |
+
# Validate: query and tools_list
|
| 115 |
+
tools_data = self._validate_query_tools(query, tools_list)
|
| 116 |
+
try:
|
| 117 |
+
assert isinstance(tools_data, list) and all(isinstance(d, dict) for d in tools_data)
|
| 118 |
+
except AssertionError:
|
| 119 |
+
return tools_data
|
| 120 |
+
|
| 121 |
+
# Create a unique key for caching based on the tools data
|
| 122 |
+
tools_cache_key = json.dumps(tools_data, sort_keys=True)
|
| 123 |
+
|
| 124 |
+
# Compute tools embedding or get cached embeddings
|
| 125 |
+
tool_description_embeddings = self.cache_tool_embeddings(tools_data, tools_cache_key, cache_tool = cache_tool_embs)
|
| 126 |
+
|
| 127 |
+
# Everytime computing query embeddings, query is from user is always user's stochastic
|
| 128 |
+
query_embedding = self.model.encode(query, normalize_embeddings=True, prompt_name= self.config.QUERY_PROMPT_NAME)
|
| 129 |
+
|
| 130 |
+
# Similarity scores B/W user query and tools embeddings
|
| 131 |
+
similarity_scores = self.model.similarity(query_embedding, tool_description_embeddings).cpu()
|
| 132 |
+
|
| 133 |
+
# Ensure top_k does not exceed the number of available tools
|
| 134 |
+
actual_top_k = min(top_k or self.config.TOP_K, len(tools_data))
|
| 135 |
+
top_tool_indices = similarity_scores.argsort().flatten()[-actual_top_k:]
|
| 136 |
+
|
| 137 |
+
# Reverse the indices to get the most similar first
|
| 138 |
+
top_tool_indices = top_tool_indices.tolist()[::-1]
|
| 139 |
+
top_tools = [tools_data[int(i)] for i in top_tool_indices]
|
| 140 |
+
|
| 141 |
+
# Format the output for the Gradio Textbox
|
| 142 |
+
output_text = f"Top {actual_top_k} most similar tools:\n\n"
|
| 143 |
+
for i, tool in enumerate(top_tools):
|
| 144 |
+
output_text += f"{i+1}. Name: {tool['name']}\n"
|
| 145 |
+
output_text += f" Description: {tool['description']}\n"
|
| 146 |
+
if i < len(top_tools) - 1:
|
| 147 |
+
output_text += "---\n" # Add a separator between tools
|
| 148 |
+
|
| 149 |
+
if not top_tools:
|
| 150 |
+
output_text = "No tools found."
|
| 151 |
+
|
| 152 |
+
return output_text, top_tools
|
| 153 |
+
|
| 154 |
+
def create_ui(model: SimilarityModel):
|
| 155 |
+
"""Pretty UI with Gradio for user to interact with"""
|
| 156 |
+
|
| 157 |
+
with gr.Blocks() as demo:
|
| 158 |
+
gr.Interface(
|
| 159 |
+
fn = model.find_similar_tools,
|
| 160 |
+
inputs=[
|
| 161 |
+
gr.Textbox(label="Query"),
|
| 162 |
+
gr.Textbox(
|
| 163 |
+
lines=10,
|
| 164 |
+
label="Define tool declaration here",
|
| 165 |
+
info="Please enter a valid JSON string. For e.g, a list of dict's (name & desc π).",
|
| 166 |
+
placeholder='''[
|
| 167 |
+
{
|
| 168 |
+
"name": "get_current_weather",
|
| 169 |
+
"description": "Get the current weather in a given location"
|
| 170 |
+
}
|
| 171 |
+
]'''),
|
| 172 |
+
gr.Number(label="Top K", value=3, precision=0),
|
| 173 |
+
gr.Checkbox(label="Cache Tool Embeddings", value=True)
|
| 174 |
+
],
|
| 175 |
+
outputs=[
|
| 176 |
+
gr.TextArea(label="Similar Tools (Name and Description)", lines = 5),
|
| 177 |
+
gr.JSON(label= "Similar Tools JSON-format")
|
| 178 |
+
],
|
| 179 |
+
title="Tool Similarity Finder using Embedding Gemma 300M",
|
| 180 |
+
description="Enter a query and a list of tools to find the most similar tools based on embeddings."
|
| 181 |
+
)
|
| 182 |
+
return demo
|
| 183 |
|
| 184 |
if __name__ == "__main__":
|
| 185 |
+
similarity_model = SimilarityModel(config = Config())
|
| 186 |
+
demo = create_ui(similarity_model)
|
| 187 |
+
demo.launch(
|
| 188 |
+
mcp_server= True
|
| 189 |
+
)
|